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We investigate the continuum limits of a class of Markov chains.
The investigation of such limits is motivated by the desire to model
networks with a very large number of nodes. We show that a sequence
of such Markov chains indexed by N , the number of components in
the system that they model, converges in a certain sense to its con-
tinuum limit, which is the solution of a partial differential equation
(PDE), as N goes to infinity. We provide sufficient conditions for the
convergence and characterize the rate of convergence. As an appli-
cation we approximate Markov chains modeling large wireless net-
works by PDEs. While traditional Monte Carlo simulation for very
large networks is practically infeasible, PDEs can be solved with rea-
sonable computation overhead using well-established mathematical
tools.

1. Introduction. In this paper we analyze the convergence of a class of
Markov chains to their continuum limits, which are the solutions of certain
partial differential equations (PDEs). As an application of the results of such
analysis to network modeling, we use PDEs to approximate large wireless
networks modeled by such Markov chains.
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Modeling is an important tool in the analysis and design of communication
networks, which tend to present very complex behavior that is difficult to
describe and comprehend, and experimentally expensive to determine. For
example, in many cases, networks have an inherently stochastic nature, e.g.,
arising from data traffic and communication protocols themselves. In these
cases, analysis tends to focus on computing statistical information about the
network behavior, e.g., expected throughput of a particular design, and on
comparing network designs based on these statistical properties.

One traditional approach to computing network statistics is direct Monte
Carlo computer simulation [24]. Such simulation is expensive in both time
and hardware for large and complex networks. Simulating the behavior of
even one realization may take weeks of computer time, and computing suf-
ficient realizations to produce accurate statistics is prohibitive. This is one
reason that there is widespread interest in statistical analysis of stochastic
networks that does not depend on raw simulation.

Some approaches use a direct asymptotic analysis; see for example [26,
23, 30]. Other approaches are based on devising a continuum model that ap-
proximates particular behaviors of the network; see for example [27, 17, 46,
35, 4, 56]. Some results presented in our recent papers [16, 58, 10], which fall
into the second category, use PDEs to approximate large sensor or cellular
networks modeled by a certain class of Markov chains. The convergence anal-
ysis in this paper is motivated by the network modeling strategies in those
papers, and by the need for a rigorous description of the heuristic limiting
process underlying the construction of their PDE models. We analyze the
convergence of a general Markov chain model in an abstract setting instead
of that of any particular network model. We do this for two reasons: first,
our network modeling results involve a class of Markov chains modeling a va-
riety of communication networks; second, similar Markov chain models akin
to ours arise in several other contexts. For example, a very recent paper [11]
on human crowd modeling derives a limiting PDE in a fashion similar to
our approach.

In the convergence analysis, for a class of Markov chains, we show that a
sequence of such Markov chains indexed by N , the number of components
in the system that they model, converges in a certain sense to its continuum
limit, which is the solution of a partial differential equation (PDE), asN goes
to∞. The PDE solution describes the global spatio-temporal behavior of the
model in the limit of large system size. We apply this abstract result to the
modeling of a large wireless sensor network by approximating a particular
global aspect of the network states (queue length) by a nonlinear convection-
diffusion-reaction PDE. This network model includes the network example
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CONTINUUM LIMITS OF MARKOV CHAINS 3

discussed in [16] as a special case.
There are well-established mathematical tools to solve PDEs, such as the

finite element method [43] and the finite difference method [48], incorporated
into computer software packages such as Matlab and Comsol. We can use
these tools to greatly reduce computation time, which makes it possible to
carry out the analysis, design, and optimization for very large networks.

1.1. Markov chain model. We first describe our model in full generality.
Consider N points VN = {vN (1), . . . , vN (N)} placed over a compact, convex
Euclidean domain D representing a spatial region. We assume that these
points form a uniform grid, though the model generalizes to nonuniform
spacing of points under certain conditions (see Sec. 4 for discussion). We
refer to these N points in D as grid points.

We consider a discrete-time Markov chain

XN,M (k) = [XN,M (k, 1), . . . ,XN,M (k,N)]T ∈ R
N

(the superscript T represents transpose) whose evolution is described by the
stochastic difference equation

(1.1) XN,M (k + 1) = XN,M (k) + FN (XN,M (k)/M,U(k)).

Here, XN,M (k, n) is the real-valued state associated with the grid point
vN (n) at time k, where n = 1, . . . , N is a spatial index and k = 0, 1, . . . is
a temporal index; U(k) are i.i.d. random vectors that do not depend on the
state XN,M (k); M is an “averaging” parameter (explained later); and FN is
a given function.

Treating N and M as indices that grow, the equation (1.1) defines a
doubly indexed family XN,M of Markov chains indexed by both N and M .
(We will later take M to be a function of N , and treat this family as a
sequence XN of the single index N .) Below we give a concrete example of a
system described by (1.1).

1.2. A stochastic network model. In this subsection we demonstrate the
various objects in the abstract Markov chain model analyzed in this paper
on a prototypical example. We begin by describing a stochastic model of a
wireless sensor network.

Consider a network of wireless sensor nodes uniformly placed over a do-
main. In a random fashion, the sensor nodes generate data messages that
need to be communicated to the destination nodes located on the boundary
of the domain, which represent specialized devices that collect the sensor
data. The sensor nodes also serve as relays in the routing of the messages to
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Fig 1. (a) An illustration of a wireless sensor network over a two-dimensional domain.
Destination nodes are located at the far edge. We show the possible path of a message
originating from a node located in the left-front region. (b) An illustration of the collision
protocol: reception at a node fails when one of its other neighbors transmits (regardless
of the intended receiver). (c) An illustration of the time evolution of the queues in the
one-dimensional network model.

the destination nodes. Each sensor node has the capacity to store messages
in a queue, and is capable of either receiving or transmitting messages from
or to its immediate neighbors. (Generalization to further ranges of transmis-
sion can be found in our paper [60].) At each time instant k = 0, 1, . . . , each
sensor node probabilistically decides to be a transmitter or receiver, but not
both. This simplified rule of transmission allows for a relatively simple rep-
resentation. We illustrate such a network over a two-dimensional domain in
Fig. 1. In this network, communication between nodes is interference-limited
because all nodes share the same wireless channel. We assume a simple col-
lision protocol: a transmission from a transmitter to a neighboring receiver
is successful if and only if none of the other neighbors of the receiver is a
transmitter, as illustrated in Fig. 1.

Let us, for the sake of explanation, simplify the problem even further
and consider a one-dimensional domain (a two-dimensional example will be
given in Sec. 2.4.3). Here, N sensor nodes are equidistributed in an interval
D ⊂ R and labeled by n = 1, . . . , N . The destination nodes are located on
the boundary of D, labeled by n = 0 and n = N + 1.

Let G(k, n) be the number of messages generated at node n at time k.
We model G(k, n) by independent Poisson random variables with mean g(n).
We assume that the probability that a node decides to be a transmitter is
a function of its normalized queue length (normalized by an “averaging”
parameter M). That is, at time k, node n decides to be a transmitter with
probability W (n,XN,M (k, n)/M), where XN,M (k, n) is the queue length of
node n at time k. We assume that if node n is a transmitter, it randomly
chooses to transmit one message to the right or the left immediate neighbor
with probability Pr(n) and Pl(n), respectively, where Pr(n) + Pl(n) ≤ 1
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(inequality here allows for a more general transmission rule). The special
destination nodes at the boundaries of the domain do not have queues;
they simply receive any message transmitted to them and never themselves
transmit anything. We illustrate the time evolution of the queues in the
network in Fig. 1.

The queue lengths XN,M (k) = [XN,M (k, 1), . . . ,XN,M (k,N)]T ∈ R
N form

a Markov chain network model given by (1.1), where

U(k) = [G(k, 1), . . . , G(k,N), Q(k, 1), . . . , Q(k,N), T (k, 1), . . . , T (k,N)]T

is a random vector comprising independent random variables: G(k, n) are
as described above; Q(k, n) are uniform random variables on [0, 1] used to
determine if a transmitter is on or off; and T (k, n) are ternary random
variables used to determine the direction a message is passed, which take
values R, L, and S (representing transmitting to the right, the left, and
giving up the transmission, respectively) with probabilities Pr(n), Pl(n) and
1− (Pr(n) + Pl(n)), respectively. For a generic x = [x1, . . . , xN ]T ∈ R

N , the
nth component of FN (x,U(k)), where n = 1, . . . , N , is











































































1 +G(k, n) if Q(k, xn−1) < W (n− 1, xn−1), T (k, n− 1) = R,
Q(k, xn) > W (n, xn), Q(k, xn+1) > W (n+ 1, xn+1),

or Q(k, xn+1) < W (n+ 1, xn+1), T (k, n+ 1) = L,
Q(k, xn) > W (n, xn), Q(k, xn−1) > W (n− 1, xn−1);

−1 +G(k, n) if Q(k, xn) < W (n, xn), T (k, n) = L,
Q(k, xn−1) > W (n− 1, xn−1),
Q(k, xn−2) > W (n− 2, xn−2);

or Q(k, xn) < W (n, xn), T (k, n) = R,
Q(k, xn+1) > W (n+ 1, xn+1),
Q(k, xn+2) > W (n+ 2, xn+2);

G(k, n) otherwise,

(1.2)

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero. Here, the three
possible values of the function correspond to the three events that at time k,
node n successfully receives one message, successfully transmits one message,
and does neither of the above, respectively. The inequalities and equations
on the right describe conditions under which these three events occur: for
example, Q(k, xn−1) < W (n − 1, xn−1) corresponds to the choice of node
n − 1 to be a transmitter at time k, T (k, n − 1) = R corresponds to its
choice to transmit to the right, and so on.

We simplify the situation further by assuming that W (n, y) = min(1, y).
With the collision protocol described earlier, this provides the analog of a
network with backpressure routing [49].
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After presenting the main results of the paper, we will revisit this network
model in Sec. 2.4 and derive a PDE that approximates its global behavior
as an application of the main results.

1.3. Overview of results in this paper. In this subsection, we provide a
brief description of the main results in Sec. 2.

The Markov chain model (1.1) is related to a deterministic difference
equation. We set

(1.3) fN(x) = EFN (x,U(k)), x ∈ R
N ,

and define xN,M(k) = [xN,M (k, 1), . . . , xN,M (k,N)]T ∈ R
N by

(1.4) xN,M(k+1) = xN,M (k)+
1

M
fN (xN,M (k)), xN,M (0) =

XN,M (0)

M
a.s.

(“a.s.” is short for “almost surely”).

Example. For the Markov chain network model introduced in Sec. 1.2,
it follows from (1.2) (with the particular choice of W (n, y) = min(1, y))
that for x = [x1, . . . , xN ]T ∈ [0, 1]N , the nth component of fN (x) in its
corresponding deterministic difference equation (1.4), where n = 1, . . . , N ,
is (after some tedious algebra, as described in [16])

(1− xn)[Pr(n− 1)xn−1(1− xn+1) + Pl(n+ 1)xn+1(1− xn−1)]

− xn[Pr(n)(1− xn+1)(1− xn+2) + Pl(n)(1− xn−1)(1 − xn−2)]

+ g(n),(1.5)

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero.

We analyze the convergence of the Markov chain to the solution of a
PDE using a two-step procedure. The first step depends heavily on the re-
lation between XN,M and xN,M . We show that as M → ∞ and N remains
fixed, the difference between XN,M/M and xN,M vanishes, by proving that
they both converge in a certain sense to the solution of the same ordinary
differential equation (ODE). The basic idea of this convergence is that as
the “fluctuation size” of the system decreases and the “fluctuation rate”
of the system increases, the stochastic system converges to a deterministic
“small-fast-fluctuation” limit, which can be characterized as the solution
of a particular ODE. In our case, the smallness of the fluctuation size and
largeness of the fluctuation rate is quantified by the “averaging” parame-
ter M . We use a weak convergence theorem of Kushner [39] to prove this
convergence.
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In the second step, we treat M as a function of N , written MN (therefore
treating XN,MN

and xN,MN
as sequences of the single index N , written

XN and xN , respectively), and show that for any sequence {MN} of N ,
as N → ∞, xN converges to the solution of a certain PDE (and we show
how to construct the PDE). This is essentially a convergence analysis on
the truncation error between xN and the PDE solution. We stress that this
is different from the numerical analysis on classical finite difference schemes
(see, e.g., [48, 34, 33]), because our difference equation (1.4), which originates
from particular system models, differs from those designed specifically for the
purpose of numerically solving differential equations. The difficulty in our
convergence analysis arises from both the different form of (1.4) and the fact
that it is in general nonlinear. We provide not only sufficient conditions for
the convergence, but also a practical criterion for verifying such conditions
otherwise difficult to check.

Finally, based on these two steps, we show that as N and MN go to ∞ in a
dependent way, the normalized Markov chain XN/MN converges to the PDE
solution. We also characterize the rate of convergence. We note that special
caution is needed for specifying the details of this dependence between the
two indices N and M of the doubly indexed family XN,M of Markov chains
in the limiting process.

1.4. Related literature. The modeling and analysis of stochastic systems
such as networks is a large field of research, and much of the previous con-
tributions share goals with the work in this paper.

Kushner’s ODE method, which forms the basis for the first step of our
analysis, is closely related to the line of research called stochastic approxi-
mation. This line of research, started by Robbins and Monro [53] and Kiefer
and Wolfowitz [36] in the early 1950s, studies stochastic processes similar
to those addressed by Kushner’s ODE method, and has been widely used in
many areas (see, e.g., [3, 40], for surveys). These convergence results differ
from our results in the sense that they essentially study only the single-step
“small-fast-fluctuation” limit as the “averaging” parameter (in our case,
M) goes to ∞, but do not have the second-step convergence to the “large-
system” PDE limit (as N → ∞). In other words, while Kushner’s method
and related work deal with a fixed state space with fixed N , we treat a se-
quence of state spaces {RN} indexed by increasing N . There are systems in
which the “averaging” parameter represents some “size” of the system (e.g.,
population in epidemic models [19, 45]). However, it is still the case that
the convergence requires a fixed dimension of the state space of the Markov
chain, like the case of Kushner’s ODE convergence, and does not apply to
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the “large-system” limit in our second step.
Markov chains modeling various systems have been shown to converge

to differential equations [38, 18], abstract Cauchy problems [45], or other
stochastic processes [39, 20]. These results use methods different from Kush-
ner’s, but share with it the principle idea of “averaging out” of the random-
ness of the Markov chain. Their deeper connection lies in weak convergence
theory [39, 20, 6] and methods to prove such convergence that they have
in common: the operator semigroup convergence theorem, the martingale
characterization method, and identification of the limit as the solution to a
stochastic differential equation. The reader is referred to [39, 20] and refer-
ences therein for additional information on these methods.

There are a variety of other analysis methods for large network systems
taking completely different approaches. For example, the well-cited work of
Gupta and Kumar [26], followed by many others (e.g., [23, 30]), derives scal-
ing laws of network performance parameters (e.g., throughput); and many
efforts based on mean field theory [21, 4, 12] or on the theory of large devi-
ations [56, 51, 52] study the limit of the so-called empirical (or occupancy)
measure or distribution, which essentially represents the proportion of com-
ponents in certain states. These approaches differ from our work because
they do not study the spatio-temporal characteristics of the system. Note
that we can directly compute many such limiting deterministic character-
istics of the network once we have computed the solution of the limiting
PDE.

Of course, there do exist numerous continuum models in a wide spectrum
of areas that formulate spatio-temporal phenomena (e.g., [7, 31, 59, 11]),
many of which use PDEs. All these works differ from the work presented
here both by the properties of the system being studied and the analytic ap-
proaches. In addition, most of them study distributions of limiting processes
that are random, while our limiting functions themselves are deterministic.
We especially emphasize the difference between our results and those of the
mathematical physics of hydrodynamics [25, 37, 2], because the latter have
a similar style by deducing macroscopic behavior from microscopic inter-
actions of individual particles, and in some special cases result in similar
PDEs. However, they use an entirely different approach, which usually re-
quires different assumptions on the systems such as translation invariant
transition probabilities, conservation of the number of particles, and par-
ticular distributions of the initial state; and their limiting PDE is not the
direct approximation of system state, but the density of some associated
probability measure.

There is a vast literature on the convergence of a large variety of net-
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work models different from ours, to essentially two kinds of limits: the fluid
limit [13, 17, 46, 35, 42, 22] and the diffusion limit [32, 27, 28, 57, 29, 9, 8],
with the latter limit mostly studied in networks in heavy traffic. (Some pa-
pers study both limits [14, 50, 15].) Unlike our work, this field of research
focuses primarily on networks with a fixed number of nodes.

Our work is to be distinguished from approaches where the model is con-
structed to be a continuum representation from the start. For example, many
papers treat nodes as a continuum by considering only the average density
of nodes [54, 55, 1]; and others model network traffic as a continuum by cap-
turing certain average characteristics of the data packet traffic [47, 44, 41].

1.5. Outline of the paper. The remainder of the paper is organized as
follows. In Sec. 2, we present the main theoretical results and apply the
results to the wireless sensor network introduced in Sec. 1.2, and present
some numerical experiments. In Sec. 3, we present the proofs of the main
results. Finally, we conclude the paper and discuss future work in Sec. 4.

2. Main results and applications.

2.1. Construction of the limiting PDE. We begin with the construction
of the PDE whose solution describes the limiting behavior of the abstract
Markov chain model.

For each N and the grid points VN = {vN (1), . . . , vN (N)} ⊂ D as in-
troduced in Sec. 1.1, we denote the distance between any two neighboring
grid points by dsN . For any continuous function w : D → R, let yN be the
vector in R

N composed of the values of w at the grid points vN (n), i.e.,
yN = [w(vN (1)), . . . , w(vN (N))]T . Given a point s ∈ D, we let {sN} ⊂ D
be any sequence of grid points sN ∈ VN such that as N → ∞, sN → s. Let
fN (yN , sN ) be the component of the vector fN(yN ) corresponding to the lo-
cation sN , i.e., if sN = vN (n) ∈ VN , then fN (yN , sN ) is the nth component
of fN (yN ).

In order to obtain a limiting PDE, we have to make certain technical
assumptions on the asymptotic behavior of the sequence of functions {fN}
that insure that fN (yN , sN ) is asymptotically close to an expression that
looks like the right-hand side of a time-dependent PDE. Such conditions
are familiar in the context of PDE limits of Brownian motion. Checking
these conditions often amounts to a simple algebraic exercise. We provide a
concrete example in Sec. 2.4.

We assume that there exist sequences {δN}, {βN}, {γN}, and {ρN},
functions f and h, and a constant c < ∞, such that as N → ∞, δN →
0, δN/βN → 0, γN → 0, ρN → 0, and:
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• Given s is in the interior of D, there exists a sequence of functions
{φN} : D → R such that

(2.1) fN(yN , sN )/δN = f(sN , w(sN ),∇w(sN ),∇2w(sN )) + φN (sN ),

for any sequence of grid points sN → s, and for N sufficiently large,

(2.2) |φN (sN )| ≤ cγN ;

and
• Given s on the boundary of D, there exists a sequence of functions

{ϕN} : D → R such that

(2.3) fN (yN , sN )/βN = h(sN , w(sN ),∇w(sN ),∇2w(sN )) + ϕN (sN ),

for any sequence of grid points sN → s, and for N sufficiently large,
|ϕN (sN )| ≤ cρN .

Here, ∇iw represents all the ith order derivatives of w, where i = 1, 2.
Fix T > 0 for the rest of this section. Assume that there exists a unique

function z : [0, T ] ×D → R that solves the limiting PDE

(2.4) ż(t, s) = f(s, z(t, s),∇z(t, s),∇2z(t, s)),

with boundary condition

(2.5) h(s, z(t, s),∇z(t, s)∇2z(t, s)) = 0

and initial condition z(0, s) = z0(s). Define

(2.6) dtN,M =
δN
M

, tN,M(k) = k dtN,M , KN,M =

⌊

T

dtN,M

⌋

, T̃N =
T

δN
.

Define
(2.7)
zN,M (k, n) = z(tN,M (k), vN (n)), zN,M (k) = [zN,M (k, 1), . . . , zN,M (k,N)]T .

2.2. Main results for continuum limits of the abstract Markov chain model.
In this subsection, we present the main theorem, which states that under
some conditions, the Markov chain converges uniformly to the PDE solution,
as N and M go to ∞ in a dependent way. By this we mean that we set M
to be a function of N , written MN , such that MN → ∞ as N → ∞. Then
we can treat XN,MN

(k), xN,MN
(k), zN,MN

(k), dtN,MN
, tN,MN

, and KN,MN

all as sequences of the single index N , written XN (k), xN (k), zN (k), dtN ,
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tN , and KN respectively. We apply such changes of notation throughout the
rest of the paper whenever M is treated as a function of N .

Let XN = [XN (1)/MN , . . . ,XN (KN )/MN ], xN = [xN (1), . . . , xN (KN )],
and zN = [zN (1), . . . , zN (KN )] denote vectors in R

KN×N . Note that XN is
normalized by MN . Define

(2.8) εN (k, n) = xN (k, n)− zN (k, n), k = 0, . . . ,KN , n = 1, . . . , N,

εN (k) = [εN (k, 1), . . . , εN (k,N)]T ∈ R
N , and εN = [εN (1), . . . , εN (KN )] ∈

R
KN×N .
We denote the ∞-norms on R

N and R
KN×N both by ‖ · ‖

(N)
∞ . That is, for

x = [x1, . . . , xN ]T ∈ R
N ,

‖x‖(N)
∞ = max

1≤n≤N
|xn|;

and for x = [x(1), . . . , x(KN )] ∈ R
KN×N , where x(k) = [x(k, 1), . . . , x(k,N)]T ∈

R
N ,

‖x‖(N)
∞ = max

k=1,...,KN
n=1,...,N

|x(k, n)|.

Define a sequence uN (k) ∈ R
N such that for k = 0, . . . ,KN − 1,

(2.9) zN (k + 1)− zN (k) =
1

MN

fN (zN (k)) − dtNuN (k).

Define uN = [uN (0), . . . , uN (KN − 1)] ∈ R
KN×N . By (1.4), (2.8), and (2.9),

εN (k + 1) = εN (k) +
1

MN

(fN (xN (k))− fN (zN (k))) + dtNuN (k).(2.10)

Assume that

(2.11) ‖εN (0)‖(N)
∞ = 0.

Then by (1.4) and (2.9), for fixed zN , xN is a function of uN ; hence εN is
a function of uN . Then by (2.10), there exists a function HN : RKN×N →
R
KN×N such that

εN = HN (uN ).(2.12)

Define

µN = lim
α→0

sup
‖u‖

(N)
∞ ≤α

‖HN (u)‖
(N)
∞

‖u‖
(N)
∞

.(2.13)
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Theorem 2.1. Assume that:

1. for each N , there exists an identically distributed sequence {λ(k)} of
integrable random variables such that for each k and x, |FN (x,U(k))| ≤
λ(k) a.s.;

2. for each N , the function FN (x,U(k)) is continuous in x a.s.;
3. for each N , the ODE ẏ = fN (y) has a unique solution on [0, T̃N ] for

any initial condition y(0), where T̃N is as defined by (2.6);
4. z is continuously differentiable in t;
5. for each N , (2.11) holds; and
6. the sequence {µN} is bounded.

Then a.s., there exist c < ∞, N0, and M̂1 < M̂2 < M̂3, . . . such that for

each N ≥ N0 and for each MN ≥ M̂N , ‖XN − zN‖
(N)
∞ ≤ cγN , where γN is

as defined by (2.2).

This theorem states that as N and MN go to ∞ in a dependent way, XN

converges uniformly to zN a.s., and with the rate O(γN ). We prove this in
Sec. 3.3.

Next, we provide a result treating the convergence of the continuous-time-
space extension of the Markov chain XN,M to the limiting PDE solution z.
Let T̃N be as defined by (2.6). We construct the continuous-time exten-

sion X
(o)
N,M (t̃) of XN,M (k), as the piecewise-constant time interpolant with

interval length 1/M and normalized by M :

(2.14) X
(o)
N,M (t̃) = XN,M (⌊Mt̃⌋)/M, t̃ ∈ [0, T̃N ].

Similarly, define the continuous-time extension x
(o)
N,M (t̃) of xN,M (k) by

(2.15) x
(o)
N,M (t̃) = xN,M (⌊Mt̃⌋), t̃ ∈ [0, T̃N ].

Respectively, let X
(p)
N,M (t, s) and x

(p)
N,M (t, s), where (t, s) ∈ [0, T ] × D, be

the continuous-space extensions of X
(o)
N,M (t̃) and x

(o)
N,M (t̃) (with t̃ ∈ [0, T̃N ])

by piecewise-constant space extensions on D and with time scaled by δN so
that the time-interval length is δN/M := dtN,M . By piecewise-constant space

extension of X
(o)
N,M , we mean the piecewise-constant function on D such that

the value of this function at each point in D is the value of the component of

the vector X
(o)
N,M corresponding to the grid point that is “closest to the left”

(taken one component at a time). Then for each t, X
(p)
N,M (t, ·) and x

(p)
N,M (t, ·)

are real-valued functions defined on D. We illustrate in Fig. 2.
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n & s k & t

Fig 2. An illustration of xN,M and x
(p)
N,M in one dimension, represented by solid dots and

dashed-line rectangles, respectively.

Both X
(p)
N,M (t, s) and x

(p)
N,M (t, s) with (t, s) ∈ [0, T ] × D are in the space

DD[0, T ] of functions from [0, T ] × D to R that are Càdlàg with respect to
the time component, i.e., right-continuous at each t ∈ [0, T ), and have left-

hand limits at each t ∈ (0, T ]. Define the ∞-norm ‖ · ‖
(p)
∞ on DD[0, T ], i.e.,

for x ∈ DD[0, T ],
‖x‖(p)∞ = sup

t∈[0,T ]
s∈D

|x(t, s)|.

We again treat M as a function of N , written MN , therefore treat-

ing X
(p)
N,MN

and x
(p)
N,MN

as sequences of the single index N , written X
(p)
N

and x
(p)
N , respectively. The following theorem states that as N and MN

go to ∞ in a dependent way, the continuous-time-space extension of the
Markov chain converges uniformly to the PDE solution a.s., and with the
rate O(max{γN , dsN}).

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 hold. Then
a.s., there exist c < ∞, N0, and M̂1 < M̂2 < M̂3, . . . such that for each

N ≥ N0 and for each MN ≥ M̂N , ‖X
(p)
N − z‖

(p)
∞ ≤ cmax{γN , dsN} on

[0, T ] ×D.

We prove this in Sec. 3.4.

2.3. Sufficient conditions on fN for the boundedness of {µN}. The key
assumption of Theorems 2.1 and 2.2 is that the sequence {µN} is bounded.
We present in the following theorem a result that gives specific sufficient
conditions on fN that guarantee that {µN} is bounded. This provide a
practical criterion to verify this key assumption otherwise difficult to check.
Again we treat M as a function of N , written MN . In Sec. 3.6, we will
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show that these sufficient conditions hold for the network model described
in Sec. 1.2, and use this theorem to prove the convergence of its underlying
Markov chain to a PDE.

Consider fixed zN for each N . We assume that fN ∈ C1 and denote the
jacobian matrix of fN at x by DfN (x). Define for each N and for k =
0, . . . ,KN − 1,

(2.16) AN (k) = IN +
1

MN
DfN (zN (k)),

where IN is the identity matrix in R
N×N . We denote the induced ∞-norm

on R
N×N again by ‖ · ‖

(N)
∞ .

We then have

Theorem 2.3. Assume that:

1. z is continuously differentiable in t;
2. for each N , (2.11) holds;
3. for each N , fN ∈ C1; and
4. there exists c < ∞ such that for N sufficiently large and for k =

1, . . . ,KN − 1, ‖AN (k)‖
(N)
∞ ≤ 1 + c dtN .

Then {µN} is bounded.

We prove this in Sec. 3.5.

2.4. Application to network models. In this subsection, we apply the
main results to show how the Markov chain modeling the network intro-
duced in Sec. 1.2 can be approximated by the solution of a PDE. This
approximation was heuristically developed in [16].

We first deal with the one-dimensional network model. Its correspond-
ing stochastic and deterministic difference equations (1.1) and (1.4) were
specified by (1.2) and (1.5), respectively.

For this model we set δN (introduced in Sec. 2.1) to be ds2N . Then

(2.17) dtN,M := δN/M = ds2N/M.

Assume that

(2.18) Pl(n) = pl(vN (n)) and Pr(n) = pr(vN (n)),

where pl(s) and pr(s) are real-valued functions defined on D such that

(2.19) pl(s) = b(s) + cl(s)dsN and pr(s) = b(s) + cr(s)dsN .
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Let c = cl− cr. The values b(s) and c(s) correspond to diffusion and convec-
tion quantities in the limiting PDE. Because pl(s)+pr(s) ≤ 1, it is necessary
that b(s) ≤ 1/2. In order to guarantee that the number of messages entering
the system from outside over finite time intervals remains finite throughout
the limiting process, we set g(n) = Mgp(vN (n))dtN , where gp : D → R is
called the message generation rate. Assume that b, cl, cr, and gp are in C1.
Further assume that xN,M (k) ∈ [0, 1]N for each k. Then fN is in C1.

We have assumed above that the probabilities Pl and Pr of the direction
of transmission are the values of the continuous functions pl and pr at the
grid points, respectively. This may correspond to stochastic routing schemes
where nodes in close vicinity behave similarly based on some local informa-
tion that they share; or to those with an underlying network-wide directional
configuration that are continuous in space, designed to relay messages to des-
tination nodes at known locations. On the other hand, the results can be
extended to situations with certain levels of discontinuity, as discussed in
Sec. 4.

By these assumptions and definitions, it follow from (1.5) that the function
f in (2.4) for this network model is:

f(s, z(t, s),∇z(t, s),∇2z(t, s)) = b(s)
∂

∂s
((1− z(t, s))(1 + 3z(t, s))zs(t, s))

+ 2(1− z(t, s))zs(t, s)bs(s)

+ z(t, s)(1− z(t, s))2bss(s)

+
∂

∂s
(c(s)z(t, s)(1 − z(t, s))2) + gp(s).(2.20)

Here, a single subscript s represents first derivative and a double subscript
ss represents second derivative.

Note that the computations needed to obtain (2.20) (and later, (2.21) and
(3.22)) require tedious but elementary algebraic manipulations. In practice,
we use the symbolic tools in Matlab.

Based on the behavior of nodes n = 1 and n = N next to the destination
nodes, we derive the boundary condition (2.5) of the PDE of this network.
For example, the node n = 1 receives messages only from the right and
encounters no interference when transmitting to the left. Replacing xn with
n ≤ 0 or n ≥ N + 1 by 0, it follows that the 1st component of fN (x) is

(1− xn)Pl(n+ 1)xn+1 − xn[Pl(n) + Pr(n)(1− xn+1)(1 − xn+2)] + g(n).

Similarly, the Nth component of fN (x) is

(1− xn)Pr(n− 1)xn−1 − xn[Pr(n) + Pl(n)(1− xn−1)(1 − xn−2)] + g(n).
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Set βN , defined in Sec. 2.1, to be 1. Then from each of the above two func-
tions we get the function h in (2.5) for the one-dimensional network:

h(s, z(t, s),∇z(t, s),∇2z(t, s)) = −b(s)z(s)3 + b(s)z(s)2 − b(s)z(s).(2.21)

Note that the function h is the limit of fN (yN , sN )/βN , not fN(yN , sN )/δN
(whose limit is f). Solving h = 0 for real z, we have the boundary condition
z(t, s) = 0.

Let z be the solution of the PDE (2.4) with f specified by (2.20) and with
boundary condition z(t, s) = 0 and initial condition z(0, s) = z0(s). Assume
that (2.11) holds. As in Sec. 2.2, we treat M as a sequence of N , written
MN . Then XN and zN are as in the general case. In the following theorem
we show the convergence of the Markov chain modeling the one-dimensional
network to the PDE solution.

Theorem 2.4. For the one-dimensional network model, assume that the
function max{|z|, |zs|, |zss|, |bs|, |bss|, |c|, |cs|} is bounded on [0, T ]×D. Then
a.s., there exist c < ∞, N0, and M̂1 < M̂2 < M̂3, . . . such that for each

N ≥ N0 and for each MN ≥ M̂N , ‖XN − zN‖
(N)
∞ ≤ c dsN .

We prove this in Sec. 3.6.

There is an analogous result for the continuous-time-space extension X
(p)
N .

2.4.1. Interpretation of limiting PDE. Now we make some remarks on
how to interpret a given limiting PDE. First, for fixed N and M , the nor-
malized queue length of node n at time k, is approximated by the value of

the PDE solution z at the corresponding point in [0, T ]×D, i.e.,
XN,M (k,n)

M
≈

z(tN,M (k), vN (n)).
Second, we discuss how to interpret C(to) :=

∫

D z(to, s)ds, the area be-
low the curve z(to, s) for fixed to ∈ [0, T ]. Let ko = ⌊to/dtN,M⌋. Then we

have that z(to, vN (n))dsN ≈
XN,M (ko,n)

M
dsN , the area of the nth rectangle in

Fig. 3. Therefore

C(to) ≈

N
∑

n=1

z(to, vN (n))dsN ≈

N
∑

n=1

XN,M (ko, n)

M
dsN ,

the sum of all rectangles. If we assume that all messages in the queue have
roughly the same bits, and think of dsN as the “coverage” of each node, then
the area under any segment of the curve measures a kind of “data-coverage
product” of the nodes covered by the segment, in the unit of “bit·meter.”
As N → ∞, the total normalized queue length

∑N
n=1 XN,M (ko, n)/M of the
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network does go to ∞; however, the coverage dsN of each node goes to 0.
Hence the sum of the “data-coverage product” can be approximated by the
finite area C(to).

s
dsN dsN dsN dsN dsN dsN dsN

Fig 3. The PDE solution at a fixed time that approximates the normalized queue lengths
of the network.

2.4.2. Comparison between the PDE solution and Monte Carlo simula-
tions of the network. We compare the limiting PDE solution with Monte
Carlo simulations for a network over the domain D = [−1, 1]. We use the ini-
tial condition z0(s) = l1e

−s2 , where l1 > 0 is a constant, so that initially the
nodes in the middle have messages to transmit, while those near the bound-
aries have very few. We set the message generation rate gp(s) = l2e

−s2 ,
where l2 > 0 is a parameter determining the total load of the system.

We use three sets of values of N = 20, 50, 80 and M = N3, and show the
PDE solution and the Monte Carlo simulation results with different N and
M at t = 1s. The networks have diffusion b = 1/2 and convection c = 0 in
Fig. 4 and c = 1 in Fig. 5, respectively, where the x-axis denotes the node
location and y-axis denotes the normalized queue length.

For the three sets of the values of N = 20, 50, 80 and M = N3, with c = 0,
the maximum absolute errors of the PDE approximation are 5.6 × 10−3,
1.3 × 10−3, and 1.1 × 10−3, respectively; and with c = 1, the errors are
4.4 × 10−3, 1.5 × 10−3, and 1.1 × 10−3, respectively. As we can see, as N
and M increase, the resemblance between the Monte Carlo simulations and
the PDE solution becomes stronger. In the case of very large N and M , it
is difficult to distinguish the results.

We stress that the PDEs only took fractions of a second to solve on a
computer, while the Monte Carlo simulations took on the order of tens of
hours.
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◦ Monte Carlo simulation —— PDE solution

Fig 4. The Monte Carlo simulations (with different N and M) and the PDE solution of
a one-dimensional network, with b = 1/2 and c = 0, at t = 1s.
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◦ Monte Carlo simulation —— PDE solution

Fig 5. The Monte Carlo simulations (with different N and M) and the PDE solution of
a one-dimensional network, with b = 1/2 and c = 1, at t = 1s.

2.4.3. A two dimensional network. The generalization of the continuum
model to higher dimensions is straightforward, except for more arduous al-
gebraic manipulation. Likewise, the convergence analysis is similar to the
one dimensional case.

We consider the two-dimensional network of N = N1 ×N2 sensor nodes.
The nodes are uniformly placed over a domain D ⊂ R

2 and labeled by
(n,m), where n = 1, . . . , N1 and m = 1, . . . , N2. Denote the grid point in D
corresponding to node (n,m) by vN (n,m). Again let the distance between
any two neighboring nodes be dsN . Assume that the node labeled by (n,m)
randomly chooses to transmit to the east, west, north, or south immedi-
ate neighbor with probabilities Pe(n,m) = b1(vN (n,m))+ ce(vN (n,m))dsN ,
Pw(n,m) = b1(vN (n,m)) + cw(vN (n,m))dsN , Pn(n,m) = b2(vN (n,m)) +
cn(vN (n,m))dsN , and Ps(n,m) = b2(vN (n,m)) + cs(vN (n,m))dsN , respec-
tively, where Pe(n,m) + Pw(n,m) + Pn(n,m) + Ps(n,m) ≤ 1. Therefore it
is necessary that b1(s) + b2(s) ≤ 1/2. Define c1 = cw − ce and c2 = cs − cn.

The derivation of the limiting PDE is similar to those of the one-dimensional
case, except that we now have to consider transmission to and interference
from four directions instead of two. We present the limiting PDE here with-
out the detailed derivation:

ż =
2
∑

j=1

bj
∂

∂sj

(

(1 + 5z)(1 − z)3
∂z

∂sj

)

+ 2(1 − z)3
∂z

∂sj

dbj
dsj
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+ z(1 − z)4
d2bj
ds2j

+
∂

∂sj

(

cjz(1− z)4
)

+ gp,

with boundary condition z(t, s) = 0 and initial condition z(0, s) = z0(s),
where t ∈ [0, T ] and s = (s1, s2) ∈ D.

We now compare the PDE approximation and the Monte Carlo simula-
tions of a network over the domain D = [−1, 1]× [−1, 1]. We use the initial
condition z0(s) = l1e

−(s21+s22), where l1 > 0 is a constant. We set the message
generation rate gp(s) = l2e

−(s21+s22), where l2 > 0 is a constant.
We use three different sets of the values of N1 ×N2 and M , where N1 =

N2 = 20, 50, 80 and M = N3
1 . We show the contours of the normalized

queue length from the PDE solution and the Monte Carlo simulation results
with different sets of values of N1, N2, and M , at t = 0.1s. The networks
have diffusion b1 = b2 = 1/4 and convection c1 = c2 = 0 in Fig. 6 and
c1 = −2, c2 = −4 in Fig. 7, respectively.

For the three sets of values of N1 = N2 = 20, 50, 80 and M = N3
1 and

with c1 = c2 = 0, the maximum absolute errors are 3.2 × 10−3, 1.1 × 10−3,
and 6.8 × 10−4, respectively; and with c1 = −2, c2 = −4, the errors are
4.1 × 10−3, 1.0 × 10−3, and 6.6 × 10−4, respectively. Again the accuracy of
the continuum model increases with N1, N2, and M .

It took 3 days to do the Monte Carlo simulation of the network at t = 0.1s
with 80×80 nodes and the maximum queue length M = 803, while the PDE
solved on the same machine took less than a second. We could not do Monte
Carlo simulations of any larger networks or greater values of t because of
prohibitively long computation time.

3. Proofs of the main results. This section is devoted solely to the
proofs of the results in Sec. 2. As such, the material here is highly technical
and might be tedious to follow in detail, though we have tried our best
to make it as readable as possible. The reader can safely skip this section
without doing violence to the main ideas of the paper, though much of our
hard work is reflected here.

We first prove Theorems 2.1 and 2.2 by analyzing the convergence of
the Markov chains XN,M to the solution of the limiting PDE in a two-
step procedure. In the first step, for fixed N , we show in Sec. 3.1 that as
M → ∞, XN,M/M converges to xN,M . In the second step, we treat M
as a function of N , written MN , and for any sequence {MN}, we show in
Sec. 3.2 that as N → ∞, xN converges to the PDE solution. Based on the
two steps, we show in Sec. 3.3 that as N and MN go to ∞ in a dependent
way, XN/MN converges to the PDE solution, proving Theorem 2.1; and we
prove Theorem 2.2 in Sec. 3.4.
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Fig 6. The Monte Carlo simulations (from top to bottom, with N1 = N2 = 20, 50, 80,
respectively, and M = N3

1 ) and the PDE solution of a two-dimensional network, with
b1 = b2 = 1/4 and c1 = c2 = 0, at t = 0.1s.

We then prove Theorem 2.3 in Sec. 3.5, and use it to prove Theorem 2.4
in Sec. 3.6.

3.1. Convergence of XN,M and xN,M to the solution of the same ODE.
In this subsection, we show that for fixed N , XN,M/M and xN,M are close
in a certain sense for large M under certain conditions, by proving that both
their continuous-time extensions converge to the solution of the same ODE.

For fixed T and N , by (2.6), T̃N is fixed. As defined by (2.14) and (2.15)

respectively, both X
(o)
N,M (t̃) and x

(o)
N,M(t̃) with t̃ ∈ [0, T̃N ] are in the space

DN [0, T̃N ] of RN -valued Càdlàg functions on [0, T̃N ]. Since they both depend
on M , each one of them forms a sequence of functions in DN [0, T̃N ] indexed

by M = 1, 2, . . .. Define the ∞-norm ‖ · ‖
(o)
∞ on DN [0, T̃N ], i.e., for x ∈
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Fig 7. The Monte Carlo simulations (from top to bottom, with N1 = N2 = 20, 50, 80,
respectively, and M = N3

1 ) and the PDE solution of a two-dimensional network, with
b1 = b2 = 1/4 and c1 = −2, c2 = −4, at t = 0.1s.

DN [0, T̃N ],
‖x‖(o)∞ = max

n=1,...,N
sup

t∈[0,T̃N ]

|xn(t)|,

where xn is the nth components of x.
Now we present a lemma stating that under some conditions, as M → ∞,

X
(o)
N,M converges uniformly to the solution of the ODE ẏ = fN (y), and x

(o)
N,M

converges uniformly to the same solution, both on [0, T̃N ].

Lemma 1. Assume that:

1. there exists an identically distributed sequence {λ(k)} of integrable ran-
dom variables such that for each k and x, |FN (x,U(k))| ≤ λ(k) a.s.;

2. the function FN (x,U(k)) is continuous in x a.s.; and
3. the ODE ẏ = fN(y) has a unique solution on [0, T̃N ] for any initial

condition y(0).
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Suppose that as M → ∞, X
(o)
N,M (0)

P
−→ y(0) and x

(o)
N,M (0) → y(0), where

“
P
−→” represents convergence in probability. Then, as M → ∞, ‖X

(o)
N,M −

y‖
(o)
∞

P
−→ 0 and ‖x

(o)
N,M − y‖

(o)
∞ → 0 on [0, T̃N ], where y is the unique solution

of ẏ = fN (y) with initial condition y(0).

To prove Lemma 1, we first present a lemma due to Kushner [39].

Lemma 2. Assume that:

1̂. the set {|FN (x,U(k))| : k ≥ 0} is uniformly integrable;
2̂. for each k and each bounded random variable X,

lim
δ→0

E sup
|Y |≤δ

|FN (X,U(k)) − FN (X + Y,U(k))| = 0;

and
3̂. there is a function f̂N (·) [continuous by 2̂] such that as n → ∞,

1

n

n
∑

k=0

FN (x,U(k))
P
−→ f̂N (x).

Suppose that ẏ = f̂N (y) has a unique solution on [0, T̃N ] for any initial con-

dition, and that X
(o)
N,M (0) ⇒ y(0), where “⇒” represents weak convergence.

Then as M → ∞, ‖X
(o)
N,M − y‖

(o)
∞ ⇒ 0 on [0, T̃N ].

We note that in Kushner’s original theorem, the convergence of X
(o)
N,M

to y is stated in terms of Skorokhod norm [39], but it is equivalent to the
∞-norm in our case where the time interval [0, T̃N ] is finite and the limit y
is continuous [5].

We now prove Lemma 1 by showing that the assumptions 1̂–3̂ of Lemma 2
hold under the assumptions 1–3 of Lemma 1.

Proof of Lemma 1: Since λ(k) is integrable, as a → ∞, E|λ(k)|1{|λ(k)|>a} →
0, where 1A is the indicator function of set A. By Assumption 1, for each k,
x, and a > 0,

E|FN (x,U(k))|1{|FN (x,U(k))|>a} ≤ E|λ(k)|1{|FN (x,U(k))|>a}

≤ E|λ(k)|1{|λ(k)|>a}.

Therefore as a → ∞,

sup
k≥0

E|FN (x,U(k))|1{|FN (x,U(k))|>a} → 0,
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i.e., the family {|FN (x,U(k))| : k ≥ 0} is uniformly integrable, and hence
Assumption 1̂ holds.

By Assumption 2, for each k and each bounded X, a.s.,

lim
δ→0

sup
|Y |≤δ

|FN (X,U(k)) − FN (X + Y,U(k))| = 0.

By Assumption 1, for each k and each bounded X and Y , a.s.,

|FN (X,U(k)) − FN (X + Y,U(k))|

≤ |FN (X,U(k))| + |FN (X + Y,U(k))| ≤ 2λ(k).

Therefore for each k, each bounded X, and each δ, a.s.,

∣

∣

∣

∣

∣

sup
|Y |≤δ

|FN (X,U(k)) − FN (X + Y,U(k))|

∣

∣

∣

∣

∣

≤ 2λ(k),

an integrable random variable. By the dominant convergence theorem,

lim
δ→0

E sup
|Y |≤δ

|FN (X,U(k)) − FN (X + Y,U(k))|

= E lim
δ→0

sup
|Y |≤δ

|FN (X,U(k)) − FN (X + Y,U(k))| = 0.

Hence Assumption 2̂ holds.
Since U(k) are i.i.d., by the weak law of large numbers and the definition

of fN in (1.3), as n → ∞,

1

n

n
∑

k=0

FN (x,U(k))
P
−→ fN(x).

Hence Assumption 3̂ holds.

Therefore, by Lemma 2, as M → ∞, ‖X
(o)
N,M − y‖

(o)
∞ ⇒ 0 on [0, T̃N ]. For

any sequence of random processes {Xn}, if A is a constant, Xn ⇒ A if and

only if Xn
P
−→ A. Therefore, as M → ∞, ‖X

(o)
N,M − y‖

(o)
∞

P
−→ 0 on [0, T̃N ]. The

same argument implies the deterministic convergence of x
(o)
N,M : as M → ∞,

‖x
(o)
N,M − y‖

(o)
∞ → 0 on [0, T̃N ].

Based on Lemma 1, we get the following lemma, which states that X
(o)
N,M

and x
(o)
N,M are close with high probability for large M .
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Lemma 3. Let the assumptions of Lemma 1 hold. Then for any sequence
{ζN}, for each N and for M sufficiently large,

P{‖X
(o)
N,M − x

(o)
N,M‖(o)∞ > ζN} ≤ 1/N2 on [0, T̃N ].

Proof. By the triangle inequality,

‖X
(o)
N,M − x

(o)
N,M‖(o)∞ ≤ ‖X

(o)
N,M − y‖(o)∞ + ‖x

(o)
N,M − y‖(o)∞ .

By Lemma 1, for each N , as M → ∞, ‖X
(o)
N,M − x

(o)
N,M‖

(o)
∞

P
−→ 0 on [0, T̃N ].

This finishes the proof.

Since X
(o)
N,M and x

(o)
N,M are the continuous-time extensions of XN,M and

xN,M by piecewise-constant extensions, respectively, we have the following
corollary stating that for each N , as M → ∞, XN,M/M converges uniformly
to xN,M .

Corollary 1. Let the assumptions of Lemma 1 hold. Then for any
sequence {ζN}, for each N and for M sufficiently large, we have that

P







max
k=0,...,KN,M

n=1,...,N

∣

∣

∣

∣

XN,M (k, n)

M
− xN,M(k, n)

∣

∣

∣

∣

> ζN







≤
1

N2
.

3.2. Convergence of xN to the limiting PDE. For the remainder of this
section, we treat M as a function of N , written MN . We state conditions
under which xN is asymptotically close to zN for any sequence {MN} as
N → ∞. The basic idea is this. Recall that xN (k) is defined by (1.4). Suppose
that we associate the discrete time k with points on the real line spaced apart
by a distance proportional to δN . Then, the technical assumptions (2.1)
and (2.3) imply that xN (k) is, in a certain sense, close to the solution of the
limiting PDE (2.4) with boundary condition (2.5). The remainder of this
subsection is devoted to developing this argument rigorously.

Lemma 4. Assume that:

1. z is continuously differentiable in t;
2. for each N , (2.11) holds; and
3. the sequence {µN} is bounded.

Then there exists c < ∞ such that for any sequence {MN} and for N suffi-

ciently large, ‖εN‖
(N)
∞ ≤ cmax{γN , dtN}.
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Proof. Since z is continuously differentiable in t, by (2.6), there exists
c1 < ∞ such that for each N for k = 0, . . . ,KN − 1 and n = 1, . . . , N , there
exists a function rN : [0, T ]×D → R such that

zN (k + 1, n)− zN (k, n)

dtN
=

z(tN (k + 1), vN (n))− z(tN (k), vN (n))

dtN
= ż(tN (k), vN (n)) + rN (tN (k), vN (n)),(3.1)

and for N sufficiently large, |rN (tN (k), vN (n))| ≤ c1dtN .
By (2.1), (2.4), and (2.6), there exists c2 < ∞ such that there exists a

function φN : [0, T ]×D → R such that

ż(tN (k), vN (n))

= f(vN (n), z(tN (k), vN (n)),∇z(tN (k), vN (n)),∇2z(tN (k), vN (n)))

= fN (zN (k), vN (n))/δN + φN (tN (k), vN (n)),(3.2)

and for N sufficiently large, |φN (tN (k), vN (n))| ≤ c2γN , where γN is as
defined by (2.2). By (3.1) and (3.2),

zN (k + 1, n)− zN (k, n)

dtN
=

fN (zN (k), vN (n))

δN
+ φN (tN (k), vN (n))

+ rN (tN (k), vN (n)).

Notice that fN(zN (k), vN (n)) is the nth component of fN(zN (k)). Let

uN (k, n) = −φN (tN (k), vN (n))− rN (tN (k), vN (n)).

Then by (2.6) and (2.9), uN (k) = [uN (k, 1), . . . , uN (k,N)]T , and there exists
c3 < ∞ such that N sufficiently large,

(3.3) ‖uN‖(N)
∞ ≤ c3 max{γN , dtN}.

By the definition of µN (2.13), for each N , there exists δ > 0 such that
for α < δ,

sup
‖u‖

(N)
∞ ≤α

‖HN (u)‖
(N)
∞

‖u‖
(N)
∞

≤ µN + 1.

By (3.3), there exists α1 such that forN sufficiently large, ‖uN‖
(N)
∞ ≤ α1 < δ,

and hence

‖HN (uN )‖
(N)
∞

‖uN‖
(N)
∞

≤ sup
‖u‖

(N)
∞ ≤α1

‖HN (u)‖
(N)
∞

‖u‖
(N)
∞

≤ µN + 1.
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Therefore, since the sequence {µN} is bounded, there exists c < ∞ such
that for N sufficiently large,

‖εN‖(N)
∞ = ‖HN (uN )‖(N)

∞ ≤ (µN + 1)‖uN‖(N)
∞ ≤ cmax{γN , dtN}.

Because the derivation above does not depend on the choice of the sequence
{MN}, the proof is finished.

This lemma states that for any sequence {MN}, as N → ∞, xN converges
uniformly to zN with the rate O(max{γN , dtN}).

3.3. Proof of Theorem 2.1. We now prove Theorem 2.1.

Proof of Theorem 2.1: By (2.6), there exists a sequence {M̄N} such that if
for each N , MN ≥ M̄N , then for N sufficiently large, γN ≥ dtN := δN/MN ,

and hence by Lemma 4, there exists c1 < ∞ such that ‖εN‖
(N)
∞ ≤ c1γN .

By Corollary 1, there exists a sequence {M̃N} such that if for each N ,
MN ≥ M̃N , then

∞
∑

N=1

P{‖XN − xN‖(N)
∞ > γN} ≤

∞
∑

N=1

1/N2 < ∞.

It follows from the first Borel-Cantelli Lemma that

P

{

lim sup
N→∞

{‖XN − xN‖(N)
∞ > γN}

}

= 0,

which implies that a.s., for N sufficiently large and for MN ≥ M̃N , ‖XN −

xN‖
(N)
∞ ≤ γN .

By the triangle inequality,

‖XN − zN‖(N)
∞ ≤ ‖XN − xN‖(N)

∞ + ‖εN‖(N)
∞ .

Setting M̂N = max{M̄N , M̃N} finishes the proof.

3.4. Proof of Theorem 2.2. We now prove Theorem 2.2.

Proof of Theorem 2.2: For each N , by the definition of x
(p)
N , we have that

x
(p)
N (tN (k), vN (n)) = xN (k, n). Let ΩN (k, n) be the subset of [0, T ]×D con-

taining (tN (k), vN (n)) where x
(p)
N is piecewise constant, i.e., (tN (k), vN (n)) ∈

ΩN (k, n) and for all (t, s) ∈ ΩN (k, n), x
(p)
N (t, s) = x

(p)
N (tN (k), vN (n)). Then

‖x
(p)
N − z‖(p)∞ ≤ ‖εN‖(N)

∞ + max
k=0,...,KN
n=1,...,N

sup
(t,s)∈ΩN (k,n)

|z(tN (k), vN (n))− z(t, s)|.
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Since z(t, s) is continuously differentiable in t on a compact domain, it
is Lipschitz continuous in t. Similarly, it is Lipschitz continuous in s. Then
there exist c1, c2 ≤ ∞ such that for some norm ‖ · ‖ on [0, T ]×D,

max
k=0,...,KN
n=1,...,N

sup
(t,s)∈ΩN (k,n)

|z(tN (k), vN (n))− z(t, s)|

≤ c1 max
k=0,...,KN
n=1,...,N

sup
(t,s)∈ΩN (k,n)

‖(tN (k), vN (n))− (t, s)‖ ≤ c2 max{dsN , dtN}.

Therefore, by Lemma 4, there exists c3 < ∞ such that for N sufficiently

large, ‖x
(p)
N − z‖

(p)
∞ ≤ c3 max{γN , dtN , dsN}.

By (2.6), there exists a sequence {M̄N} such that if for each N , MN ≥
M̄N , then for N sufficiently large, max{γN , dsN} ≥ dtN , and hence there

exists c4 < ∞ such that ‖x
(p)
N − z‖

(p)
∞ ≤ c4 max{γN , dsN}.

Since MN is a function of N , X
(o)
N,MN

and x
(o)
N,MN

can be treated as

sequences of the single index N , written X
(o)
N and x

(o)
N , respectively. By

Lemma 3, there exists a sequence {M̃N} such that if for each N , MN ≥ M̃N ,
then

∞
∑

N=1

P{‖X
(o)
N − x

(o)
N ‖(o)∞ > max{γN , dsN}} ≤

∞
∑

N=1

1/N2 < ∞.

Using arguments analogous to those in the last proof, one can show that a.s.,

for N sufficiently large and for MN ≥ M̃N , ‖X
(o)
N −x

(o)
N ‖

(o)
∞ ≤ max{γN , dsN}

on [0, T̃N ]. Since X
(p)
N and x

(p)
N are the continuous-space extensions of X

(o)
N

and x
(o)
N by piecewise-constant extensions, respectively, it follows that a.s.,

for N sufficiently large and for MN ≥ M̃N , ‖X
(p)
N −x

(p)
N ‖

(p)
∞ ≤ max{γN , dsN}

on [0, T ]×D.
By the triangle inequality,

‖X
(p)
N − z‖(p)∞ ≤ ‖X

(p)
N − x

(p)
N ‖(p)∞ + ‖x

(p)
N − z‖(p)∞ .

Setting M̂N = max{M̄N , M̃N} finishes the proof.

3.5. Proof of Theorem 2.3. To prove Theorem 2.3, we first prove Lemma 5
and 6 presented below. First we provide in Lemma 5 a sequence bounding
{µN} from above. By (2.12), for each N , for k = 1, . . . ,KN and n = 1, . . . , N ,

we can write εN (k, n) = H
(k,n)
N (uN ), whereH

(k,n)
N is from R

KN×N to R. Sup-
pose that HN is differentiable at 0. Define

(3.4) DHN = max
k=1,...,KN
n=1,...,N

∑

i=1,...,KN
j=1,...,N

∣

∣

∣

∣

∣

∂H
(k,n)
N

∂u(i, j)
(0)

∣

∣

∣

∣

∣

,
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where 0 is in R
KN×N . Notice that DHN is essentially the induced ∞-norm

of the linearized version of the operator HN .

Lemma 5. Assume that:

1. z is continuously differentiable in t;
2. for each N , (2.11) holds; and
3. for each N , HN ∈ C1 locally at 0.

Then we have that for each N , µN ≤ DHN .

Proof. For all u 6= 0, we have by the definition of DHN that

DHN ≥

max k=1,...,KN
n=1,...,N

∣

∣

∣

∣

∑

i=1,...,KN
j=1,...,N

∂H
(k,n)
N

∂u(i,j) (0)u(i, j)

∣

∣

∣

∣

‖u‖
(N)
∞

.(3.5)

Define

νN (i, j) = sgn
∂H

(k0,n0)
N

∂u(i, j)
(0),

where

(k0, n0) ∈ argmax
k=1,...,KN
n=1,...,N

∑

i=1,...,KN
j=1,...,N

∣

∣

∣

∣

∣

∂H
(k,n)
N

∂u(i, j)
(0)

∣

∣

∣

∣

∣

.

Let νN (k) = [νN (k, 1), . . . , νN (k,N)]T and νN = [νN (1), . . . , νN (KN )]. Then

DHN =

max k=1,...,KN
n=1,...,N

∣

∣

∣

∣

∑

i=1,...,KN
j=1,...,N

∂H
(k,n)
N

∂u(i,j) (0)νN (i, j)

∣

∣

∣

∣

‖νN‖
(N)
∞

.

By this and (3.5), we have that

(3.6) DHN = sup
u 6=0

max k=1,...,KN
n=1,...,N

∣

∣

∣

∣

∑

i=1,...,KN
j=1,...,N

∂H
(k,n)
N

∂u(i,j) (0)u(i, j)

∣

∣

∣

∣

‖u‖
(N)
∞

.

Note that if uN = 0, then by (1.4), (2.9), and (2.11), xN and zN are
identical, i.e., εN = 0. Therefore

(3.7) HN (0) = 0.
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Hence H
(k,n)
N (0) = 0. Since HN ∈ C1 locally at 0, by Taylor’s theorem, there

exists a function H̃
(k,n)
N such that for sufficiently small u,

H
(k,n)
N (u) =

∑

i=1,...,KN
j=1,...,N

∂H
(k,n)
N

∂u(i, j)
(0)u(i, j) + H̃

(k,n)
N (u),(3.8)

and limu→0
H̃

(k,n)
N

(u)

‖u‖
(N)
∞

= 0. Hence for each ε > 0, there exists δ such that for

‖u‖
(N)
∞ < δ,

∣

∣

∣

H̃
(k,n)
N

(u)
∣

∣

∣

‖u‖
(N)
∞

< ε. Then for ‖u‖
(N)
∞ ≤ α ≤ δ, sup

‖u‖
(N)
∞ ≤α

∣

∣

∣

H̃
(k,n)
N

(u)
∣

∣

∣

‖u‖
(N)
∞

<

ε. Therefore,

lim
α→0

sup
‖u‖

(N)
∞ ≤α

∣

∣

∣H̃
(k,n)
N (u)

∣

∣

∣

‖u‖
(N)
∞

= 0.(3.9)

By (3.8),

‖HN (u)‖(N)
∞ ≤ max

k=1,...,KN
n=1,...,N

∣

∣

∣H̃
(k,n)
N (u)

∣

∣

∣+ max
k=1,...,KN
n=1,...,N

∣

∣

∣

∣

∣

∣

∣

∑

i=1,...,KN
j=1,...,N

∂H
(k,n)
N

∂u(i, j)
(0)u(i, j)

∣

∣

∣

∣

∣

∣

∣

.

Therefore by (2.13),

µN ≤ lim
α→0

sup
‖u‖

(N)
∞ ≤α









max k=1,...,KN
n=1,...,N

∣

∣

∣
H̃

(k,n)
N (u)

∣

∣

∣

‖u‖
(N)
∞

+

max k=1,...,KN
n=1,...,N

∣

∣

∣

∣

∑

i=1,...,KN
j=1,...,N

∂H
(k,n)
N

∂u(i,j) (0)u(i, j)

∣

∣

∣

∣

‖u‖
(N)
∞









.

Hence by (3.6) and (3.9), we finish the proof.

Next we present in Lemma 6 a relationship between fN and DHN . Define
for each N and for k, l = 1, . . . ,KN ,

B
(k,l)
N =







AN (k − 1)AN (k − 2) . . . AN (l), 1 ≤ l < k;
IN , l = k;
0, l > k,

(3.10)

where AN (l) is as defined by (2.16).
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Lemma 6. Assume that:

1. z is continuously differentiable in t;
2. for each N , (2.11) holds; and
3. for each N , fN ∈ C1.

Then we have that for each N , for k, i = 1, . . . ,KN and n, j = 1, . . . , N ,

∂H
(k,n)
N

∂u(i, j)
(0) = B

(k,i)
N (n, j)dtN .

Proof. It follows from (2.11) that xN (0) = zN (0). Then by (1.4) and
(2.9), xN (1) = zN (1) + dtNuN (0), and for k = 2, 3, . . .,

xN (k) = zN (k) +
1

MN

k−1
∑

l=1

(fN (xN (l))− fN (zN (l))) + dtN

k−1
∑

l=0

uN (l).

Therefore, by Assumption 3 and by induction, for fixed zN , xN is a C1 func-
tion of uN , because the composition of functions in C1 is still in C1. Similarly,
by (2.10), for fixed zN , εN is a C1 function of uN . Hence Assumption 3 here
implies Assumption 3 of Lemma 5.

By Taylor’s theorem, for fixed zN , there exists a function f̃N such that

fN (xN (k))− fN (zN (k)) = DfN (zN (k))εN (k) + f̃N (zN (k) + εN (k), zN (k)),

and for each z,

(3.11) f̃N (z, z) = 0,

and

(3.12) lim
‖ε‖

(N)
∞ →0

∥

∥

∥f̃N(z + ε, z)
∥

∥

∥

(N)

∞

‖ε‖
(N)
∞

= 0.

Then we have from (2.10) that for k = 0, . . . ,KN − 1,

εN (k + 1) = εN (k) + dtNuN (k)

+
1

MN

(

DfN (zN (k))εN (k) + f̃N (zN (k) + εN (k), zN (k)
)

.

Therefore

εN (k + 1) = AN (k)εN (k) + dtNuN (k) +
f̃N (zN (k) + εN (k), zN (k))

MN
.
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For k = 0, . . . ,KN − 1, define

(3.13) ηN (k) = dtNuN (k) +
f̃N (zN (k) + εN (k), zN (k))

MN
.

Then εN (k + 1) = AN (k)εN (k) + ηN (k). Therefore for k = 1, . . . ,KN ,

εN (k) = AN (k − 1) . . . AN (1)ηN (0) +AN (k − 1) . . . AN (2)ηN (1)

+ . . .+AN (k − 1)AN (k − 2)ηN (k − 3) +AN (k − 1)ηN (k − 2)

+ ηN (k − 1).

Then it follows from (3.10) that for k = 1, . . . ,KN ,

(3.14) εN (k) =

k
∑

l=1

B
(k,l)
N ηN (l − 1).

Write εN (k) = H
(k)
N (uN ). By (3.13),

ηN (k) = dtNuN (k) +
f̃N

(

zN (k) +H
(k)
N (uN ), zN (k)

)

MN
.

Hence by (3.14), for k = 1, . . . ,KN ,

εN (k)

=

k
∑

l=1

B
(k,l)
N



dtNuN (l − 1) +
f̃N

(

zN (l − 1) +H
(l−1)
N (uN ), zN (l − 1)

)

MN



 .

Denote by g
(k,l,n)
N (·) : RKN×N → R

N the nth component of

B
(k,l)
N f̃N

(

zN (l − 1) +H
(l−1)
N (·), zN (l − 1)

)

.

By (3.11) and (3.7), g
(k,l,n)
N (0) = 0.

Let {e(i, j) : i = 1, . . . ,KN , j = 1, . . . , N} be the standard basis for
R
KN×N , i.e., each e(i, j) is the element of RKN×N with the (i, j)th entry

being 1 and all other entries being 0. Then

∂H
(k,n)
N

∂u(i, j)
(0) = B

(k,i)
N (n, j)dtN +

1

MN

k
∑

l=1

(

lim
h→0

g
(k,l,n)
N (h e(i, j))

h

)

.
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It remains to show that

lim
h→0

g
(k,l,n)
N (h e(i, j))

h
= 0.

Denote by θ
(l,d)
N (·) : RKN×N → R the dth component of f̃N (zN (l)+H

(l)
N (·), zN (l)).

Then

g
(k,l,n)
N (u) =

N
∑

d=1

B
(k,l)
N (n, d)θ

(l−1,d)
N (u).

Denote by f̃
(l,d)
N (·) : RN → R the dth component of f̃N(zN (l) + (·), zN (l)).

Then

(3.15) θ
(l,d)
N (u) = f̃

(l,d)
N (H

(l)
N (u)).

Then it remains to show that

(3.16) lim
‖u‖

(N)
∞ →0

θ
(l,d)
N (u)

‖u‖
(N)
∞

= 0.

Since HN ∈ C1 locally at 0, by (3.7), there exists c such that |c| < ∞,

and for each ε1 > 0, there exists δ1(ε1) such that for ‖u‖
(N)
∞ < δ1(ε1),

∣

∣

∣

∣

∣

∥

∥

∥
H

(l)
N

(u)
∥

∥

∥

(N)

∞

‖u‖
(N)
∞

− c

∣

∣

∣

∣

∣

< ε1. Hence for ‖u‖
(N)
∞ < δ1(ε1),

(3.17)
∥

∥

∥H
(l)
N (u)

∥

∥

∥

(N)

∞
< (|c|+ ε1)‖u‖

(N)
∞ .

By (3.12), lim
‖x‖

(N)
∞ →0

f̃
(l,d)
N

(x)

‖x‖
(N)
∞

= 0. Hence for each ε2 > 0, there ex-

ists δ2(ε2) such that for ‖x‖
(N)
∞ < δ2(ε2),

∣

∣

∣
f̃
(l,d)
N

(x)
∣

∣

∣

‖x‖
(N)
∞

< ε2
|c|+1 . Hence for 0 <

‖x‖
(N)
∞ < δ2(ε2),

(3.18)
∣

∣

∣
f̃
(l,d)
N (x)

∣

∣

∣
<

ε2
|c|+ 1

‖x‖(N)
∞ .

For each ε, let ε̂(ε) be sufficiently small such that

(3.19) (|c| + ε̂(ε))δ1(ε̂(ε)) < δ2(ε),

and

(3.20) ε̂(ε) < 1.
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Then by (3.17) and (3.19), for ‖u‖
(N)
∞ < δ1(ε̂(ε)),

∥

∥

∥H
(l)
N (u)

∥

∥

∥

(N)

∞
< δ2(ε).

Therefore, in the case that
∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

∞
> 0, by (3.15) and (3.18),

∣

∣

∣θ
(l,d)
N (u)

∣

∣

∣ =
∣

∣

∣f̃
(l,d)
N

(

H
(l)
N (u)

)∣

∣

∣ <
ε

|c|+ 1

∥

∥

∥H
(l)
N (u)

∥

∥

∥

(N)

∞
.

By (3.17) and (3.20),

∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

∞
< (|c|+ ε̂(ε))‖u‖(N)

∞ < (|c| + 1)‖u‖(N)
∞ .

By the above two inequalities,

(3.21)

∣

∣

∣θ
(l,d)
N (u)

∣

∣

∣

‖u‖
(N)
∞

< ε.

By (3.11), f̃
(l,d)
N (0) = 0. Therefore, in the case that

∥

∥

∥
H

(l)
N (u)

∥

∥

∥

(N)

∞
= 0,

θ
(l,d)
N (u) = 0, and thus (3.21) still holds. Therefore, (3.16) holds.

Now we prove Theorem 2.3 using the two preceding lemmas.

Proof of Theorem 2.3:
By (3.4), Lemma 5, and Lemma 6,

µN ≤ max
k=1,...,KN
n=1,...,N

∑

i=1,...,KN
j=1,...,N

∣

∣

∣
B

(k,i)
N (n, j)

∣

∣

∣
dtN .

Therefore, by (3.10) and the assumption on ‖AN (k)‖
(N)
∞ , and by the sub-

multiplicative property of the induced∞-norm ‖·‖
(N)
∞ on R

N×N , there exists
c < ∞ such that for N sufficiently large,

µN ≤ KN

(

max
k=1,...,KN−1

‖AN (k)‖(N)
∞

)KN

dtN ≤ KNdtN (1 + c dtN )KN .

Since T < ∞, by (2.6), KNdtN is bounded. As N → ∞, KN → ∞, and

(1 + c dtN )KN =

(

1 +
c T

KN

)KN

→ ec T .

Therefore {µN} is bounded.
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3.6. Proof of Theorem 2.4. We now prove Theorem 2.4. using Theo-
rem 2.1 and 2.3.

Proof of Theorem 2.4: By (1.5), for fixedN , for x = [x1, . . . , xN ]T ∈ [0, 1]N ,
the (n,m)th component of DfN(x), where n,m = 1, . . . , N , is























































Pl(n)xn(1− xn−1), m = n− 2;
(1− xn)[Pr(n− 1)(1− xn+1)− Pl(n+ 1)xn+1]

+Pl(n)xn(1− xn−2), m = n− 1;
−Pr(n− 1)xn−1(1− xn+1)− Pl(n+ 1)xn+1(1− xn−1)
−Pr(n)(1− xn+1)(1− xn+2)− Pl(n)(1 − xn−1)(1− xn−2), m = n;
(1− xn)[Pl(n+ 1)(1− xn−1)− Pr(n− 1)xn−1]

+Pr(n)xn(1− xn+2), m = n+ 1;
Pr(n)xn(1− xn+1), m = n+ 2;
0 other wise,

where xn with n ≤ 0 or n ≥ N + 1 are defined to be zero. Then

‖AN (k)‖(N)
∞ = max

n=1,...,N

1

MN
(|Pl(n)zN (k, n)(1 − zN (k, n − 1))|

+ |(1− zN (k, n))[Pr(n− 1)(1 − zN (k, n+ 1)) − Pl(n+ 1)zN (k, n + 1)]

+ Pl(n)zN (k, n)(1 − zN (k, n − 2))|

+ |MN − Pr(n− 1)zN (k, n − 1)(1 − zN (k, n + 1))

− Pl(n+ 1)zN (k, n+ 1)(1 − zN (k, n − 1))

− Pr(n)(1− zN (k, n + 1))(1 − zN (k, n + 2))

− Pl(n)(1− zN (k, n − 1))(1 − zN (k, n − 2))|

+ |(1− zN (k, n))[Pl(n+ 1)(1 − zN (k, n− 1)) − Pr(n− 1)zN (k, n − 1)]

+ Pr(n)zN (k, n)(1 − zN (k, n + 2))|+ |Pr(n)zN (k, n)(1 − zN (k, n + 1))|).

Put (2.7), (2.18), (2.19), and the Taylor’s expansions

z(t, s± dsN ) = z(t, s)± zs(t, s)dsN + zss(t, s)
ds2N
2

+ o(ds2N ),

b(s± dsN ) = b(s)± bs(s)dsN + bss(s)
ds2N
2

+ o(ds2N ),

and
c(s± dsN ) = c(s)± cs(s)dsN + o(dsN )

into the above equation and rearrange. Then it follows that there exists
c1 < ∞ such that for N sufficiently large,

‖AN (k)‖(N)
∞ ≤ 1 + max

n=1,...,N
| − cs(vN (n))− bss(vN (n))
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− 2b(vN (n))zss(tN (k), vN (n)) + 4bss(vN (n))z(tN (k), vN (n))

+ 2bs(vN (n))zs(tN (k), vN (n)) + 4cs(vN (n))z(tN (k), vN (n))

+ 4c(vN (n))zs(tN (k), vN (n)) + 6b(vN (n))zs(tN (k), vN (n))2

− 3bss(vN (n))z(tN (k), vN (n))2 − 3cs(vN (n))z(tN (k), vN (n))2

+ 6b(vN (n))z(tN (k), vN (n))zss(tN (k), vN (n))

− 6c(vN (n))z(tN (k), vN (n))zs(tN (k), vN (n))|
ds2N
MN

+ c1
ds3N
MN

:= 1 + max
n=1,...,N

|q(tN (k), vN (n))|
ds2N
MN

+ c1
ds3N
MN

.

Then by (2.17), by the assumption of the theorem, and by the fact that b
is bounded by 1/2, there exists c3 < ∞ such that for N sufficiently large,

‖AN (k)‖
(N)
∞ ≤ 1 + c3 dtN . Hence the last assumption of Theorem 2.3 holds.

Then one can verify that the assumptions of Theorem 2.1 hold.
One can show from (1.5) and (2.20) (after some tedious algebra) that

there exists c < ∞ such that for N sufficiently large,

(3.22) γN ≤ c dsN .

By Theorem 2.1, we finish the proof.

4. Conclusion. In this paper we analyze the convergence of a sequence
of Markov chains to its continuum limit, the solution of a PDE, in a two-step
procedure. We provide precise sufficient conditions for the convergence and
the explicit rate of convergence. Based on such convergence we approximate
the Markov chain modeling a large wireless sensor network by a nonlinear
diffusion-convection PDE.

With the well-developed mathematical tools available for PDEs, this ap-
proach provides a framework to model and simulate networks with a very
large number of components, which is practically infeasible for Monte Carlo
simulation. Such a tool enables us to tackle problems such as performance
analysis and prototyping, resource provisioning, network design, network
parametric optimization, network control, network tomography, and inverse
problems, for very large networks. For example, we can now use the PDE
model to optimize certain performance metrics (e.g., throughput) of a large
network by adjusting the placement of destination nodes or the routing pa-
rameters (e.g., coefficients in convection terms), with relatively negligible
computation overhead compared with that of the same task done by Monte
Carlo simulations.
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For simplicity, we have treated sequences of grid points that are uniformly
located. As with finite difference methods for differential equations, the con-
vergence results can be extended to models that have nonuniform points
spacing under assumptions that insure the points in the sequence should
become dense in the underlying domain uniformly in the limit. For exam-
ple, we could consider a double sequence of minimum point spacing {hi} and
maximum point spacing {Hi} with Hi/hi = constant, and for each i, we can
consider a model with nonhomogeneous point spacing between hi and Hi.
We can also introduce a spatial change of variables that maps a nonuniform
model to a uniform model. This changes the coefficients in the resulting
PDE, by substitution and the chain rule. In this way we can extend our ap-
proach to nonuniform, even mobile, networks. We can further consider the
control of nodes such that global characteristics of the network are invariant
under node locations and mobility. (See our paper [60] for details.)

The assumption made in (2.18) that the probabilities of transmission be-
have continuously insures that there is a limiting behavior in the limit of
large numbers of nodes and relates the behavior of networks with different
numbers of nodes. The convergence results can be extended to the situa-
tion in which the probabilities change discontinuously at a finite number of
lower dimensional linear manifolds (e.g., points in one dimension, lines in
two dimensions, planes in three dimensions) in space provided that all of
the discrete networks under consideration have nodes on the manifolds of
discontinuity.

There are other considerations regarding the network that can signifi-
cantly affect the derivation of the continuum model. For example, trans-
missions could happen beyond immediate nodes, and the interference be-
tween nodes could behave differently in the presence of power control; we
can consider more boundary conditions other than sinks, including walls,
semi-permeating walls, and their composition; and we can seek to establish
continuum models for other domains such as the Internet, cellular networks,
traffic networks, and human crowds.
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[3] Benäım, M. (1999). Dynamics of stochastic approximation algorithms. In Séminaire
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