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ABSTRACT This paper is concerned with modeling of networks with an extremely large number of
components using partial differential equations (PDEs). This modeling method is based on the convergence
of a sequence of underlying Markov chains of the network indexed by N , the number of components in the
network. AsN goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain
PDE. We provide sufficient conditions for the convergence and characterize the rate of convergence. As an
application, we model large wireless sensor networks by PDEs. While traditional Monte Carlo simulation
for extremely large networks is practically infeasible, PDEs can be solved with reasonable computation
overhead using well-established mathematical tools.

INDEX TERMS Modeling, partial differential equations, Markov processes, network modeling.

I. INTRODUCTION
This paper is concerned with modeling of networks
involving an extremely large number of components.
The conventional way to study large networks is by
computer modeling and simulation [1]. The approach
involves representing the network in computer software
and then applying a numerical simulation method to
study how the network behaves. Typically, each indi-
vidual component is explicitly represented as a sep-
arate entity. As we are confronted with larger and
larger networks, the number of its components that have
to be represented increases, and this significantly lengthens
the time it takes to write, manage, and run computer simula-
tion programs. Simulating large networks typically requires
expensive, highly sophisticated supercomputers involving
large parallel computing hardware with specialized soft-
ware. It is not uncommon for a simulation run to take days
or weeks, even on a large supercomputer. The larger the
network, the longer it takes. The computational overhead

associated with direct simulation thus severely limits the
size and complexity of networks that can be studied in this
fashion.
Our recent papers [2]–[5] address this problem by using

continuum modeling to capture the global characteristics of
large networks. In large networks, we are often more inter-
ested in the global characteristics of an entire network than
in a particular individual component. Continuum models do
away with the need to represent each individual component of
a large network as a separate entity, and consider the behavior
of the components on the scale of the aggregate rather than of
the individual. Similar to treating water as a continuous fluid
instead of a large number of individual molecules, continuum
modeling treats the large number of communicating compo-
nents (or nodes) in a network collectively as a continuum. The
continuum modeling strategies in [3]–[5] use partial differen-
tial equations (PDEs) to approximate large sensor or cellular
networks modeled by a certain class of Markov chains. The
PDE model represents the global characteristics of the net-
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work, while the individual characteristics of the components
enter the model through the form and the parameters of the
PDE.

PDEs are well-suited to the modeling of continuum behav-
ior. Although uncommon in modeling networks, they are
common in modeling many physical phenomena, including
heat, sound, electromagnetism, and fluid flow. There are well-
established mathematical tools to solve PDEs, such as the
finite element method [6] and the finite differencemethod [7],
incorporated into computer software packages such asMatlab
and Comsol. We can use these tools to greatly reduce compu-
tation time. As a result, the effort to run the PDE models in
a computer no longer suffers from the curse of sheer size. (In
fact, as we will show, the larger the network, the closer the
PDE approximates it.) Continuum modeling thus provides a
powerful way to deal with the number of components in large
networks. This, in turn, would make it possible to carry out—
with reasonable computational burden even for extremely
large systems—network performance evaluation and proto-
typing, network design, systematic parameter studies, and
optimization of network characteristics.

The work in this paper is motivated by the continuummod-
eling strategies in the papers [3]–[5] mentioned above, and by
the need for a rigorous description of the heuristic limiting
process underlying the construction of their PDE models. We
analyze the convergence of a class of Markov chains to their
continuum limits, which are the solutions of certain PDEs.We
consider a general Markov chain model in an abstract setting
instead of that of any particular network model. We do this
for two reasons: first, our network modeling results involve a
class of Markov chains modeling a variety of communication
networks; second, similar Markov chain models akin to ours
arise in several other contexts. For example, a very recent
paper [8] on human crowd modeling derives a limiting PDE
in a fashion similar to our approach.

In the convergence analysis, we show that a sequence of
Markov chains indexed by N , the number of components in
the system that they model, converges in a certain sense to its
continuum limit, which is the solution of a time-dependent
PDE, as N goes to∞. The PDE solution describes the global
spatio-temporal behavior of the model in the limit of large
system size. We apply this abstract result to the modeling of a
large wireless sensor network by approximating a particular
global aspect of the network states (queue length) by a nonlin-
ear convection-diffusion-reaction PDE. This network model
includes the network example discussed in [3] as a special
case.

A. RELATED LITERATURE
The modeling and analysis of stochastic systems such as
networks is a large field of research, and much of the previous
contributions share goals with the work in this paper.

In the field of direct numerical simulation approaches,
many efforts have been made to accelerate the simulation. For
example, parallel simulation techniques have been developed
to exploit the computation power of multiprocessor and/or

cluster platforms [9]–[12]; newmechanisms for executing the
simulation have been designed to improve the efficiency of
event scheduling in event-driven simulations (see, e.g., [13],
[14]); and fluid simulations, in contrast to traditional packet-
level ones, have been used to simplify the network model by
treating network traffic (not nodes) as continuous flows rather
than discrete packets [15]–[18]. However, as the number of
nodes in the network grows extremely large, computer-based
simulations involving individual nodes eventually become
practically infeasible. For the remainder of this subsection,
we review some existing results on analysis of stochastic
networks that do not depend on direct numerical simulation.
Our convergence analysis in this paper uses Kushner’s ordi-

nary differential equation (ODE) method [19]. This method
essentially studies a ‘‘smoothing’’ limit as a certain ‘‘aver-
aging’’ parameter goes to∞, but not a ‘‘large-system’’ limit
as the number of components in the system goes to ∞. In
contrast, the limiting process analyzed in this paper involves
two steps: the first similar to that in Kushner’s ODE method,
and the second a ‘‘large-system’’ limit. (We provide more
details about the two-step procedure later in Sec. I-D.) In
other words, while Kushner’s method deals with a fixed state
space, we treat a sequence of state spaces {RN

} indexed by
increasing N , where N is the number of components in the
system.
Kushner’s ODE method is closely related to the line of

research called stochastic approximation, started by Rob-
bins and Monro [20] and Kiefer and Wolfowitz [21] in the
early 1950s, which studies stochastic processes similar to
those addressed by Kushner’s ODE method, and has been
widely used in many areas (see, e.g., [22], [23], for surveys).
Among the numerous following efforts, several ODE meth-
ods including that of Kushner were first developed in the
1970s (see, e.g., [24], [25]) and extensively studied there-
after (see, e.g., [26]–[28]), many times addressing problems
outside of the category of stochastic approximation (see,
e.g. [19]).
The general subject of the approximation ofMarkov chains

(or equivalently, the convergence of sequences of Markov
chains to certain limits) goes beyond the scope of ODE
methods or stochastic approximation, and there are results
on the convergence of different models to different limits.
A huge class of Markov chains (discrete-time or continuous-
time) that model various systems, phenomena, and abstract
problems, hence having in general very different forms from
ours, have been shown to converge either to ODE solutions
[29]–[31] (and more generally, abstract Cauchy prob-
lems [32]), or to stochastic processes like diffusion pro-
cesses [19], [33]. These results use methods different from
Kushner’s, but share with it the principle idea of ‘‘averaging
out’’ of the randomness of the Markov chain. Their deeper
connection lies in weak convergence theory [19], [33], [34]
and methods to prove such convergence that they have in
common: the operator semigroup convergence theorem [35],
the martingale characterization method [36], and identifica-
tion of the limit as the solution to a stochastic differential
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equation [19], [33]. The reader is referred to [19], [33] and
the references therein for additional information on these
methods.

Similar to Kushner’s ODE method, all the convergence
results discussed above differ from our approach in the sense
that they essentially study only the single-step ‘‘smoothing’’
limit as an ‘‘averaging’’ parameter goes to ∞, but do not
have our second-step convergence to the ‘‘large-system’’
limit (PDE) (as N → ∞). There are systems in which the
‘‘averaging’’ parameter represents some ‘‘size’’ of the system
(e.g., population in the epidemic model, the metapopulations
model, and the searching parasites problem [31], [32]). How-
ever, it is still the case that the convergence requires a fixed
dimension of the state space of theMarkov chain, like the case
of Kushner’s ODE convergence, and does not apply to the
‘‘large-system’’ limit in our second step. For example, in the
epidemic model, the Markov chain represents the number of
people in a population in two states: infected and uninfected,
and the large population limit is studied. This is a single-
step limit and the state space of the Markov chain is always
inR2. Notice that in these cases, theMarkov chains model the
number or proportion of the components in different states
in the system, and unlike our model, the indexing or loca-
tions of the components are either unimportant or ignored. In
contrast, in our case, the spatial index of nodes is addressed
throughout.

In fact, a variety of other approximation methods for
large systems, in general built on different ideas from the
aforementioned ones, take a similar direction: they study
the number or proportion of components in a certain state
(or some related performance parameters), thus ignoring
their order or the difference in their spatial locations. For
example, the famous work of Gupta and Kumar [37], fol-
lowed by many others (e.g., [38]–[41]), derives scaling
laws of network performance parameters (e.g., through-
put); and many efforts based on mean field theory [42]–
[51] or on the theory of large deviations [52]–[56] study
the convergence with regard to the so-called empirical
(or occupancy) measure or distribution, which essentially
represents the proportion of components in certain states,
to a deterministic function, as the number of compo-
nents grows large, treating the components as exchange-
able in terms of their order or spatial indices. These
approaches differ from our work at least in the sense
that they only study the statistical instead of the spatio-
temporal characteristics of the system. As a result of
treating the components without regard to their locations,
when the limits obtained by these approaches are in fact
differential equations, they are usually ODEs instead of
PDEs. Note that the statistical parameters studied in these
works correspond to some deterministic quantities easily
obtained from our deterministic limits that directly approx-
imate the state of the systems. For example, the propor-
tion of nodes with, say, empty queues in our network
model can be directly calculated from the limiting PDE
solution (in addition, their locations are directly observ-

able); and the instantaneous throughput can be obtained by
integrating the PDE solution at a certain time over the spatial
domain.
Of course, there do exist numerous continuum models

in a wide spectrum of areas such as physics, chemistry,
ecology, economics, transportation, and sociology (e.g., [8],
[57]–[63]), many of which use PDEs to formulate spatio-
temporal phenomena and approximate quantities such as the
probability density of particle velocity in thermodynamic
systems, the concentration of reactants in chemical reactions,
the population density in animal swarms, the wealth of a com-
pany in consumption-investment processes, the car density
on highways, and the density of people in human crowds.
All these works differ from the work presented here both by
the properties of the system being studied and the analytic
approaches. In addition, most of them study distributions of
limiting processes that are random, while our limiting func-
tions themselves are deterministic. We especially emphasize
the difference between our results and those of the math-
ematical physics of hydrodynamics [64]–[69], because the
latter have a similar style by deducing macroscopic behavior
from microscopic interactions of individual particles, and in
some special cases result in similar PDEs. However, they
use an entirely different approach, which usually requires
different assumptions on the systems such as translation
invariant transition probabilities, conservation of the number
of particles, and particular distributions of the initial state;
and their limiting PDE is not the direct approximation of
system state, but the density of some associated probability
measure.
There is a vast literature on the convergence of a large

variety of network models different from ours, to essentially
two kinds of limits: the fluid limit (or functional law of large
numbers approximation) [70]–[79] and the diffusion approx-
imation (or functional central limit theorem approximation),
under the so-called fluid and diffusion scalings, respectively,
with the latter limit mostly studied in networks in heavy
traffic [80]–[91]. (Some papers study both limits [92]–[94].)
Unlike our work, this field of research focuses primarily on
networks with a fixed number of nodes.
Our work is to be distinguished from approaches where

the model is constructed to be a continuum representation
from the start. For example, many papers treat nodes as a
continuum by considering only the average density of nodes
[95]–[102]; and others model network traffic as a continuum
by capturing certain average characteristics of the data packet
traffic, with the averaging being over possibly different time
scales [103]–[105]. The latter shares a similar idea with fluid
simulations discussed at the beginning of this section.

B. MARKOV CHAIN MODEL
We first describe our model in full generality. Consider N
points VN = {vN (1), . . . , vN (N )} in a compact, convex
Euclidean domainD representing a spatial region.We assume
that these points form a uniform grid, though the model
generalizes to nonuniform spacing of points under certain
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conditions (see Sec. IV for discussion). We refer to these N
points in D as grid points.
We consider a discrete-time Markov chain

XN ,M (k) = [XN ,M (k, 1), . . . ,XN ,M (k,N )]> ∈ RN

(the superscript > represents transpose) whose evolution is
described by the stochastic difference equation

XN ,M (k + 1) = XN ,M (k)+ FN (XN ,M (k)/M ,UN (k)). (1)

Here, XN ,M (k, n) is the real-valued state associated with the
grid point vN (n) at time k , where n = 1, . . . ,N is a spatial
index and k = 0, 1, . . . is a temporal index; UN (k) are
i.i.d. random vectors that do not depend on the state XN ,M (k);
M is an ‘‘averaging’’ parameter (explained later); and FN is
a given function.

Treating N and M as indices that grow, the equation (1)
defines a doubly indexed family XN ,M (k) of Markov chains
indexed by both N and M . (We will later take M to be a
function of N , and treat this family as a sequence XN (k) of
the single index N .) Below we give a concrete example of a
system described by (1).

C. A STOCHASTIC NETWORK MODEL
In this subsection we demonstrate the various objects in the
abstract Markov chain model analyzed in this paper on a
prototypical example. We begin by describing a stochastic
model of a wireless sensor network.

Consider a network of N wireless sensor nodes uniformly
placed over the domainD. That is, the N nodes are located on
the grid points VN = {vN (1), . . . , vN (N )} described above.
We label the node at vN (n) by n, where n = 1, . . . ,N . The
sensor nodes generate, according to a probability distribution,
data messages that need to be communicated to the desti-
nation nodes located on the boundary of the domain, which
represent specialized devices that collect the sensor data. The
sensor nodes also serve as relays for routing messages to the
destination nodes. Each sensor node has the capacity to store
messages in a queue, and is capable of either transmitting
or receiving messages to or from its immediate neighbors.
(Generalization to further ranges of transmission can be found
in our paper [106].) At each time instant k = 0, 1, . . . , each
sensor node probabilistically decides to be a transmitter or
receiver, but not both. This simplified rule of transmission
allows for a relatively simple representation. We illustrate
such a network over a two-dimensional domain in Fig. 1(a).

In this network, communication between nodes is
interference-limited because all nodes share the same wire-
less channel. We assume a simple collision protocol: a
transmission from a transmitter to a neighboring receiver is
successful if and only if none of the other neighbors of the
receiver is a transmitter, as illustrated in Fig. 1(b). We assume
that in a successful transmission, one message is transmitted
from the transmitter to the receiver.

We assume that the probability that a node decides to be
a transmitter is a function of its normalized queue length
(normalized by an ‘‘averaging’’ parameter M ). That is, at

FIGURE 1. (a) An illustration of a wireless sensor network over a
two-dimensional domain. Destination nodes are located at the far edge.
We show the possible path of a message originating from a node located
in the left-front region. (b) An illustration of the collision protocol:
reception at a node fails when one of its other neighbors transmits
(regardless of the intended receiver). (c) An illustration of the time
evolution of the queues in the one-dimensional network model.

time k , node n decides to be a transmitter with proba-
bility W (n,XN ,M (k, n)/M ), where XN ,M (k, n) is the queue
length of node n at time k , and W is a given func-
tion.
In this section, for the sake of explanation, we simplify

the problem even further and consider a one-dimensional
domain (a two-dimensional example will be given in
Sec. II-E.3). Here, N sensor nodes are equidistributed in an
intervalD ⊂ R and labeled by n = 1, . . . ,N . The destination
nodes are located on the boundary ofD, labeled by n = 0 and
n = N + 1.
We assume that if node n is a transmitter at a certain

time instant, it randomly chooses to transmit one message
to the right or the left immediate neighbor with probability
Pr (n) and Pl(n), respectively, where Pr (n) + Pl(n) ≤ 1.
In contrast to strict equality, the inequality here allows for a
more general stochastic model of transmission: after a sensor
node randomly decides to transmit over the wireless channel,
there is still a positive probability that the message is not
transferred to its intended receiver (what might be called an
‘‘outage’’).

The special destination nodes at the boundaries of the
domain do not have queues; they simply receive any message
transmitted to them and never themselves transmit anything.
We illustrate the time evolution of the queues in the network
in Fig. 1(c).

The queue lengths

XN ,M (k) = [XN ,M (k, 1), . . . ,XN ,M (k,N )]> ∈ RN

form a Markov chain network model given by (1), where

UN (k) = [Q(k, 1), . . . ,Q(k,N ),T (k, 1), . . . ,T (k,N ),

G(k, 1), . . . ,G(k,N )]>

is a random vector comprising independent random vari-
ables: Q(k, n) are uniform random variables on [0, 1]
used to determine if the node is a transmitter or not;
T (k, n) are ternary random variables used to determine the
direction a message is passed, which take values R, L,
and S (representing transmitting to the right, the left, and
neither, respectively) with probabilities Pr (n), Pl(n), and
1 − (Pr (n) + Pl(n)), respectively; and G(k, n) are the
number of messages generated at node n at time k . We
modelG(k, n) by independent Poisson random variables with
mean g(n).
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For a generic x = [x1, . . . , xN ]> ∈ RN , the nth component
of FN (x,UN (k)), where n = 1, . . . ,N , is

1+ G(k, n), if
Q(k, xn−1) < W (n− 1, xn−1), T (k, n− 1) = R,
Q(k, xn) > W (n, xn),
Q(k, xn+1) > W (n+ 1, xn+1);
or
Q(k, xn+1) < W (n+ 1, xn+1), T (k, n+ 1) = L,
Q(k, xn) > W (n, xn),
Q(k, xn−1) > W (n− 1, xn−1)
−1+ G(k, n), if
Q(k, xn) < W (n, xn), T (k, n) = L,
Q(k, xn−1) > W (n− 1, xn−1),
Q(k, xn−2) > W (n− 2, xn−2);
or
Q(k, xn) < W (n, xn), T (k, n) = R,
Q(k, xn+1) > W (n+ 1, xn+1),
Q(k, xn+2) > W (n+ 2, xn+2)

G(k, n), otherwise,

(2)

where xn with n ≤ 0 or n ≥ N + 1 are defined to be
zero; and W is the function that specifies the probability
that a node decides to be a transmitter, as defined earlier.
Here, the three possible values of FN correspond to the three
events that at time k , node n successfully receives one mes-
sage, successfully transmits one message, and does neither
of the above, respectively. The inequalities and equations on
the right describe conditions under which these three events
occur: for example,Q(k, xn−1) < W (n−1, xn−1) corresponds
to the choice of node n − 1 to be a transmitter at time k ,
T (k, n − 1) = R corresponds to its choice to transmit to the
right, Q(k, xn) > W (n, xn) corresponds to the choice of node
n to be a receiver at time k , and so on.
We simplify the situation further by assuming that

W (n, y) = min(1, y). (We use this assumption throughout
the paper.) With the collision protocol described earlier, this
provides the analog of a network with backpressure rout-
ing [107].

After presenting the main results of the paper, we will
revisit this network model in Sec. II-E and present a PDE that
approximates its global behavior as an application of the main
results.

D. OVERVIEW OF RESULTS IN THIS PAPER
In this subsection, we provide a brief description of the main
results in Sec. II.

The Markov chain model (1) is related to a deterministic
difference equation. We set

fN (x) = EFN (x,UN (k)), x ∈ RN , (3)

and define xN ,M (k) = [xN ,M (k, 1), . . . , xN ,M (k,N )]> ∈ RN

by

xN ,M (k + 1) = xN ,M (k)+
1
M
fN (xN ,M (k)),

xN ,M (0) =
XN ,M (0)

M
a.s. (4)

(‘‘a.s.’’ is short for ‘‘almost surely’’).

Example 1: For the one-dimensional Markov chain net-
work model introduced in Sec. I-C, it follows from (2) (with
the particular choice of W (n, y) = min(1, y)) that for x =
[x1, . . . , xN ]> ∈ [0, 1]N , the nth component of fN (x) in its
corresponding deterministic difference equation (4), where
n = 1, . . . ,N , is (after some tedious algebra, as described
in [3])

(1− xn)[Pr (n− 1)xn−1(1− xn+1)

+Pl(n+ 1)xn+1(1− xn−1)]

−xn[Pr (n)(1− xn+1)(1− xn+2)

+Pl(n)(1− xn−1)(1− xn−2)]+ g(n), (5)

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero.
We analyze the convergence of the Markov chain to the

solution of a PDE using a two-step procedure. The first
step depends heavily on the relation between XN ,M (k) and
xN ,M (k). We show that for eachN , asM →∞, the difference
between XN ,M (k)/M and xN ,M (k) vanishes, by proving that
they both converge in a certain sense to the solution of the
same ODE. The basic idea of this convergence is that as the
‘‘fluctuation size’’ of the system decreases and the ‘‘fluc-
tuation rate’’ of the system increases, the stochastic system
converges to a deterministic ‘‘small-fast-fluctuation’’ limit,
which can be characterized as the solution of a particular
ODE. In our case, the smallness of the fluctuation size and
largeness of the fluctuation rate is quantified by the ‘‘averag-
ing’’ parameter M . We use a weak convergence theorem of
Kushner [19] to prove this convergence.
In the second step, we treat M as a function of N , written

MN (therefore treating XN ,MN (k) and xN ,MN (k) as sequences
of the single index N , written XN (k) and xN (k), respectively),
and show that for any sequence {MN } of N , as N → ∞,
xN (k) converges to the solution of a certain PDE (and we
show how to construct the PDE). This is essentially a con-
vergence analysis on the approximating error between xN (k)
and the PDE solution. We stress that this is different from the
numerical analysis on classical finite difference schemes (see,
e.g., [7], [108], [109]), because our difference equation (4),
which originates from particular system models, differs from
those designed specifically for the purpose of numerically
solving differential equations. The difficulty in our conver-
gence analysis arises from both the different form of (4) and
the fact that it is in general nonlinear. We provide not only
sufficient conditions for the convergence, but also a practical
criterion for verifying such conditions otherwise difficult to
check.

Finally, based on these two steps, we show that as
N andMN go to∞ in a dependent way, the continuous-time-
space extension (explained later) of the normalized Markov
chain XN (k)/MN converges to the PDE solution. We also
characterize the rate of convergence. We note that special
caution is needed for specifying the details of this dependence
between the two indices N and M of the doubly indexed
family XN ,M (k) of Markov chains in the limiting process.
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E. OUTLINE OF THE PAPER
The remainder of the paper is organized as follows. In Sec. II,
we present the main theoretical results and apply the results
to the wireless sensor network introduced above, and present
some numerical experiments. In Sec. III, we present the
proofs of the main results. Finally, we conclude the paper and
discuss future work in Sec. IV.

II. MAIN RESULTS AND APPLICATIONS
A. CONSTRUCTION OF THE LIMITING PDE
We begin with the construction of the PDE whose solution
describes the limiting behavior of the abstract Markov chain
model.

For eachN and the grid pointsVN = {vN (1), . . . , vN (N )} ⊂
D as introduced in Sec. I-B, we denote the distance between
any two neighboring grid points by dsN . For any continuous
function w : D → R, let yN be the vector in RN composed
of the values of w at the grid points vN (n); i.e., yN =
[w(vN (1)), . . . ,w(vN (N ))]>. Given a point s ∈ D, we let
{sN } ⊂ D be any sequence of grid points sN ∈ VN such
that as N → ∞, sN → s. Let fN (yN , sN ) be the component
of the vector fN (yN ) corresponding to the location sN ; i.e., if
sN = vN (n) ∈ VN , then fN (yN , sN ) is the nth component of
fN (yN ).

In order to obtain a limiting PDE, we have to make cer-
tain technical assumptions on the asymptotic behavior of
the sequence of functions {fN } that insure that fN (yN , sN )
is asymptotically close to an expression that looks like the
right-hand side of a time-dependent PDE. Such conditions
are familiar in the context of PDE limits of Brownian motion.
Checking these conditions often amounts to a simple alge-
braic exercise. We provide a concrete example (the network
model) in Sec. II-E where fN satisfies these assumptions.
We assume that there exist sequences {δN }, {βN }, {γN },

and {ρN }, functions f and h, and a constant c < ∞, such
that as N → ∞, δN → 0, δN /βN → 0, γN → 0, ρN → 0,
and:
• Given s in the interior of D, there exists a sequence of
functions {φN } : D→ R such that

fN (yN , sN )/δN
= f (sN ,w(sN ),∇w(sN ),∇2w(sN ))+ φN (sN ), (6)

for any sequence of grid points sN → s, and for N
sufficiently large, |φN (sN )| ≤ cγN ; and

• Given s on the boundary ofD, there exists a sequence of
functions {ϕN } : D→ R such that

fN (yN , sN )/βN
= h(sN ,w(sN ),∇w(sN ),∇2w(sN ))+ ϕN (sN ), (7)

for any sequence of grid points sN → s, and for N
sufficiently large, |ϕN (sN )| ≤ cρN .

Here, ∇ iw represents all the ith order derivatives of w, where
i = 1, 2.
Fix T > 0 for the rest of this section. Assume that there

exists a unique function z : [0,T ] × D → R that solves the

limiting PDE

ż(t, s) = f (s, z(t, s),∇z(t, s),∇2z(t, s)), (8)

with boundary condition

h(s, z(t, s),∇z(t, s),∇2z(t, s)) = 0 (9)

and initial condition z(0, s) = z0(s).
Recall that xN ,M (k) is defined by (4). Suppose that we

associate the discrete time k with points on the real line spaced
apart by a distance proportional to δN . Then, the technical
assumptions (6) and (7) imply that xN ,M (k) is, in a certain
sense, close to the solution of the limiting PDE (8) with
boundary condition (9). Below we develop this argument
rigorously.

Establishing existence and uniqueness for the resulting
nonlinear models is a difficult problem in theoretical analysis
of PDEs in general. The techniques are heavily dependent
on the particular form of f . Therefore, as is common with
numerical analysis, we assume that this has been established.
Later, we apply the general theory to the modeling of net-
works of particular characteristics. The resulting limiting
PDE is a nonlinear reaction-convection-diffusion problem.
Existence and uniqueness for such problems for ‘‘small’’ data
and short times can be established under general conditions.
Key ingredients are coercivity, which will hold as long as z is
bounded away from 1, and diffusion dominance, which will
also hold as long as z is bounded above.

B. CONTINUOUS TIME-SPACE EXTENSION OF THE
MARKOV CHAIN
Next we define the continuous time-space extension of the
Markov chain XN ,M (k).

For each N and M , define

dtN ,M =
δN

M
, tN ,M (k) = k dtN ,M ,KN ,M =

⌊
T

dtN ,M

⌋
, and

T̃N =
T
δN
. (10)

First, we construct the continuous-time extension X (o)
N ,M (t̃)

of XN ,M (k), as the piecewise-constant time interpolant with
interval length 1/M and normalized by M :

X (o)
N ,M (t̃) = XN ,M (bMt̃c)/M , t̃ ∈ [0, T̃N ]. (11)

Similarly, define the continuous-time extension x(o)N ,M (t̃) of
xN ,M (k) by

x(o)N ,M (t̃) = xN ,M (bMt̃c), t̃ ∈ [0, T̃N ]. (12)

Let X (p)
N ,M (t, s), where (t, s) ∈ [0,T ] × D, be the

continuous-space extension of X (o)
N ,M (t̃) (with t̃ ∈ [0, T̃N ])

by piecewise-constant space extensions on D and with time
scaled by δN so that the time-interval length is δN /M :=

dtN ,M . By piecewise-constant space extension of X (o)
N ,M , we

mean the piecewise-constant function on D such that the
value of this function at each point in D is the value of the
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component of the vector X (o)
N ,M corresponding to the grid point

that is ‘‘closest to the left’’ (taken one component at a time).
Then X (p)

N ,M (t, s) is the continuous time-space extension of

XN ,M (k), and for each t , X (p)
N ,M (t, ·) is a real-valued function

defined on D. We illustrate in Fig. 2.

FIGURE 2. An illustration of XN,M (k) and X (p)
N,M (t, s) in one dimension,

represented by solid dots and dashed-line rectangles, respectively.

The function X (p)
N ,M (t, s) with (t, s) ∈ [0,T ] × D is in

the space DD[0,T ] of functions from [0,T ] × D to R that
are Càdlàg with respect to the time component, i.e., right-
continuous at each t ∈ [0,T ), and have left-hand limits at
each t ∈ (0,T ]. Denote the norm ‖ · ‖(p) on DD[0,T ] such
that for x ∈ DD[0,T ],

‖x‖(p) = sup
t∈[0,T ]

∫
D
|x(t, s)| ds. (13)

C. MAIN RESULTS FOR CONTINUUM LIMIT OF THE
ABSTRACT MARKOV CHAIN MODEL
In this subsection, we present the main theorem, Theorem 1,
which states that under some conditions, the continuous-
time-space extension X (p)

N ,M of the Markov chain XN ,M (k)
converges to the solution z of the limiting PDE (8) in the
norm defined by (13), as N and M go to ∞ in a dependent
way. By this we mean that we set M to be a function of
N , written MN , such that MN → ∞ as N → ∞.
Then we can treat XN ,MN (k), xN ,MN (k), X

(p)
N ,MN

, dtN ,MN ,
tN ,MN , and KN ,MN all as sequences of the single index
N , written XN (k), xN (k), X

(p)
N , dtN , tN , and KN respec-

tively. We apply such changes of notation throughout the
rest of the paper whenever M is treated as a function
of N .
Define zN (k, n) = z(tN (k), vN (n)) and zN (k) =

[zN (k, 1), . . . , zN (k,N )]> ∈ RN . Define the truncation error

uN (k, n) =
fN (zN (k), n)

δN
−
zN (k + 1, n)− zN (k, n)

dtN
, (14)

and uN (k) = [uN (k, 1), . . . , uN (k,N )]> ∈ RN . Define

εN (k, n) = xN (k, n)− zN (k, n), (15)

and εN (k) = [εN (k, 1), . . . , εN (k,N )]> ∈ RN .

By (4), (10), (14), and (15), we have that

εN (k + 1)

= εN (k)+
1
MN

(fN (xN (k))− fN (zN (k)))+ dtNuN (k)

= εN (k)+
1
MN

(fN (zN (k)+ εN (k))− fN (zN (k)))

+ dtNuN (k). (16)

Let εN = [εN (1)>, . . . , εN (KN )>]> and uN =

[uN (0)>, . . . , uN (KN − 1)>]> denote vectors in the (KNN )-
dimensional vector space RKNN . Assume that

εN (0) = 0. (17)

Then by (16), for fixed z, there exists a function HN :
RKNN → RKNN such that

εN = HN (uN ). (18)

Define the vector norm ‖ · ‖(N ) on RKNN such that for
x = [x(1)>, . . . , x(KN )>]> ∈ RKNN , where x(k) =
[x(k, 1), . . . , x(k,N )]> ∈ RN ,

‖x‖(N )
= dsN max

k=1,...,KN

N∑
n=1

|x(k, n)|. (19)

Define

µN = lim
α→0

sup
‖u‖(N )≤α

‖HN (u)‖(N )

‖u‖(N ) . (20)

We now present the main theorem.
Theorem 1: (Main Theorem) Assume that:

T1.1. there exist a sequence {ξN } and c1 < ∞ such that
as N → ∞, ξN → 0, and for N sufficiently large,
‖uN‖(N ) < c1ξN ;

T1.2. for each N , there exists an identically distributed
sequence {λN (k)} of integrable random variables such
that for each k and x, |FN (x,UN (k))| ≤ λN (k) a.s.;

T1.3. for each N , the function FN (x,UN (k)) is continuous in
x a.s.;

T1.4. for each N , the ODE ẏ = fN (y) has a unique solution
on [0, T̃N ] for any initial condition y(0), where T̃N is as
defined by (10);

T1.5. z is Lipschitz continuous on [0,T ]×D;
T1.6. for each N , (17) holds; and
T1.7. the sequence {µN } is bounded.

Then a.s., there exist c0 < ∞, N0, and M̂1 < M̂2 < M̂3, . . .

such that for each N ≥ N0 and each MN ≥ M̂N ,

‖X (p)
N − z‖

(p) < c0max{ξN , dsN }.

This theorem states that as N andMN go to∞ in a depen-
dent way, X (p)

N converges to z in ‖ · ‖(p) a.s. We prove this in
Sec. III-C.
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D. SUFFICIENT CONDITIONS ON fN FOR THE
BOUNDEDNESS OF {µN }

The key assumption of Theorem 1 is that the sequence {µN }
is bounded (Assumption T1.7). We present in the following
theorem a result that gives specific sufficient conditions on fN
that guarantee that {µN } is bounded. This provide a practical
criterion to verify this key assumption otherwise difficult to
check.

Consider fixed z. We assume that fN ∈ C1 and denote the
jacobian matrix of fN at x by DfN (x). Define for each N and
for k = 0, . . . ,KN − 1,

AN (k) = IN +
1
MN

DfN (zN (k)), (21)

where IN is the identity matrix in RN×N .
We denote the 1-norm on RN and its induced norm

on RN×N both by ‖ · ‖(N )
1 ; i.e., for a vector x =

[x1, . . . , xN ]> ∈ RN ,

‖x‖(N )
1 =

N∑
n=1

|xn|, (22)

and for a matrix A ∈ RN×N with aij being its (i, j)th compo-
nent,

‖A‖(N )
1 = max

j=1,...,N

N∑
i=1

|aij|. (23)

We then have
Theorem 2: (Sufficient condition for key assumption)

Assume that:
T2.1. for each N , (17) holds;
T2.2. for each N , fN ∈ C1; and
T2.3. there exists c < ∞ such that for N sufficiently large

and for k = 1, . . . ,KN − 1, ‖AN (k)‖
(N )
1 ≤ 1 + c dtN ,

where ‖ · ‖(N )
1 is defined by (23).

Then {µN } is bounded.
We prove this in Sec. III-D.
In Sec. III-E, we will show that these sufficient conditions

hold for the network model described in Sec. I-C, and use this
theorem to prove the convergence of its underlying Markov
chain to a PDE.

E. APPLICATION TO NETWORK MODELS
In this subsection, we apply the main results to show how the
Markov chain modeling the network introduced in Sec. I-C
can be approximated by the solution of a PDE. This approxi-
mation was heuristically developed in [3].

We first deal with the one-dimensional network model. Its
corresponding stochastic and deterministic difference equa-
tions (1) and (4) were specified by (2) and (5), respectively.

For this model we set δN (introduced in Sec. II-A) to be
ds2N . Then

dtN ,M := δN /M = ds2N /M .

Assume that

Pl(n) = pl(vN (n)) and Pr (n) = pr (vN (n)), (24)

where pl(s) and pr (s) are real-valued functions defined on D
such that

pl(s) = b(s)+ cl(s)dsN and pr (s) = b(s)+ cr (s)dsN .

Let c = cl − cr . The values b(s) and c(s) correspond to diffu-
sion and convection quantities in the limiting PDE. Because
pl(s) + pr (s) ≤ 1, it is necessary that b(s) ≤ 1/2. In order
to guarantee that the number of messages entering the system
from outside over finite time intervals remains finite through-
out the limiting process, we set g(n) = Mgp(vN (n))dtN ,
where gp : D → R is called the message generation rate.
Assume that b, cl, cr , and gp are in C1. Further assume that
xN ,M (k) ∈ [0, 1]N for each k . Then fN is in C1.
We have assumed above that the probabilities Pl and Pr

of the direction of transmission are the values of the con-
tinuous functions pl and pr at the grid points, respectively.
This may correspond to stochastic routing schemes where
nodes in close vicinity behave similarly based on some local
information that they share; or to those with an underlying
network-wide directional configuration that are continuous
in space, designed to relay messages to destination nodes
at known locations. On the other hand, the results can be
extended to situations with certain levels of discontinuity, as
discussed in Sec. IV.

By these assumptions and definitions, it follow from (5)
that the function f in (8) for this network model is:

f (s, z(t, s),∇z(t, s),∇2z(t, s))

= b(s)
∂

∂s
((1− z(t, s))(1+ 3z(t, s))zs(t, s))

+2(1− z(t, s))zs(t, s)bs(s)

+z(t, s)(1− z(t, s))2bss(s)

+
∂

∂s
(c(s)z(t, s)(1− z(t, s))2)+ gp(s). (25)

Here, a single subscript s represents first derivative and a
double subscript ss represents second derivative.
Note that the computations needed to obtain (25) (and later,

(26), (48), and (49)) require tedious but elementary algebraic
manipulations. For this purpose, we found it helpful to use the
symbolic tools in Matlab.

Based on the behavior of nodes n = 1 and n = N next to
the destination nodes, we derive the boundary condition (9)
of the PDE of this network. For example, the node n = 1
receives messages only from the right and encounters no
interference when transmitting to the left. Replacing xn with
n ≤ 0 or n ≥ N + 1 by 0, it follows that the 1st component of
fN (x) is

(1− xn)Pl(n+ 1)xn+1
−xn[Pl(n)+ Pr (n)(1− xn+1)(1− xn+2)]+ g(n).

Similarly, the N th component of fN (x) is

(1− xn)Pr (n− 1)xn−1
−xn[Pr (n)+ Pl(n)(1− xn−1)(1− xn−2)]+ g(n).
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Set βN , defined in Sec. II-A, to be 1. Then from each of the
above two functions we get the function h in (9) for the one-
dimensional network:

h(s, z(t, s),∇z(t, s),∇2z(t, s))

= −b(s)z(s)3 + b(s)z(s)2 − b(s)z(s). (26)

Note that the function h is the limit of fN (yN , sN )/βN , not
fN (yN , sN )/δN (whose limit is f ). Solving h = 0 for real z,
we have the boundary condition z(t, s) = 0.
Let z be the solution of the PDE (8) with f specified by (25)

and with boundary condition z(t, s) = 0 and initial condition
z(0, s) = z0(s). Assume that (17) holds. As in Sec. II-C, we
treatM as a sequence ofN , writtenMN . In the following theo-
rem we show the convergence of the Markov chain modeling
the one-dimensional network to the PDE solution.
Theorem 3: (Convergence of networkmodel) For the one-

dimensional network model, a.s., there exist c0 <∞, N0, and
M̂1 < M̂2 < M̂3, . . . such that for each N ≥ N0 and each
MN ≥ M̂N , ‖X

(p)
N − z‖

(p) < c0dsN .
We prove this in Sec. III-E.

FIGURE 3. The PDE solution at a fixed time that approximates the
normalized queue lengths of the network.

1) INTERPRETATION OF LIMITING PDE
Now we make some remarks on how to interpret a given
limiting PDE. First, for fixed N andM , the normalized queue
length of node n at time k , is approximated by the value of the
PDE solution z at the corresponding point in [0,T ]×D; i.e.,
XN ,M (k,n)

M ≈ z(tN ,M (k), vN (n)).
Second, we discuss how to interpretC(to) :=

∫
D z(to, s)ds,

the area below the curve z(to, s) for fixed to ∈ [0,T ]. Let
ko = bto/dtN ,Mc. Then we have that z(to, vN (n))dsN ≈
XN ,M (ko,n)

M dsN , the area of the nth rectangle in Fig. 3. There-
fore

C(to) ≈
N∑
n=1

z(to, vN (n))dsN ≈
N∑
n=1

XN ,M (ko, n)
M

dsN ,

the sum of all rectangles. If we assume that all messages
in the queue have roughly the same bits, and think of dsN
as the ‘‘coverage’’ of each node, then the area under any
segment of the curve measures a kind of ‘‘data-coverage
product’’ of the nodes covered by the segment, in the unit of
‘‘bit·meter.’’ As N → ∞, the total normalized queue length

FIGURE 4. The Monte Carlo simulations (with different N and M) and the
PDE solution of a one-dimensional network, with b = 1/2 and c = 0, at
t = 1s.

∑N
n=1 XN ,M (ko, n)/M of the network does go to∞; however,

the coverage dsN of each node goes to 0. Hence the sum of the
‘‘data-coverage product’’ can be approximated by the finite
area C(to).

2) COMPARISONS OF THE PDE SOLUTIONS AND MONTE
CARLO SIMULATIONS OF THE NETWORKS
In the remainder of this section, we compare the limiting PDE
solutions with Monte Carlo simulations of the networks.1

We first consider a one-dimensional network over the
domain D = [−1, 1]. We use the initial condition z0(s) =
l1e−s

2
, where l1 > 0 is a constant, so that initially the nodes

in the middle have messages to transmit, while those near the
boundaries have very few. We set the message generation rate
gp(s) = l2e−s

2
, where l2 > 0 is a parameter determining the

total load of the system.
We use three sets of values ofN = 20, 50, 80 andM = N 3,

and show the PDE solution and the Monte Carlo simulation
results with different N and M at t = 1s. The networks
have diffusion b = 1/2 and convection c = 0 in Fig. 4 and
c = 1 in Fig. 5, respectively, where the x-axis denotes
the node location and y-axis denotes the normalized queue
length.

For the three sets of the values of N = 20, 50, 80 and
M = N 3, with c = 0, the maximum absolute errors of

1This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes eight mul-
timedia AVI format movie clips, which show comparisons of network simu-
lations and limiting PDE solutions. This material is 34.7 MB in size.
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the PDE approximation are 5.6 × 10−3, 1.3 × 10−3, and
1.1 × 10−3, respectively; and with c = 1, the errors are
4.4 × 10−3, 1.5 × 10−3, and 1.1 × 10−3, respectively. As
we can see, as N and M increase, the resemblance between
the Monte Carlo simulations and the PDE solution becomes
stronger. In the case of very large N and M , it is difficult to
distinguish the results.

FIGURE 5. The Monte Carlo simulations (with different N and M) and the
PDE solution of a one-dimensional network, with b = 1/2 and c = 1, at
t = 1s.

We stress that the PDEs only took fractions of a second to
solve on a computer, while the Monte Carlo simulations took
on the order of tens of hours.

3) A TWO-DIMENSIONAL NETWORK
The generalization of the continuum model to higher dimen-
sions is straightforward, except for more arduous algebraic
manipulation. Likewise, the convergence analysis is similar
to the one dimensional case.

We consider a two-dimensional network of N = N1 × N2
sensor nodes uniformly placed over a domain D ⊂ R2. Here
we switch to a two-dimensional labeling scheme.We label the
nodes by (n1, n2), where n1 = 1, . . . ,N1 and n2 = 1, . . . ,N2,
and denote the grid point inD corresponding to node (n1, n2)
by vN (n1, n2). This labeling scheme is more intuitive for this
two-dimensional scenario, but is essentially equivalent to the
single-label one. (e.g., if we set n := (n1 − 1)N2 + n2 and
v̂N (n) := vN (n1, n2), then v̂N (n) form the same grid.)
Again let the distance between any two neighboring nodes

be dsN . Assume that node (n1, n2) randomly chooses to trans-
mit to the east, west, north, or south immediate neighbor with

probabilities Pe(n1, n2) = b1(vN (n1, n2)) + ce(vN (n1, n2))
dsN , Pw(n1, n2) = b1(vN (n1, n2)) + cw(n1, n2))dsN ,
Pn(n1, n2) = b2(vN (n1, n2)) + cn(vN (n1, n2))dsN , and
Ps(n1, n2) = b2(vN (n1, n2)) + cs(vN (n1, n2))dsN , respec-
tively, where Pe(n1, n2) + Pw(n1, n2) + Pn(n1, n2) +
Ps(n1, n2) ≤ 1. Therefore it is necessary that b1(s) +
b2(s) ≤ 1/2. Define c1 = cw − ce and c2 = cs − cn.

The derivation of the limiting PDE is similar to those of the
one-dimensional case, except that we now have to consider
transmission to and interference from four directions instead
of two. We present the limiting PDE here without the detailed
derivation:

ż =
2∑
j=1

bj
∂

∂sj

(
(1+ 5z)(1− z)3

∂z
∂sj

)
+ 2(1− z)3

∂z
∂sj

dbj
dsj

+z(1− z)4
d2bj
ds2j
+

∂

∂sj

(
cjz(1− z)4

)
+ gp,

with boundary condition z(t, s) = 0 and initial condition
z(0, s) = z0(s), where t ∈ [0,T ] and s = (s1, s2) ∈ D.
We now compare the PDE approximation and the Monte

Carlo simulations of a network over the domain D =

[−1, 1] × [−1, 1]. We use the initial condition z0(s) =
l1e−(s

2
1+s

2
2), where l1 > 0 is a constant. We set the message

generation rate gp(s) = l2e−(s
2
1+s

2
2), where l2 > 0 is a

constant.
We use three different sets of the values of N1×N2 andM ,

where N1 = N2 = 20, 50, 80 and M = N 3
1 . We show

the contours of the normalized queue length from the PDE
solution and theMonte Carlo simulation results with different
sets of values of N1, N2, and M , at t = 0.1s. The networks
have diffusion b1 = b2 = 1/4 and convection c1 = c2 = 0
in Fig. 6 and c1 = −2, c2 = −4 in Fig. 7, respectively.
For the three sets of values of N1 = N2 = 20, 50, 80 and

M = N 3
1 , with c1 = c2 = 0, the maximum absolute errors are

3.2×10−3, 1.1×10−3, and 6.8×10−4, respectively; and with
c1 = −2, c2 = −4, the errors are 4.1×10−3, 1.0×10−3, and
6.6×10−4, respectively. Again the accuracy of the continuum
model increases with N1, N2, and M .
It took 3 days to do the Monte Carlo simulation of the

network at t = 0.1s with 80 × 80 nodes and the maximum
queue length M = 803, while the PDE solved on the same
machine took less than a second. We could not do Monte
Carlo simulations of any larger networks or greater values of
t because of prohibitively long computation time.

III. PROOFS OF THE MAIN RESULTS
This section is devoted solely to the proofs of the results in
Sec. II. As such, the material here is highly technical and
might be tedious to follow in detail, though we have tried our
best to make it as readable as possible. The reader can safely
skip this section without doing violence to the main ideas of
the paper, though much of our hard work is reflected here.
We first prove Theorem 1 (Main Theorem) by analyzing

the convergence of theMarkov chains XN ,M (k) to the solution
of the limiting PDE in a two-step procedure. In the first
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FIGURE 6. The Monte Carlo simulations (from top to bottom, with
N1 = N2 = 20,50,80, respectively, and M = N3

1 ) and the PDE solution of
a two-dimensional network, with b1 = b2 = 1/4 and c1 = c2 = 0, at
t = 0.1s.

FIGURE 7. The Monte Carlo simulations (from top to bottom, with
N1 = N2 = 20,50,80, respectively, and M = N3

1 ) and the PDE solution of
a two-dimensional network, with b1 = b2 = 1/4 and c1 = −2, c2 = −4, at
t = 0.1s.

step, for each N , we show in Sec. III-A that as M → ∞,
XN ,M (k)/M converges to xN ,M (k). In the second step, we treat
M as a function ofN , writtenMN , and for any sequence {MN },
we show in Sec. III-B that as N → ∞, xN (k) converges

to the PDE solution. Based on the two steps, we show in
Sec. III-C that as N andMN go to∞ in a dependent way, X (p)

N
converges to the PDE solution, proving Theorem 1. We then
prove Theorem 2 (Sufficient condition for key assumption)
in Sec. III-D. Finally, in Sec. III-E, we prove Theorem 3
(Convergence of network model) using Theorem 1 and 2.

A. CONVERGENCE OF XN,M (k) AND xN,M (k) TO THE
SOLUTION OF THE SAME ODE
In this subsection, we show that for each N , XN ,M (k)/M
and xN ,M (k) are close in a certain sense for large M under
certain conditions, by proving that both their continuous-time
extensions converge to the solution of the same ODE.
For fixed T and N , by (10), T̃N is fixed. As defined by

(11) and (12) respectively, both X (o)
N ,M (t̃) and x(o)N ,M (t̃) with

t̃ ∈ [0, T̃N ] are in the space DN [0, T̃N ] of RN -valued Càdlàg
functions on [0, T̃N ]. Since they both depend onM , each one
of them forms a sequence of functions in DN [0, T̃N ] indexed
by M = 1, 2, . . .. Define the∞-norm ‖ · ‖(o)∞ on DN [0, T̃N ];
i.e., for x ∈ DN [0, T̃N ],

‖x‖(o)∞ = max
n=1,...,N

sup
t∈[0,T̃N ]

|xn(t)|,

where xn is the nth components of x.
Now we present a lemma stating that under some condi-

tions, for each N , as M → ∞, X (o)
N ,M converges uniformly

to the solution of the ODE ẏ = fN (y), and x
(o)
N ,M converges

uniformly to the same solution, both on [0, T̃N ].
Lemma 1: Assume, for each N , that:

L1.1. there exists an identically distributed sequence {λN (k)}
of integrable random variables such that for each
k and x, |FN (x,UN (k))| ≤ λN (k) a.s.;

L1.2. the function FN (x,UN (k)) is continuous in x a.s.; and
L1.3. the ODE ẏ = fN (y) has a unique solution on [0, T̃N ] for

any initial condition y(0).

Suppose that as M → ∞, X (o)
N ,M (0)

P
−→ y(0) and x(o)N ,M (0) →

y(0), where ‘‘
P
−→’’ represents convergence in probability.

Then, for each N , as M → ∞, ‖X (o)
N ,M − y‖(o)∞

P
−→ 0 and

‖x(o)N ,M − y‖
(o)
∞ → 0 on [0, T̃N ], where y is the unique solution

of ẏ = fN (y) with initial condition y(0).
To prove Lemma 1, we first present a lemma due to Kush-

ner [19].
Lemma 2: Assume, for each N , that:

L2.1. the set {|FN (x,UN (k))| : k ≥ 0} is uniformly inte-
grable;

L2.2. for each k and each bounded random variable X ,

lim
δ→0

E sup
|Y |≤δ
|FN (X ,UN (k))− FN (X + Y ,UN (k))| = 0;

and
L2.3. there is a function f̂N (·) [continuous by 2̂] such that as

n→∞,

1
n

n∑
k=0

FN (x,UN (k))
P
−→ f̂N (x).
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Suppose that, for each N , ẏ = f̂N (y) has a unique solution on
[0, T̃N ] for any initial condition, and that X (o)

N ,M (0) ⇒ y(0),
where ‘‘⇒’’ represents weak convergence. Then for each N ,
as M →∞, ‖X (o)

N ,M − y‖
(o)
∞ ⇒ 0 on [0, T̃N ].

We note that in Kushner’s original theorem, the conver-
gence of X (o)

N ,M to y is stated in terms of Skorokhod norm [19],
but it is equivalent to the∞-norm in our case where the time
interval [0, T̃N ] is finite and the limit y is continuous [110].
We now prove Lemma 1 by showing that the Assump-

tions L2.1, L2.2, and L2.3 of Lemma 2 hold under the
Assumptions L1.1, L1.2, and L1.3 of Lemma 1.

Proof of Lemma 1: Since λN (k) is integrable, as a → ∞,
E|λN (k)|1{|λN (k)|>a} → 0, where 1A is the indicator function
of set A. By Assumption L1.1, for each k , x, and a > 0,

E|FN (x,UN (k))|1{|FN (x,UN (k))|>a}
≤ E|λN (k)|1{|FN (x,UN (k))|>a}
≤ E|λN (k)|1{|λN (k)|>a}.

Therefore as a→∞,

sup
k≥0

E|FN (x,UN (k))|1{|FN (x,UN (k))|>a}→ 0;

i.e., the family {|FN (x,UN (k))| : k ≥ 0} is uniformly
integrable, and hence Assumption L2.1 holds.

By Assumption L1.2, for each k and each bounded X , a.s.,

lim
δ→0

sup
|Y |≤δ
|FN (X ,UN (k))− FN (X + Y ,UN (k))| = 0.

By Assumption L1.1, for each k and each bounded X and Y ,
a.s.,

|FN (X ,UN (k))− FN (X + Y ,UN (k))|

≤ |FN (X ,UN (k))| + |FN (X + Y ,UN (k))| ≤ 2λN (k).

Therefore, for each k , each bounded X , and each δ, a.s.,∣∣∣∣ sup
|Y |≤δ
|FN (X ,UN (k))− FN (X + Y ,UN (k))|

∣∣∣∣ ≤ 2λN (k),

an integrable random variable. By the dominant convergence
theorem,

lim
δ→0

E sup
|Y |≤δ
|FN (X ,UN (k))− FN (X + Y ,UN (k))|

= E lim
δ→0

sup
|Y |≤δ
|FN (X ,UN (k))− FN (X + Y ,UN (k))| = 0.

Hence Assumption L2.2 holds.
Since UN (k) are i.i.d., by the weak law of large numbers

and the definition of fN in (3), as n→∞,

1
n

n∑
k=0

FN (x,UN (k))
P
−→ fN (x).

Hence Assumption L2.3 holds.
Therefore, by Lemma 2, for each N , asM →∞, ‖X (o)

N ,M −

y‖(o)∞ ⇒ 0 on [0, T̃N ]. For any sequence of random processes

{Xn}, if A is a constant, Xn ⇒ A if and only if Xn
P
−→ A.

Therefore, as M → ∞, ‖X (o)
N ,M − y‖

(o)
∞

P
−→ 0 on [0, T̃N ].

The same argument implies the deterministic convergence of
x(o)N ,M : as M →∞, ‖x(o)N ,M − y‖

(o)
∞ → 0 on [0, T̃N ]. �

Based on Lemma 1, we get the following lemma, which
states that, for each N , X (o)

N ,M and x(o)N ,M are close with high
probability for large M .
Lemma 3: Let the assumptions of Lemma 1 hold. Then for

any sequence {ζN }, for each N and for M sufficiently large,

P{‖X (o)
N ,M − x

(o)
N ,M‖

(o)
∞ > ζN } ≤ 1/N 2 on [0, T̃N ].

Proof: By the triangle inequality,

‖X (o)
N ,M − x

(o)
N ,M‖

(o)
∞ ≤ ‖X

(o)
N ,M − y‖

(o)
∞ + ‖x

(o)
N ,M − y‖

(o)
∞ .

ByLemma 1, for eachN , asM →∞, ‖X (o)
N ,M−x

(o)
N ,M‖

(o)
∞

P
−→ 0

on [0, T̃N ]. This completes the proof.
Since X (o)

N ,M and x(o)N ,M are the continuous-time extensions
of XN ,M (k) and xN ,M (k) by piecewise-constant extensions,
respectively, we have the following corollary stating that for
each N , as M → ∞, XN ,M (k)/M converges uniformly to
xN ,M (k).
Corollary 1: Let the assumptions of Lemma 1 hold. Then

for any sequence {ζN }, for eachN and forM sufficiently large,
we have that

P

 max
k=1,...,KN ,M
n=1,...,N

∣∣∣∣XN ,M (k, n)
M

− xN ,M (k, n)

∣∣∣∣ > ζN

 ≤ 1
N 2 .

B. CONVERGENCE OF xN (k) TO THE LIMITING PDE
For the remainder of this section, we treat M as a function
of N , written MN . We now state conditions under which εN
converges to 0 for any sequence {MN } as N →∞.
Lemma 4: Assume that:

L4.1 there exist a sequence {ξN } and c1 < ∞ such that
as N → ∞, ξN → 0, and for N sufficiently large,
‖uN‖(N ) < c1ξN ;

L4.2 for each N , (17) holds; and
L4.3 the sequence {µN } is bounded.
Then there exists c0 < ∞ such that for any sequence {MN }

and N sufficiently large, ‖εN‖(N ) < c0ξN .
Proof: By the definition of µN (20), for each N , there

exists δ > 0 such that for α < δ,

sup
‖u‖(N )≤α

‖HN (u)‖(N )

‖u‖(N ) ≤ µN + 1.

By Assumption L4.1, ‖uN‖(N )
→ 0 as N → ∞. Then

there exists α1 such that for N sufficiently large, ‖uN‖(N )
≤

α1 < δ, and hence

‖HN (uN )‖(N )

‖uN‖(N ) ≤ sup
‖u‖(N )≤α1

‖HN (u)‖(N )

‖u‖(N ) ≤ µN + 1.

Therefore, for N sufficiently large,

‖εN‖
(N )
= ‖HN (uN )‖(N )

≤ (µN + 1)‖uN‖(N ).

By Assumption L4.3, and because the derivation above does
not depend on the choice of the sequence {MN }, the proof is
completed.
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C. PROOF OF THEOREM 1
We now prove the main theorem.

Proof of Theorem 1: By Lemma 4, there exist a sequence
{ξN } and c2 < ∞ such that as N → ∞, ξN → 0, and for N
sufficiently large, ‖εN‖(N )

≤ c2ξN .
Let XN = [XN (1)>, . . . ,XN (KN )>]>/MN , xN =

[xN (1)>, . . . , xN (KN )>]>, and zN = [zN (1)>, . . . , zN (KN )>]>

denote vectors in RKNN . Hence εN = xN − zN .
For x ∈ RKNN , where x = [x(1)>, . . . , x(KN )>]> and

x(k) = [x(k, 1), . . . , x(k,N )]> ∈ RN , we have that

‖x‖(N )
≤ max

k=1,...,KN
n=1,...,N

|x(k, n)|.

Therefore, by Corollary 1, there exists a sequence {M̃N } such
that if for each N , MN ≥ M̃N , then

∞∑
N=1

P
{
‖XN − xN‖(N ) > ξN

}
≤

∞∑
N=1

1/N 2 <∞.

It follows from the first Borel-Cantelli Lemma that a.s., there
exists N1 such that for N ≥ N1 and MN ≥ M̃N , ‖XN −
xN‖(N )

≤ ξN .
By the triangle inequality,

‖XN − zN‖(N )
≤ ‖XN − xN‖(N )

+ ‖εN‖
(N ).

Therefore, a.s., there exists N2 such that for N ≥ N2 and
MN > M̃N ,

‖XN − zN‖(N ) < (c2 + 1)ξN . (27)

Let z(p)N (t, s), where (t, s) ∈ [0,T ]×D, be the continuous-
time-space extension of zN (k) defined in the same way as
X (p)
N (t, s) is defined from XN (k). Then by its definition, we

have that

‖X (p)
N − z

(p)
N ‖

(p)
= ‖XN − zN‖(N ). (28)

Let�N (k, n) = �
(t)
N (k)×�(s)

N (n) be the subset of [0,T ]×D
containing (tN (k), vN (n)) over which z

(p)
N is piecewise con-

stant; i.e., tN (k) ∈ �
(t)
N (k) and vN (n) ∈ �

(s)
N (n), and for

all (t, s) ∈ �N (k, n), z
(p)
N (t, s) = z(p)N (tN (k), vN (n)) =

z(tN (k), vN (n)).
By (10), there exists a sequence {M̄N } such that if for each

N , MN ≥ M̄N , then for N sufficiently large, dtN ≤ dsN .
By Assumption T1.5, there exists c3 < ∞ such that for N
sufficiently large, for MN ≥ M̄N , and for k = 1, . . . ,KN and
n = 1, . . . ,N ,

|z(tN (k), vN (n))− z(t, s)| ≤ c3dsN , (t, s) ∈ �N (k, n).

Then we have that

‖z(p)N − z‖
(p)
= sup

t∈[0,T ]

∫
D
|z(p)N (t, s)− z(t, s)| ds

= sup
t∈[0,T ]

∑
n

∫
�
(s)
N (n)
|z(p)N (t, s)− z(t, s)| ds

= max
k

sup
t∈�(t)

N (k)

∑
n

∫
�
(s)
N (n)
|z(p)N (t, s)− z(t, s)| ds

≤ max
k

∑
n

∫
�
(s)
N (n)

sup
t∈�(t)

N (k)

|z(p)N (t, s)− z(t, s)| ds

= max
k

∑
n

∫
�
(s)
N (n)

sup
t∈�(t)

N (k)

|z(tN (k), vN (n))− z(t, s)| ds

≤ max
k

∑
n

∫
�
(s)
N (n)

c3dsN ds = c3dsN |D|, (29)

where |D| is the Lebesgue measure of D.
By the triangle inequality,

‖X (p)
N − z‖

(p)
≤ ‖X (p)

N − z
(p)
N ‖

(p)
+ ‖z(p)N − z‖

(p).

Set M̂N = max{M̃N , M̄N }. By (27), (28), and (29), a.s., there
exist c0 <∞ and N0 such that for N ≥ N0 and MN ≥ M̂N ,

‖X (p)
N − z‖

(p) < c0max{ξN , dsN }.

�

D. PROOF OF THEOREM 2
To prove Theorem 2, we first prove Lemma 5 and 6 below.

First we provide in Lemma 5 a sequence bounding {µN }
from above. By (18), for each N , for k = 1, . . . ,KN and n =
1, . . . ,N , we can write εN (k, n) = H (k,n)

N (uN ), where H
(k,n)
N

is from RKNN to R. Suppose that HN is differentiable at 0.
Define

DHN = max
k=1,...,KN

KN∑
i=1

max
j=1,...,N

N∑
n=1

∣∣∣∣∣∂H
(k,n)
N

∂u(i, j)
(0)

∣∣∣∣∣ . (30)

We have that
Lemma 5: Assume that:

L5.1 for each N , (17) holds; and
L5.2 for each N , HN ∈ C1 locally at 0.
Then we have that for each N , µN ≤ DHN .

Proof: Let JN be the jacobian matrix of HN at 0. Note
that JN ∈ RKNN×KNN . Let JN (l,m) be its (l,m)th component,
where l,m = 1, . . . ,KNN . Then we have that for k, i =
1, . . . ,KN and n, j = 1, . . . ,N ,

∂H (k,n)
N

∂u(i, j)
(0) = JN ((k − 1)N + n, (i− 1)N + j).

Let CN (k, i) be the matrix in RN×N such that for n, j =
1, . . . ,N , the (n, j)th component of CN (k, i) is

∂H (k,n)
N

∂u(i, j)
(0);

i.e., CN (k, i) is the (k, i)th block in the partition of JN into
N ×N blocks (there are KN ×KN such blocks), where k, i =
1, . . . ,KN . Then by (30),

DHN = max
k=1,...,KN

KN∑
i=1

‖CN (k, i)‖
(N )
1 . (31)

(‖ · ‖(N )
1 is defined by (23).)
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By (19) and (22), for u = [u(1)>, . . . , u(KN )>]> ∈ RKNN ,
where u(k) = [u(k, 1), . . . , u(k,N )]> ∈ RN ,

‖JNu‖(N )
= dsN max

k=1,...,KN

∥∥∥∥∥
KN∑
i=1

CN (k, i)u(i)

∥∥∥∥∥
(N )

1

≤ dsN max
k=1,...,KN

KN∑
i=1

‖CN (k, i)u(i)‖
(N )
1

≤ dsN max
k=1,...,KN

KN∑
i=1

‖CN (k, i)‖
(N )
1 ‖u(i)‖

(N )
1

≤ max
k=1,...,KN

KN∑
i=1

‖CN (k, i)‖
(N )
1 dsN max

l=1,...,KN
‖u(l)‖(N )

1

= DHN‖u‖(N ),

where the last equation follows from (31), (19), and (22).
Therefore, for u 6= 0,

DHN ≥
‖JNu‖(N )

‖u‖(N ) . (32)

Note that if uN = 0, then by (16) and (17), εN = 0.
Therefore

HN (0) = 0. (33)

By Assumption L5.2 and Taylor’s theorem, there exists a
function H̃N such that

HN (u) = JNu+ H̃N (u), (34)

and

lim
α→0

sup
‖u‖(N )≤α

‖H̃N (u)‖(N )

‖u‖(N ) = 0. (35)

By (34) and the triangle inequality, we have that

‖HN (u)‖(N )
≤ ‖JNu‖(N )

+ ‖H̃N (u)‖(N ).

Therefore by (20),

µN ≤ limα→0 sup‖u‖(N )≤α

(
‖JN u‖(N )

‖u‖(N ) +
‖H̃N (u)‖(N )

‖u‖(N )

)
.

Hence by (32) and (35), we complete the proof.
Next we present in Lemma 6 a relationship between fN and

DHN . Define for each N and for k, l = 1, . . . ,KN ,

B(k,l)N =

AN (k − 1)AN (k − 2) . . .AN (l), 1 ≤ l < k;
IN , l = k;
0, l > k,

(36)

where AN (l) is as defined by (21). We have that
Lemma 6: Assume that:

L6.1 for each N , (17) holds; and
L6.2 for each N , fN ∈ C1.
Then we have that for each N , for k, i = 1, . . . ,KN and
n, j = 1, . . . ,N ,

∂H (k,n)
N

∂u(i, j)
(0) = B(k,i)N (n, j)dtN .

Proof: By Assumption L6.2 and Taylor’s theorem, for
fixed z, there exists a function f̃N such that

fN (xN (k))− fN (zN (k)) = DfN (zN (k))εN (k)

+tldfN (zN (k)+ εN (k), zN (k)),

and for each z,
f̃N (z, z) = 0, (37)

and

lim
‖ε‖(N )→0

∥∥f̃N (z+ ε, z)∥∥(N )

‖ε‖(N ) = 0. (38)

Then we have from (16) that for k = 0, . . . ,KN − 1,

εN (k + 1) = εN (k)+
1
MN

DfN (zN (k))εN (k)

+
1
MN

f̃N (zN (k)+ εN (k), zN (k))+ dtNuN (k).

Therefore

εN (k + 1) = AN (k)εN (k)+ dtNuN (k)

+
f̃N (zN (k)+εN (k),zN (k))

MN
.

For k = 0, . . . ,KN − 1, define

ηN (k) = dtNuN (k)+
f̃N (zN (k)+ εN (k), zN (k))

MN
. (39)

Then εN (k + 1) = AN (k)εN (k) + ηN (k). Therefore for k =
1, . . . ,KN ,

εN (k) = AN (k − 1) . . .AN (1)ηN (0)

+AN (k − 1) . . .AN (2)ηN (1)

+ . . .+ AN (k − 1)ηN (k − 2)+ ηN (k − 1).

Then it follows from (36) that for k = 1, . . . ,KN ,

εN (k) =
k∑
l=1

B(k,l)N ηN (l − 1). (40)

Write εN (k) = H (k)
N (uN ). By (39),

ηN (k) = dtNuN (k)+
f̃N
(
zN (k)+ H

(k)
N (uN ), zN (k)

)
MN

.

Hence by (40), for k = 1, . . . ,KN ,

εN (k) =
k∑
l=1

B(k,l)N dtNuN (l − 1)

+

k∑
l=1

B(k,l)N

f̃N
(
zN (l − 1)+ H (l−1)

N (uN ), zN (l − 1)
)

MN
.

Denote by g(k,l,n)N (·) : RKNN → RN the nth component of

B(k,l)N f̃N
(
zN (l − 1)+ H (l−1)

N (·), zN (l − 1)
)
.

By (37) and (33), g(k,l,n)N (0) = 0.
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Let {e(i, j) : i = 1, . . . ,KN , j = 1, . . . ,N } be the standard
basis for RKNN ; i.e., e(i, j) is the element of RKNN with the
(i, j)th entry being 1 and all other entries being 0. Then

∂H (k,n)
N

∂u(i, j)
(0) = B(k,i)N (n, j)dtN

+
1
MN

∑k
l=1

(
limh→0

g(k,l,n)N (h e(i,j))
h

)
.

It remains to show that

lim
h→0

g(k,l,n)N (h e(i, j))

h
= 0.

Denote by θ (l,d)N (·) : RKNN → R the d th component of
f̃N (zN (l)+ H

(l)
N (·), zN (l)). Then

g(k,l,n)N (u) =
N∑
d=1

B(k,l)N (n, d)θ (l−1,d)N (u).

Denote by f̃ (l,d)N (·) : RN
→ R the d th component of

f̃N (zN (l)+ (·), zN (l)). Then

θ
(l,d)
N (u) = f̃ (l,d)N (H (l)

N (u)). (41)

Then it remains to show that

lim
‖u‖(N )→0

θ
(l,d)
N (u)

‖u‖(N ) = 0. (42)

By Assumption L6.2 and by induction, it follows from (16)
that for fixed z, εN is a C1 function of uN , because the compo-
sition of functions in C1 is still in C1. Hence Assumption L6.2
here implies Assumption L5.2 of Lemma 5. By Assump-
tion L5.2 and (33), there exists c such that |c| < ∞, and for
each ε1 > 0, there exists δ1(ε1) such that for ‖u‖(N ) < δ1(ε1),∣∣∣∣∣
∥∥∥H (l)

N (u)
∥∥∥(N )

‖u‖(N ) − c

∣∣∣∣∣ < ε1. Hence for ‖u‖(N ) < δ1(ε1),

∥∥H (l)
N (u)

∥∥(N )
< (|c| + ε1)‖u‖(N ). (43)

By (38), lim‖x‖(N )→0
f̃ (l,d)N (x)
‖x‖(N ) = 0. Hence for each

ε2 > 0, there exists δ2(ε2) such that for ‖x‖(N ) < δ2(ε2),∣∣∣f̃ (l,d)N (x)
∣∣∣

‖x‖(N ) < ε2
|c|+1 . Hence for 0 < ‖x‖

(N ) < δ2(ε2),∣∣∣f̃ (l,d)N (x)
∣∣∣ < ε2

|c| + 1
‖x‖(N ). (44)

For each ε, let ε̂(ε) be sufficiently small such that

(|c| + ε̂(ε))δ1(ε̂(ε)) < δ2(ε), (45)

and
ε̂(ε) < 1. (46)

Then by (43) and (45), for ‖u‖(N ) < δ1(ε̂(ε)),
∥∥∥H (l)

N (u)
∥∥∥(N )

<

δ2(ε). Therefore, in the case that
∥∥∥H (l)

N (u)
∥∥∥(N )

> 0, by (41)
and (44),∣∣∣θ (l,d)N (u)

∣∣∣ = ∣∣∣f̃ (l,d)N

(
H (l)
N (u)

)∣∣∣ < ε

|c| + 1

∥∥∥H (l)
N (u)

∥∥∥(N )
.

By (43) and (46),∥∥∥H (l)
N (u)

∥∥∥(N )
< (|c| + ε̂(ε))‖u‖(N ) < (|c| + 1)‖u‖(N ).

By the above two inequalities,∣∣∣θ (l,d)N (u)
∣∣∣

‖u‖(N ) < ε. (47)

By (37), f̃ (l,d)N (0) = 0. Therefore, in the case that∥∥H (l)
N (u)

∥∥(N )
= 0, θ (l,d)N (u) = 0, and thus (47) still holds.

Therefore, (42) holds.
Now we prove Theorem 2 using the preceding lemmas.

Proof of Theorem 2: By (30), Lemma 5, and Lemma 6, we
have that

µN ≤ maxk=1,...,KN
∑KN

i=1maxj=1,...,N
∑N

n=1

∣∣∣B(k,i)N (n, j)
∣∣∣ dtN

= maxk=1,...,KN
∑KN

i=1

∥∥∥B(k,i)N

∥∥∥(N )

1
dtN

≤ maxk=1,...,KN KN maxi=1,...,KN
∥∥∥B(k,i)N

∥∥∥(N )

1
dtN

≤ T max k=1,...,KN
i=1,...,KN

∥∥∥B(k,i)N

∥∥∥(N )

1
.

(‖ · ‖(N )
1 is defined by (23).) Therefore, by (36) and by the

sub-multiplicative property of induced norm, we have that

µN ≤ T max k=1,...,KN
i=1,...,k−1

‖AN (k − 1)AN (k − 2) . . .AN (i)‖
(N )
1

≤ T max k=1,...,KN
i=1,...,k−1

‖AN (k − 1)‖(N )
1 . . . ‖AN (i)‖

(N )
1 .

Then by Assumption T2.3, there exists c < ∞ such that for
N sufficiently large,

µN ≤ T (1+ c dtN )KN .

As N →∞, KN →∞, and

(1+ c dtN )KN =
(
1+

c T
KN

)KN
→ ec T .

Therefore {µN } is bounded. �

E. PROOF OF THEOREM 3
We now prove Theorem 3 using Theorem 1 and 2.

Proof of Theorem 3: It follows from (5) that there exists
c1, c2 < ∞ such that for N sufficient large and k =
0, . . . ,KN − 1,{

|uN (k, n)| < c1, n = 1,N ;
|uN (k, n)| < c2dsN , n = 2, . . . ,N − 1.

(48)

Therefore, there exists c3 < ∞ such that for N sufficient
large,

max
k=0,...,KN−1

N∑
n=1

|uN (k, n)| < c3,

and hence by (19), we have that for N sufficient large,

‖uN‖(N ) < c3dsN .
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Hence the Assumption T1.1 of Theorem 1 holds.
By (5), for each N , for x = [x1, . . . , xN ]> ∈ [0, 1]N , the

(n,m)th component of DfN (x), where n,m = 1, . . . ,N , is

Pl(n)xn(1− xn−1), m = n− 2;
(1− xn)[Pr (n− 1)(1− xn+1)
−Pl(n+ 1)xn+1]
+Pl(n)xn(1− xn−2), m = n− 1;
−Pr (n− 1)xn−1(1− xn+1)
−Pl(n+ 1)xn+1(1− xn−1)
−Pr (n)(1− xn+1)(1− xn+2)
−Pl(n)(1− xn−1)(1− xn−2), m = n;

(1− xn)[Pl(n+ 1)(1− xn−1)
−Pr (n− 1)xn−1]
+Pr (n)xn(1− xn+2), m = n+ 1;

Pr (n)xn(1− xn+1), m = n+ 2;
0 other wise,

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero. It
then follows that for each k ,

‖AN (k)‖
(N )
1 = 1. (49)

Hence Assumption T2.3 of Theorem 2 holds. We note that
obtaining (49) and (48) requires tedious, but elementary,
algebraic manipulation. One can also verify that the other
assumptions of Theorem 1 and 2 hold. By Theorem 1, this
completes the proof. �

IV. CONCLUSION
In this paper we analyze the convergence of a sequence
of Markov chains to its continuum limit, the solution of a
PDE, in a two-step procedure. We provide precise sufficient
conditions for the convergence and the explicit rate of con-
vergence. Based on such convergence we approximate the
Markov chain modeling a large wireless sensor network by
a nonlinear diffusion-convection PDE.

With the well-developed mathematical tools available for
PDEs, this approach provides a framework to model and
simulate networks with a very large number of components,
which is practically infeasible for Monte Carlo simulation.
Such a tool enables us to tackle problems such as per-
formance analysis and prototyping, resource provisioning,
network design, network parametric optimization, network
control, network tomography, and inverse problems, for very
large networks. For example, we can now use the PDE model
to optimize certain performance metrics (e.g., throughput) of
a large network by adjusting the placement of destination
nodes or the routing parameters (e.g., coefficients in convec-
tion terms), with relatively negligible computation overhead
compared with that of the same task done by Monte Carlo
simulations.

For simplicity, we have treated sequences of grid points
that are uniformly located. As with finite difference meth-
ods for differential equations, the convergence results can
be extended to models that have nonuniform points spacing
under assumptions that insure the points in the sequence
should become dense in the underlying domain uniformly in

the limit. For example, we could consider a double sequence
of minimum point spacing {hi} and maximum point spacing
{Hi} with Hi/hi = constant, and for each i, we can consider
a model with nonhomogeneous point spacing between hi
and Hi. We can also introduce a spatial change of variables
that maps a nonuniform model to a uniform model. This
changes the coefficients in the resulting PDE, by substitution
and the chain rule. In this way we can extend our approach to
nonuniform, even mobile, networks. We can further consider
the control of nodes such that global characteristics of the
network are invariant under node locations and mobility. (See
our paper [106], [111] for details.)
The assumption made in (24) that the probabilities of trans-

mission behave continuously insures that there is a limiting
behavior in the limit of large numbers of nodes and relates the
behavior of networks with different numbers of nodes. The
convergence results can be extended to the situation in which
the probabilities change discontinuously at a finite number
of lower dimensional linear manifolds (e.g., points in one
dimension, lines in two dimensions, planes in three dimen-
sions) in space provided that all of the discrete networks under
consideration have nodes on the manifolds of discontinuity.
There are other considerations regarding the network that

can significantly affect the derivation of the continuum
model. For example, transmissions could happen beyond
immediate nodes, and the interference between nodes could
behave differently in the presence of power control; we can
consider more boundary conditions other than sinks, includ-
ing walls, semi-permeating walls, and their composition; and
we can seek to establish continuummodels for other domains
such as the Internet, cellular networks, traffic networks, and
human crowds.
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