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One formulation of forensic identification of source problems is to de-
termine the source of trace evidence, for instance, glass fragments found
on a suspect for a crime. The current state of the science is to compute a
Bayes factor comparing the marginal distribution of measurements of trace
evidence under two competing propositions for whether or not the unknown
source evidence originated from a specific source. The obvious problem with
such an approach is the ability to tailor the prior distributions (placed on the
features/parameters of the statistical model for the measurements of trace ev-
idence) in favor of the defense or prosecution which is further complicated
by the fact that the typical number of measurements of trace evidence is typ-
ically sufficiently small that prior choice/specification has a strong influence
on the value of the Bayes factor. To remedy this problem of prior specifi-
cation and choice, we develop an alternative to the Bayes factor, within the
framework of generalized fiducial inference, that we term a generalized fidu-
cial factor. Furthermore, we demonstrate empirically, on synthetic and real
Netherlands Forensic Institute casework data, deficiencies in Bayes factor and
classical/frequentist likelihood ratio approaches.

1. Introduction. The adversarial nature of the criminal courtroom is extraordinarily
troublesome in the context of Bayesian prior specification and choice. In its purest form,
subjectivist Bayesian theory (Lindley (1971), Savage (1961)) only admits prior probability
distributions that reflect genuine beliefs about unknown features of a posited statistical model.
However, in the criminal courtroom setting there are inherently a range of such prior proba-
bility distributions that are reasonable, depending on the experts’ role in the courtroom. On
one extreme there is the model representing the belief of the prosecution, and on the other ex-
treme is the model representing the belief of the defense. Further, given the high stakes nature
of the outcome of a criminal court proceeding, it is not hard to imagine that the subjectivist
Bayesian inference from the evidence provided could lead to an extreme answer favoring ei-
ther the prosecution or the defense, depending on which prior distribution is assumed for the
statistical model features/parameters.

Historically, the alternative to subjectivist Bayesian theory is to consider a class of ob-
jective prior distributions. The problem with this approach is how to define objective in this
context and how to determine if the objective prior tends to favor the prosecution or the de-
fense. The critical question focuses on whether Bayesian methodology is actually appropriate
for the criminal courtroom setting involving beliefs of expert witnesses (i.e., not only appro-
priate for each individual juror). As statisticians, we have a responsibility to assess whether
the methodological assumptions are safe and reliable. To this end, we investigate a particular
class of problems commonly referred to as forensic identification of source problems, and we
motivate our work with a real data set of glass fragments that was gathered from 10 years of
casework by the Netherlands Forensic Institute (NFI) (van Es et al. (2017)).
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Several approaches for assigning value to forensic evidence have been explored, including
the two-stage approach (Evett (1977), Parker (1966)), likelihood ratio (LR) with Bayesian
treatment of parameter uncertainty (Aitken and Lucy (2004), Evett (1986), Lindley (1977))
or with maximum likelihood estimates (MLE) of parameters (Grove (1980), Ommen (2017))
as well as score-based approaches (Bolck et al. (2009), Egli, Champod and Margot (2006),
Gonzalez-Rodriguez et al. (2006), Gonzalez-Rodriguez et al. (2005), Hepler et al. (2012),
Neumann et al. (2007)). The Bayes factor (BF) approach is the most commonly recom-
mended among European countries (Berger and Slooten (2016), Biedermann et al. (2016),
ENFSI (2015), Taroni et al. (2016)), while a non-Bayesian approach is often recommended
in the U.S. (Kafadar (2018), Swofford et al. (2018)). Recently, all of these methods have been
scrutinized due to their lack of attention to the handling of uncertainty (Lund and Iyer (2017),
Morrison (2016)). In this paper we contribute to the discussion regarding how to handle un-
certainty when quantifying the value of evidence, and we focus on a similar question to the
one proposed in Lund and Iyer (2017): “What do you really know vs. what are you claiming
to know (using prior information)?”

The gist of the LR approaches is to compare the probability of observing the evidence
under two competing explanations for how the evidence was generated. The two-stage ap-
proach, as it is most commonly presented, relies on statistical significance testing to compare
two pieces of evidence: first, to determine whether the evidence can be considered a “match,”
and then to compare to other sources to determine how many others might also “match.” This
approach is not directly comparable to the recommended LR approaches (Shafer (1982))
and will likely come under scrutiny due to the movement away from significance testing for
applications with “high-stakes” decisions (Wasserstein and Lazar (2016)). The score-based
likelihood ratio (SLR) approaches evolved from difficulties with the LR approaches for high-
dimensional pattern and impression evidence (such as fingerprints, footwear, firearms and
handwriting evidence). These SLR approaches rely on extensive training data sets consisting
of pairwise comparison scores between evidential objects, and these scores can be created in a
variety of different ways (Hepler et al. (2012), Neumann and Ausdemore (2020), Neumann,
Hendricks and Ausdemore (2020)). Again, this approach is not directly comparable to the
recommended LR approaches due to the focus on modeling pairwise comparison scores, as
opposed to the features of one single object (Neumann, Hendricks and Ausdemore (2020)).
Due to the expressed concerns with the two-stage and SLR approaches, we will not consider
these in this article.

Our contributions are the following. First and most fundamentally, we develop methodol-
ogy for a new solution to forensic identification of source problems based on the generalized
fiducial inference (GFI) approach (Hannig et al. (2016)). It has been shown in the literature
that GFI is asymptotically valid in the sense of Bernstein-von Mises type theory (again, see
Hannig et al. (2016)). Second, we illustrate empirically via simulating the real NFI casework
data that the BF can yield remarkably different answers when the priors reflect the prosecu-
tion, instead of the defense hypotheses and vice versa, and that the BF values may be poorly
calibrated to reflect the strength of evidence that they convey. Our empirical results demon-
strate very transparently that the degree to which the BF could vary often may be more than
enough to change the narrative of presented forensic evidence in a courtroom to the extent
that a jury decision could conceivably be contrived. Furthermore, an alternative LR statistic
for this application is numerically unstable and poorly calibrated to these data.

GFI is a prior-free approach to estimating a posterior distribution which reflects the uncer-
tainty associated with unknown model parameters. We use GFI to define and construct the
first ever generalized fiducial factor (GFF), particularly for application to statistical inference
for forensic identification of source problems. Moreover, we demonstrate in a real NFI data
simulation that the GFF, which does not rely on prior specification, is able to provide mean-
ingful, consistent and well-calibrated inference. We make our R code and documentation for
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implementing the GFF publicly available in our Supplementary Material (Williams, Ommen
and Hannig (2023), also available at https://jonathanpw.github.io/software.html). The GFF
can loosely be interpreted by analogy to a BF for particular choices of objective, data-driven
priors, but the approach is justified independently of such interpretation. However, the GFI
and, by extension, the GFF, approach have principled foundational roots in statistical theory.
We provide a gentle introduction to GFI prior to our construction of the GFF.

The organization of the paper is as follows. Section 2 precisely defines and describes the
context of forensic identification of source problems. The real data is described and references
are provided in Section 3.5. Section 3 introduces the central notions for GFI, provides a brief
overview of the established theory and proceeds by deriving the necessary components for
the GFF in the context of forensic identification of source for glass fragment data. Thereafter,
the main empirical results of the paper are presented in Section 4. Finally, concluding remarks
are provided in closing, and the Appendix accounts specific details for the BF and LR. The
R code, along with a bash workflow file for reproducing all of our results is available in
our Supplementary Material (Williams, Ommen and Hannig (2023), also available at https:
//jonathanpw.github.io/research.html).

2. Motivating application. The motivation for the development of methodology for a
GFF is the adversarial courtroom setting in which subjectivist BFs become problematic. We
focus our attention on the particular class of forensic identification of source problems. The
basic premise for such problems is that there is a crime that occurred at a specified location,
and some evidential materials (e.g., blood, weapons, gunpowder, glass fragments, etc.) were
found at the scene of the crime. Next, a suspect for the crime is identified and is found with
these same materials. For example, glass fragments might be found at both the crime scene
and fixed to the clothes of the suspect. Perhaps the glass fragments are tiny but, nonetheless,
can be analyzed for chemical composition. Then, an important question involves assessing
how likely it is that the glass fragments on the suspect originated from the window at the
crime scene which would link the suspect to the scene of the crime.

Within the context of forensic identification of source problems, we consider the following
framework for constructing the competing hypotheses, sometimes referred to as the specific
source formulation (Ommen and Saunders (2019)). In this formulation, material evidence,
such as trace elements (i.e., the chemical composition of the chemical components that are
useful for discrimination; see Dettman et al. (2014)) of glass fragments, found on a suspect
are regarded as having been generated from either the specific source or some alternative
source. In the case of glass evidence, the data gathered from the suspect is regarded as hav-
ing been generated from an unknown source (either the specific source at the crime scene
or an alternative source often characterized by a background database), and the competing
hypotheses are:

Hp : The unknown source evidence originated from the specific source.
Hd : The unknown source evidence originated from some other source in the alternative source

population.

We confine the rest of our exposition to modeling evidence arising from trace elements of
glass fragments. The alternative sources characterize a large database of panes of glass found
in windows and doors used to describe the variation of trace element compositions found
between and within panes of glass. Glass fragments from a pane found at a specific source,
such as a crime scene, also can be characterized based on the composition and variation of
their trace elements. When glass fragments are discovered on a suspect for a crime (i.e., the
unknown source data), an analyst can compare the composition and variation of its trace
elements to that of glass found at the specific source (i.e., the crime scene) and that of all
types of glass that have been documented in the alternative source database. This logical
framework lends itself to describing the alternative source data by a random effects model,

https://jonathanpw.github.io/software.html
https://jonathanpw.github.io/research.html
https://jonathanpw.github.io/research.html


GENERALIZED FIDUCIAL FACTOR 381

where the random effects component describes variation of trace elements between panes. In
Section 3 we formulate the construction of these data generating models.

Unfortunately, forensic databases are not sufficiently exhaustive for it to be realistic to
assume that all relevant sources are represented in the alternative source data. Nonetheless,
the meaningful question for the forensic identification of source problem remains whether
the unknown source data are consistent with the specific source data. The alternative sources
of data provide a benchmark for comparison. In the sections that follow, we develop and
evaluate statistical methodology to address this question. Further, we design a simulation
study consistent with the real NFI casework data to investigate and assess our methods.

3. Methodology. The motivation for GFI is to construct prior-free probabilistic infer-
ence on meaningful parameters in a data generating model. An overview of the ideas, com-
mon examples and theoretical guarantees for GFI is presented in Hannig et al. (2016). The
formal definition of a GF distribution begins with a data-generating equation G for the re-
alization of data Y , depending on some underlying pivotal quantity U and some unknown
fixed parameters θ . That is, Y = G(U, θ), where G is deterministic and U is a random vari-
able whose distribution is completely known. The idea for GFI is to invert the function G to
solve for the unknown parameters, and then switch the roles of θ and the observed data y to
construct a distributional estimator for θ that inherits the uncertainty associated with U .

For continuous data, under certain conditions applicable to many practical settings (Hannig
et al. (2016)), the GF distribution can be computed as

(1) r(θ |y) = f (y|θ)J (y, θ)
∫
" f (y|θ̃)J (y, θ̃) d θ̃

,

where f (y|θ) is the likelihood function, and

(2) J (y, θ) := D
(∇θG(u, θ)|u=G−1(y,θ)

)
,

with D(A) := √
det(A′A/n), where n is the number of samples observed (dimension of y).

The function J (y, θ) is a Jacobian-like quantity that results from inverting the data-generating
equation y = G(U, θ), assuming that G−1(·, θ) exists (thus leading to a unique solution u =
G−1(y, θ)). In our applications it is the case that G−1(·, θ) exists. Viewed from another
perspective, (1) defines a posterior-like distribution for a class of data-driven, objective priors.
A variety of classes of objective (or noninformativie, weakly informative, etc.) priors are
well accepted in the literature and, in practice, as both meaningful and useful inferential tools
(Berger, Bernardo and Sun (2009), Bernardo (1979), Gelman et al. (2008), Jeffreys (1946),
Martin and Walker (2019), Mukerjee and Reid (1999), Staicu and Reid (2008)). In fact, any
prior distribution that is constructed for any reason other than to reflect the true state of the
prior knowledge is not properly Bayesian. In the following two subsections we use (1) to
construct GF distributions for the forensic identification of source problems described in the
previous section.

3.1. GF distribution of specific source data. For the glass fragments found at the specific
source, let m denote the number of measurements of the log-transformed concentration of p
elements and record the measurements as a column vector ys,k ∈ Rp for k ∈ {1, . . . ,m}. Then,
assuming a multivariate Gaussian data-generating equation, as in Aitken and Lucy (2004) and
Ommen, Saunders and Neumann (2017), for k ∈ {1, . . . ,m},
(3) Ys,k = G

(
Zk, (µs,A)

) = µs + AZk,

where Zk ∼ Np(0, Ip) and A is nonsingular. The GF distribution of (µs,A) then has the form

rs
(
µs,A|{ys,k}

) = qs(µs,A|{ys,k})
cs

,
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where qs(µs,A|{ys,k}) := fs({ys,k}|µs,A) · Js({ys,k}, (µs,A)) is the unnormalized GF den-
sity with normalizing constant cs , fs(·|µs,A) is a multivariate Gaussian density and the Ja-
cobian term Js({ys,k}, (µs,A)) is computed below.

For the construction of a GFF, similar to a BF, the identifiability of the matrix A in a
data-generating equation of the form in (3) is superfluous because we are not interested in
inference on the parameters of this model. The utility of defining (3) as the data-generating
equation for multivariate Gaussian data is that it is unnecessary to add any constraints to the
A matrix to guarantee that AAT is symmetric and nonnegative definite (i.e., a covariance
matrix) so that Ys,k ∼ N(µs,AAT ) is well defined. Not needing to impose constraints on the
A matrix makes derivation of the gradient ∇(µs,A)G uncomplicated, and it avoids dealing with
problematic mixing conditions in Markov chain Monte Carlo (MCMC) computations (e.g.,
the same reason why it is common to perform MCMC on the transformation log(σ ) rather
than σ for some parameter σ > 0). Moreover, (3) is a well-studied choice of data-generating
equation for Gaussian linear models in the GF literature (see, e.g., Hannig et al. (2016), Shi
et al. (2021), Williams and Hannig (2019), Williams, Xie and Hannig (2019)), and so it is
most prudent to construct and study a first ever GFF using this data-generating equation.
Consequences on a GF distribution from constraining the matrix A (for concerns relating
to the identifiability of A, etc.) are an area of active research (see, e.g., Murph, Hannig and
Williams (2020)).

As in Shi et al. (2021), denote by w the vector of length mp obtained by stacking the
vectors ys,1, . . . , ys,m on top of each other. Applying definition (2) gives Js({ys,k}, (µs,A)),
where

∇(µs,A)G =





∂w1

∂(µs)1
· · · ∂w1

∂(µs)p

∂w1

∂A11

∂w1

∂A12
· · · ∂w1

∂App
∂w2

∂(µs)1
· · · ∂w2

∂(µs)p

∂w2

∂A11

∂w2

∂A12
· · · ∂w2

∂App
...

. . .
...

...
...

. . .
...

∂wmp

∂(µs)1
· · · ∂wmp

∂(µs)p

∂wmp

∂A11

∂wmp

∂A12
· · · ∂wmp

∂App





=





Ip Ip ⊗ z′
1

...
...

Ip Ip ⊗ z′
m



 .

Rearranging rows of ∇(µs,A)G and denoting Ũ := (z1, . . . , zm)′ simplifies the expression to

Js
({ys,k}, (µs,A)

) =
∣∣∣∣

(
Ip ⊗ 1′

m

Ip ⊗ Ũ ′
)(

Ip ⊗ 1m Ip ⊗ Ũ
)∣∣∣∣

1
2
m−p+p2

2

=
∣∣∣∣∣

(
Ip 0
0 Ip ⊗ A−1

)(
mIp Ip ⊗ 1′

mU
Ip ⊗ U ′1m Ip ⊗ U ′U

)(
Ip 0
0 Ip ⊗ (

A−1)′

)∣∣∣∣∣

1
2

× m−p+p2
2 ,

where 1m is an m × 1 vector of ones, and U := (ys,1 − µs, . . . , ys,m − µs)
′ so that Ũ =

U(A−1)′. Thus,

qs
(
µs,A|{ys,k}

) = (2π)−
mp
2

∣∣AA′∣∣−m+p
2 e− 1

2 tr(Ss(AA′)−1)

×
∣∣∣∣

(
mIp Ip ⊗ 1′

mU
Ip ⊗ U ′1m Ip ⊗ U ′U

)∣∣∣∣

1
2
m−p+p2

2 ,

where

(4) Ss :=
m∑

k=1

(ys,k − µs)(ys,k − µs)
′.



GENERALIZED FIDUCIAL FACTOR 383

3.2. GF distribution of alternative source data. For the glass fragments available in the
alternative sources, let mi denote the number of measurements of the log-transformed con-
centration of p elements for source (i.e., window pane) i ∈ {1, . . . , n}, where n is the total
number of sources contained in the alternative source data. Record the p measurements as a
column vector ya,i,k ∈ Rp for k ∈ {1, . . . ,mi} and i ∈ {1, . . . , n}. Then, consistent with the
specific source setup in the previous section, we assume that the data from each source in the
alternative source data set is generated from a multivariate Gaussian distribution (Zadora et al.
(2013)) with a unique mean vector µa + Bti , where µa ∈ Rp is a fixed effect, and Bti ∈ Rp

is a draw from a multivariate T random effect with τ degrees of freedom and positive-definite
covariance matrix BB ′ describing the variation in mean vectors over each source in the alter-
native source set. The heavy tails of the multivariate T distribution reflect the inherently large
variation that is observed in element composition exhibited by different panes of glass, while
the light tails of the multivariate Gaussian distribution reflect the relatively small variance in
element composition found in a single pane of glass.

Accordingly, for k ∈ {1, . . . ,mi} and i ∈ {1, . . . , n},
(5) Ya,i,k = µa + BTi + CVi,k,

where Vi,k ∼ Np(0, Ip), C is nonsingular and Ti ∼ Tτ (0, Ip). Consequently, the GF distribu-
tion of (µa,B,C) can be expressed as

ra
(
µa,B,C|{ya,i,k}

) := qa(µa,B,C|{ya,i,k})
ca

= 1
ca

∫
· · ·

∫
qa

(
µa,B,C, {ti}|{ya,i,k}

)
dt1 · · ·dtn

= 1
ca

∫
· · ·

∫
qa

(
µa,B,C|{ti}, {ya,i,k}

)
fT1(t1) · · ·fTn(tn) dt1 · · ·dtn,

where qa(µa,B,C|{ti}, {ya,i,k}) = fa({ya,i,k}|µa,B,C, {ti}) · Ja({ya,i,k}, (µa,B,C)) is the
unnormalized GF density with normalizing constant ca and fa(·|µa,B,C, {ti}) is a multi-
variate Gaussian density. To compute the Jacobian term, as in the specific source derivation,
let w := (y′

a,1,1, . . . , y
′
a,1,m1

, . . . , y′
a,n,1, . . . , y

′
a,n,mn

)′, denote N := ∑n
i=1 mi and apply defi-

nition (2), which gives Ja({ya,i,k}, (µa,B,C)), where

∇(µa,B,C)G =





Ip Ip ⊗ t ′1 Ip ⊗ v′
1,1

...
...

...
Ip Ip ⊗ t ′1 Ip ⊗ v′

1,m1
...

...
...

Ip Ip ⊗ t ′n Ip ⊗ v′
n,1

...
...

...
Ip Ip ⊗ t ′n Ip ⊗ v′

n,mn





.

Next, rearranging rows of ∇(µa,B,C)G gives

Ja
({ya,i,k}, (µa,B,C)

)

=
∣∣∣∣∣∣




Ip ⊗ 1′

N

Ip ⊗ W ′

Ip ⊗ Q̃′




(
Ip ⊗ 1N Ip ⊗ W Ip ⊗ Q̃

)
∣∣∣∣∣∣

1
2

N−p+2p2
2

=

∣∣∣∣∣∣∣




Ip 0 0
0 Ip2 0
0 0 Ip ⊗ (

CC′)−1








NIp Ip ⊗ 1′

NW Ip ⊗ 1′
NQ

Ip ⊗ W ′1N Ip ⊗ W ′W Ip ⊗ W ′Q
Ip ⊗ Q′1N Ip ⊗ Q′W Ip ⊗ Q′Q





∣∣∣∣∣∣∣

1
2

N−p+2p2
2 ,
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where

W :=




1m1 ⊗ t ′1

...
1mn ⊗ t ′n



 and Q̃ :=





v′
1,1
...

v′
1,m1
...

v′
n,1
...

v′
n,mn





=





(ya,1,1 − µa − Bt1)
′

...
(ya,1,m1 − µa − Bt1)

′
...

(ya,n,1 − µa − Btn)
′

...
(ya,n,mn − µa − Btn)

′





︸ ︷︷ ︸
=:Q

(C−1)′.

Thus,

qa
(
µa,B,C|{ti}, {ya,i,k}

)

= e− 1
2 tr(Sa(CC′)−1)

(2π)
pN

2 |CC′|N+p
2 N

p+2p2
2

∣∣∣∣∣∣




NIp Ip ⊗ 1′

NW Ip ⊗ 1′
NQ

Ip ⊗ W ′1N Ip ⊗ W ′W Ip ⊗ W ′Q
Ip ⊗ Q′1N Ip ⊗ Q′W Ip ⊗ Q′Q





∣∣∣∣∣∣

1
2

,

where

(6) Sa :=
n∑

i=1

mi∑

k=1

(ya,i,k − µa − Bti)(ya,i,k − µa − Bti)
′.

3.3. Generalized fiducial factor. With the GF densities constructed for the specific source
data in Section 3.1 and alternative source data in Section 3.2, it remains to construct the GFF
from them. A key distinction between a BF and a GFF results from the fact that a prior distri-
bution is necessarily independent of the data while the Jacobian term, which is the analogue
for the prior in GFI, is a function of the data. To illustrate this distinction, consider the data
yu,1, . . . , yu,mu ∈ Rp from an unknown source, as described in Section 2 (i.e., mu measure-
ments of the log-transformed concentration of p elements from glass fragments found on
the suspect for a crime). Let Ms and Ma denote the specific and alternative source mod-
els/training data, respectively, and for conciseness, let θs := (µs,A) corresponding to the
parameters for the specific source model (described in Section 3.1) and θa := (µa,B,C)

corresponding to the parameters for the alternative source model (described in Section 3.2).
Then, the BF, as expressed in Kass and Raftery (1995), is

(7) BF = π({yu,j }|Ms)

π({yu,j }|Ma)
=

∫
π(θs, {yu,j }|Ms)dθs∫
π(θa, {yu,j }|Ma)dθa

=
∫

fs({yu,j }|θs)πs(θs |{ys,k}) dθs∫
fa({yu,j }|θa)πa(θa|{ya,i,k}) dθa

.

In the case that improper prior densities are assigned for θs and θa , the BF in (7) is defined
in the sense of an intrinsic BF using reference priors, as in Berger and Pericchi (1996), with
{ys,k} and {ya,i,k} serving as training samples leading to proper posterior densities πs(·|{ys,k})
and πa(·|{ya,i,k}), respectively. Using reference priors is one strategy for dealing with the
arbitrary normalizing constant that appears in a BF constructed from improper priors (see
Berger et al. (2001) for a discussion on this problem). We define the GFF by analogy to equa-
tion (7), but note that the GFF has the advantage that the normalizing constant is determined
by the data-generating equation, and is thus not arbitrary. It is demonstrated by Theorem 4 in
Hannig et al. (2016) that the ratio of normalizing constants from GF densities are meaningful
for model selection.
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The GF densities rs(·|{ys,k}) and ra(·|{ya,i,k}) are proper density functions and share simi-
lar large-sample properties as posterior density functions in the sense of Bernstein-von Mises
type theory. Hence, by analogy, we define

(8) GFF :=
∫

fs({yu,j }|θs) · rs(θs |{ys,k}) dθs∫
fa({yu,j }|θa) · ra(θa|{ya,i,k}) dθa

.

In the remaining sections of this paper, we demonstrate empirically that the defined GFF both
has practical utility for the identification of source problem and overcomes limitations of the
BF and LR approaches.

3.4. Remarks on computation. In this section we describe our approach to compute the
GFF defined in (8) from actual data. Applying the derivations of the GF distributions from
Sections 3.1 and 3.2 directly into (8) gives

GFF

=
∫ ∫

fs({yu,l}|µs,A) · rs(µs,A|{ys,k}) dµs dA

ET1,...,Tn+1(
∫ ∫ ∫

fa({yu,l}|µ,B,C,Tn+1) · 1
ca

qa(µa,B,C|{Ti}, {ya,i,k}) dµa dB dC)
.

The numerator is the expected value of fs({yu,l}|µs,A) (i.e., the specific source likelihood
evaluated for the unknown source data) with respect to the GF density for the specific
source model. Accordingly, a natural estimate for this expected value is the average value
of fs({yu,l}|µs,A) over a GF sample of the parameters µs and A. We thus construct a ran-
dom walk Metropolis–Hastings MCMC algorithm to estimate a GF sample of µs and A.

The denominator is computationally much more difficult to deal with, due to the expec-
tation over the random effect components T1, . . . , Tn+1. We have experimented with various
strategies for importance sampling over all T1, . . . , Tn+1, but these samples result in very
poor mixing within the MCMC algorithm to estimate the GF distribution of µa , B , and C. A
prohibitively large number of importance samples of the {Ti} are needed to properly identify
BB ′ and CC′. Accordingly, we construct the following point approximations for the unob-
served random effects.

First, construct the statistics

µ̂a := 1
N

n∑

i=1

mi∑

k=1

ya,i,k,

B̂B̂ ′ := τ − 2
τ

· 1
n − 1

n∑

i=1

(ȳa,i,· − µ̂a)(ȳa,i,· − µ̂a)
′,

ĈĈ′ := 1
N − 1

n∑

i=1

mi∑

k=1

(ya,i,k − ȳa,i,·)(ya,i,k − ȳa,i,·)′,

(9)

where ȳa,i,· := 1
mi

∑mi
k=1 ȳa,i,k for each i ∈ {1, . . . , n} and B̂ and Ĉ are triangular Cholesky

decomposition factors. Substituting these statistics into data-generating equation (5) yields
the repeated observations regression model, Ya,i,k − µ̂a = B̂ti + ĈVi,k , for k ∈ {1, . . . ,mi}
and i ∈ {1, . . . , n}, where t1, . . . , tn are the realized but unobserved values of the random
effects coefficients that generated the data. Averaging over each measurement k and rescaling
the systems of equations gives the Gauss–Markov model

(
ĈĈ′)− 1

2 (Ȳa,i,· − µ̂a) = (
ĈĈ′)− 1

2 B̂ti + (
ĈĈ′)− 1

2 Ĉ

(
1
mi

mi∑

k=1

Vi,k

)

,
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with the resulting least squares solution t̂i := (B̂ ′(ĈĈ′)−1B̂)−1B̂ ′(ĈĈ′)−1(ȳa,i,· − µ̂a) for
every source i ∈ {1, . . . , n} in the alternative source data set.

Using {̂ti}, we estimate the GFF as

GFF =
∫ ∫

fs({yu,l}|µs,A) · rs(µs,A|{ys,k}) dµs dA
∫ ∫ ∫

ETn+1(fa({yu,l}|µ,B,C,Tn+1)) · 1
ca

qa(µa,B,C|{̂ti}, {ya,i,k}) dµa dB dC
,

where the expectation ETn+1(·) is estimated by evaluating the average of the integrand over
some large number of importance samples of Tn+1 ∼ T5(0, Ip).

The computation of the ratio of marginal densities, such as a BF or the GFF, is a difficult
endeavor and a well-explored topic in the literature (DiCiccio et al. (1997), Gelman and Meng
(1998), Meng and Wong (1996)). Other popular approaches include importance, bridge and
path sampling (Gelman and Meng (1998)), but we find that these methods, nonetheless, tend
to require a fair amount of finesse and tailoring to a given data model. The remaining sections
of this paper serve to evaluate the empirical performance of our proposed GFF and to illustrate
shortcomings in the BF and LR. The real data are described next.

3.5. NFI casework data. The glass fragment data set that we investigate (van Es et al.
(2017)) was kindly supplied by the NFI, but the NFI was not further involved in this re-
search. Currently, these data are not publicly available but are available on request by email-
ing p.zoon@nfi.nl.

The data set consists of fragments from 979 unique windows from crime scenes span-
ning approximately 10 years of casework (van Es et al. (2017)). Of the 979 sources, 659
are designated as training data and the remaining 320 as calibration data. Measurements of
the log-transformed concentration of 18 elements for three fragments are recorded for the
glass corresponding to each crime scene window in the training data, for a total of 3 × 659
measurements. Measurements of the 18 elements for five fragments for each window in the
calibration data are recorded, for a total of 5 × 320 measurements. As discussed in van Es
et al. (2017), a meaningful subset of 10 of the 18 elements is considered. Further details of
these data are documented in van Es et al. (2017).

In the context of our formulation, the training data corresponds to the alternative source
data. We then separate the first three measurements of each source in the calibration data
set to denote a set of specific source data (each set corresponding to one unique window as
the specific source) and leave the remaining two measurements to comprise sets of unknown
source data. Accordingly, we have 320 observed instances in which the unknown source is
the specific source (i.e., the prosecution hypothesis, Hp) and 320 × 319 observed instances
in which the unknown source is not the specific source (i.e., the defense hypothesis, Hd ). We
study our methods by simulating over these data and evaluating the performance of the GFF
we construct, compared to the truth and compared to the BF and LR.

4. Empirical results. In the empirical analysis that follows, we first demonstrate that all
three methods (GFF, BF and LR) perform well on fully synthetic data simulated from the
data-generation equations (3) and (5) when there are many specific and unknown source data
measurements available. Next, we illustrate the performance of all three methods in a similar
simulation design but with only three glass fragment measurements in the specific source
data sets, and two in the unknown source data sets. This second simulation design allows us
to exhibit the behavior of the GFF, BF, and LR using data generation equations (3) and (5),
but with sample sizes the same as in the real NFI data. Lastly, to assess performance using
the real data we show the results of a simulation design that simply samples data sets from
the real NFI data.
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TABLE 1
Sample standard deviation (rounded to five decimal places) of each element over all 3 × 659 measurements in

the NFI training data set. The data vector for each element was first rescaled to have unit Euclidean norm

Element Ti49 Sr88 K39 Zr90 Mn55 Ba137 Ce140 La139 Pb208 Rb85

st dev 0.00000 0.00001 0.00001 0.00001 0.00001 0.00002 0.00006 0.00007 0.00012 0.00013

Preprocessing of the data is described next, followed by a summary of each of the three
simulation designs. The results are presented and discussed in the subsections that remain.
The implementation of the BF follows, as described in Ommen, Saunders and Neumann
(2017) and Ommen and Saunders (2019) (see their specific source formulation). The LR is
defined in Chapter 7.2 of Ommen (2017) and uses plug-in MLEs of the parameter values
under each hypothesis. For reference, the exact details of the BF and LR are presented in the
Appendix.

A limitation of the NFI casework data is that each specific source consists of only
three measurements of the glass fragments, making it difficult to obtain very reliable esti-
mates of the specific source parameters, µs and A, regardless of the statistical framework
(i.e., Bayesian, frequentist, or GF). Since each of the three measurements records the log-
transformed concentration of 10 elements (down from the original 18, as in van Es et al.
(2017)) with so few measurements, this is, in fact, a relatively high-dimensional inference
problem. Moreover, since the unknown source data consists only of two measurements, con-
sistent with a sure independence screening strategy (Fan and Lv (2008)), in our analysis
we reduce the dimension of the measurements to reflect only the two elements (i.e., p = 2)
that exhibit the largest variation (after being rescaled to have unit norm) over all sources
(i.e., window panes) and glass fragment measurements in the alternative source data set
(3 × 659 measurements in total). Table 1 presents the variance observed for the rescaled,
log-transformed concentrations of each of the 10 elements from which we select elements
“Pb208” and “Rb85.”

In the first simulation design we generate n = 659 alternative sources of data from (5)
with mi = 3 measurements for each source. The values of µa , B and C, used to generate
the data, are computed from the real NFI alternative source data via the equations in (9).
Next, 320 specific source data sets are generated from (3), each with m = 150 measurements.
Each of the 320 specific source data sets are generated from unique values of µs and A, each
corresponding to a particular source of the 320 specific sources in the real NFI data set and
computed as

µ̂s := 1
m

m∑

k=1

ys,k,

ÂÂ′ := 1
m − 1

m∑

k=1

(ys,k − µ̂s)(ys,k − µ̂s)
′.

To simulate Hp true and Hd true events, respectively, we must generate additional data
with unknown sources. For Hp true, an additional mu = 2 measurements for each of the 320
specific sources are generated from (3), using the respective, previously computed values of
µs and A. For Hd true, an additional 3000 sets of mu = 2 measurements are generated, the
same as the alternative sources of data. Accordingly, 320 simulated GFF, BF and LR values
for Hp true are computed using the 320 pairs of unknown and specific source data sets, and
3000 simulated GFF, BF and LR values for Hd true are computed using 3000 nonassociated
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pairs of unknown and specific source data sets (the specific sources are randomly selected
from among the 320 for each of the 3000 unknown sources).

While we could have generated only one data set of n = 659 alternative sources of data
and one set of 320 specific sources of data, to account for variation in these sources a new
set is generated for each of the 3320 simulated events. The LR crashed for one of the 3000
simulated Hd true events, so for comparison sake, we omit the data associated with this
random number generator seed for all three simulation designs (i.e., all simulation designs
have data for 2999 data sets for Hd true). We describe this simulation design as having ideal
sample sizes because m = 150 whereas m = 3 for the real NFI data. This difference has a
particularly significant effect on the stability of the LR, as will be seen in the two simulation
designs that follow; see the results in Section 4.1.

This second simulation design is the same as the first, with the modification being that the
specific sources each contain only m = 3 measurements, as is the case for the real NFI data
set. Thus, this simulation is designed to observe the performance of the GFF, BF and LR on
synthetic data that most closely resembles the real NFI data; see the results in Section 4.2.

The third simulation design uses the measurement values from real NFI data set. Recall
from Section 3.5 that, for each of the 320 specific sources (each containing m = 3 measure-
ments), there are an associated two held out measurements. With these 320 sets of mu = 2
measurements, each serving as unknown sources, we are able to simulate 320 Hp true events
and 320 × 319 Hd true events. For comparison with the first and second simulation designs,
however, we only sample a random subset of 3000 of the 320 × 319 Hd true events; see the
results in Section 4.3.

4.1. Simulation 1: Fully synthetic data with ideal sample sizes. First, Figure 1 presents
a box plot of the performance of the GFF, BF, and LR over the 3000 simulations under Hd

and 320 simulations under Hp . The BF is evaluated for three different prior specifications:
a prior that favors the prosecution hypothesis, denoted “BF_p prior.” a prior that favors the
defense hypothesis, denoted “BF_d prior,” and an “oracle” prior centered on the parameter
values used to generate the synthetic data, denoted “BF_o prior.” Note that the parameter

FIG. 1. Box plots of the sampling distributions of the GFF, BF and LR over the 3000 simulations under Hd (left
panel) and 320 simulations under Hp (right panel). For this synthetic “ideal sample size” simulation, mu = 2,
m = 150, n = 659 and mi = 3. BF_p prior denotes the BF constructed from priors that favor Hp , whereas BF_d
prior denotes the BF constructed from priors that favor Hd . The shaded regions in each panel correspond to
values of the GFF, BF and LR that favor the true hypothesis. Outliers are omitted.
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values used to generate the synthetic data are defined from empirical analogues calculated
from the real data; the precise details for each of these prior specifications is provided in the
Appendix.

Figure 1 demonstrates that all five methods perform as reasonably desired in this ideal size
synthetic data simulation (i.e., their sampling distributions favor the true hypothesis in under
either scenario). Note that the arguably inconsequential difference in the performance of the
BF_p prior vs. BF_d prior is a result of the unrealistically ideal sample sizes of this synthetic
simulation design. The next simulation design illustrates this point.

Second, the fiducial distributions of the area under the receiver operating characteristic
curve (AUC) for the GFF, BF and LR are displayed in Figure 2. The AUC measures the
adequacy of each of the five methods for accurately discriminating between Hp and Hd ,
and the observed AUC values reflect an important feature observed in the distributions of
the GFF, BF and LR values in Figure 1. There is almost no overlap in the observed GFF,
BF_p prior and BF_d prior values, respectively, for Hd true vs. Hp true, which means there
exist an effective threshold for discriminating between these two hypotheses for each of these
methods. Hence, the AUC values are clustered very close to the boundary at one in Figure 2.
However, the LR values exhibit some overlap in tail values between Hd true vs. Hp true, and
so the LR AUC values reflect this loss of discriminating ability, though not a dramatic loss in
this ideal sized simulation design.

Next, a meaningful notion for assessing the performance of ratio quantities such as the
GFF, BF and LR is to determine whether they are well calibrated to the values they exhibit.
For example, an LR value of 3 has the interpretation that it is three times as likely to observe
the evidence when Hp is true than when Hd is true. For this interpretation to be meaningful,
for every instance that we observe an LR of 3 when Hd is true we should observe three
instances of an LR of 3 when Hp is true. As described in Hannig and Iyer (2022), a shorthand
for this notion of calibration is the the expression “LR(LR) = LR.”

We follow the method in Hannig and Iyer (2022) for estimating the calibration of the 3000
simulations under Hd and 320 simulations under Hp , for GFF, BF and LR; see Figure 3
for the estimated calibrations, and observe that the GFF is the best calibrated of the five
methods. Note that these ratio quantities can yield very poorly calibrated values while still
being effective at discriminating between hypotheses, as seen for the LR, BF_p prior and the
BF_d prior. The consequence of poor calibration is a misrepresentation, often an exaggeration

FIG. 2. Fiducial distributions of the AUC for the GFF, BF and LR over the 3000 simulations under Hd and 320
simulations under Hp . For this “ideal sample size” simulation, mu = 2, m = 150, n = 659 and mi = 3.



390 J. P. WILLIAMS, D. M. OMMEN AND J. HANNIG

FIG. 3. Calibration for the GFF, BF and LR over the 3000 simulations under Hd and 320 simulations under
Hp . The horizontal dashed line at zero corresponds to perfect calibration (i.e., LR(LR) = LR). The dotted grey line
is the fiducial median log discrepancy. The solid black and dot-dashed lines are upper and lower 0.95 pointwise
and simultaneous fiducial confidence intervals, respectively, for the log discrepancy. For this “ideal sample size”
simulation, mu = 2, m = 150, n = 659, and mi = 3.
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of the strength of evidence supporting the respective hypotheses. In the context of forensic
identification of source problems, such misrepresentation can lead to the false conclusion that
the evidence in favor of a particular hypothesis is overwhelming or beyond any doubt. Thus,
the implication of a lack of calibration cannot be overstated.

Note that the calibration plots are constructed in Hannig and Iyer (2022), and they apply
to any likelihood ratios (i.e., BF, GFF and LR). The calibration discrepancy is based on the
fiducial distributions of the empirical distribution functions (for further details on these, see
Cui and Hannig (2019)) of the likelihood ratios. The fiducial median log discrepancy is the
median of the fiducial samples of the calibration discrepancy. These fiducial samples are not
to be confused with the fiducial distributions that underly the GFF.

We conclude this section by presenting an alternative calibration analysis described in
Ramos and Gonzalez-Rodriguez (2008); see Figure 4. It is again observed that the GFF values

FIG. 4. Empirical cross entropy for the GFF, BF and LR over the 3000 simulations under Hd and 320 simu-
lations under Hp . This calibration diagnostic tool is proposed in Ramos and Gonzalez-Rodriguez (2008). Good
calibration is exhibited when the red line is nested between the blue and black lines and as close as possible the
blue. The code from Ramos and Gonzalez-Rodriguez (2008) crashed for the LR, and for all subsequent simulation
designs. For this “ideal sample size” simulation, mu = 2, m = 150, n = 659 and mi = 3.
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FIG. 5. Box plots of the sampling distributions of the GFF, BF and LR over the 3000 simulations under Hd

(left panel) and 320 simulations under Hp (right panel). For this synthetic “NFI casework data sample sizes”
simulation, mu = 2, m = 3, n = 659 and mi = 3. BF_p prior denotes the BF constructed from priors that favor
Hp , whereas BF_d prior denotes the BF constructed from priors that favor Hd . The shaded regions in each panel
correspond to values of the GFF, BF and LR that favor the true hypothesis. Outliers are omitted.

are the best calibrated. Unfortunately, the code (Lucy (2013)) for this calibration analysis
only worked for the GFF, BF_p prior and BF_d prior values in this ideal size synthetic data
simulation, and so similar figures are not available for the two simulation designs that follow.

4.2. Simulation 2: Fully synthetic data with NFI data sample sizes. The sampling dis-
tributions are displayed in Figure 5. A first observation is that the LR tends to favor Hp in
both scenarios, and, as noted for the previous simulation design, this results from an unstable
MLE of the specific source parameters with m = 3. Referring back to the LR construction in
equation (13), the instability stems from the evaluation of fs({ys,k}|θ̂s) in the denominator.

The next feature to observe in Figure 5 is that the strength of evidence for Hd is char-
acterized by the BF_p prior. An order of magnitude smaller than by the BF_d prior, in the
Hd true scenario. These prosecution and defense priors were constructed to reflect extreme
beliefs and to demonstrate that any values between the BF_p prior and BF_d prior values
can reasonably result from the prior specification. The Hp true scenario is even more prob-
lematic because the BF_p prior and the BF_d prior tend to favor opposite hypotheses. This
consequence of subjectivist Bayesian prior choice for forensic identification of source prob-
lems, as illustrated in Figure 5, is exceedingly problematic because it demonstrates that the
strength of evidence for or against a hypothesis is heavily influenced by the competing prior
beliefs (prosecution vs. defense) for or against the hypothesis, even to the point where the
BF entirely favors the wrong hypothesis. Conversely, it is observed in Figure 5 that the GFF
values tend to favor the true hypothesis in each scenario. Moreover, the GFF values do not
suffer from the instability exhibited by the LR values. These important features illustrated
in Figure 5 are further supported by the discrimination and calibration analyses presented in
Figures 6 and 7, respectively.

As alluded to in the discussion for the previous simulation design, even if the values of
the GFF, BF or LR do not tend to be associated with the true hypothesis, it is still possible
that these methods are effective at correctly discriminating between Hd and Hp . The most
notable of these five methods is BF_d prior values, as displayed in Figure 5. There is a clear
distinction between the distribution of BF_d prior values under Hd vs. Hp , even though both
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FIG. 6. Fiducial distributions of the AUC for the GFF, BF and LR over the 3000 simulations under Hd and 320
simulations under Hp . For this synthetic “NFI casework data sample sizes” simulation, mu = 2, m = 3, n = 659
and mi = 3.

distributions tend to exhibit values associated with Hd true. The distinction between the BF_d
prior values for the two hypotheses is characterized by the fiducial AUC distributions shown
in Figure 6 (along with that for the other three methods as well). Notice that, in Figure 6 as
well as Figure 9 for the real NFI data, the BF values exhibit improved discrimination over
the GFF values due to the fact that the BF values are characterized by a larger magnitude of
separation for the competing hypotheses. However, such a large magnitude of separation of
these values that results in improved discrimination comes at the cost of deteriorated calibra-
tion, as demonstrated in Figures 7 and 10 (in fact, the calibration software crashed for the
BF_d prior in this simulation design). The LR suffers in its ability to discriminate, due to the
issues with numerical instability for sample sizes so small, as described at the beginning of
this section and illustrated in Figure 5.

While in this “actual sample size” simulation design, the GFF and BF_p prior methods
tend to exhibit values associated with the correct hypothesis (i.e., Figure 5) and are effective
at discriminating between Hd and Hp (i.e., Figure 6), there is still a danger that they are not
calibrated to appropriately reflect the strength of evidence that their values suggest. Figure 7
presents the calibration analysis for the GFF, BF_p prior, and LR values. Note that the cal-
ibration for the BF_d prior values is missing; the values are very poorly calibrated, and so
the calibration softwares crashed. Furthermore, Figure 7 suggests that the LR and BF_p prior
values are also poorly calibrated. The GFF values are much better and, in fact, reasonably
well calibrated in light of the very small sample sizes that characterize this simulation design
and the real NFI casework data.

4.3. Simulation 3: Real NFI casework data. Once again, the resulting sampling distri-
butions of the methods are presented as box plots in Figure 8. The fiducial distributions of
the AUC to assess discrimination effectiveness between the hypotheses are presented in Fig-
ure 9, and the calibration analysis is displayed in Figure 10 and 11. Four instances out of the
3320 simulations corresponding to one extreme outlier window (of the 320 specific/unknown
source windows) have been removed from the analysis in Figure 10; for comparison, the full
3320 simulations are shown in Figure 11.

What is most noteworthy about the results of this simulation design is that they are largely
unchanged from those of the synthetic simulation design with matching sample sizes. This
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FIG. 7. Calibration for the GFF, BF and LR over the 3000 simulations under Hd and 320 simulations under
Hp . The horizontal dashed line at zero corresponds to perfect calibration (i.e., LR(LR) = LR). The dotted grey line
is the fiducial median log discrepancy. The solid black and dot-dashed lines are upper and lower 0.95 pointwise
and simultaneous fiducial confidence intervals, respectively, for the log discrepancy. For this “NFI casework data
sample sizes” simulation, mu = 2, m = 3, n = 659 and mi = 3.

suggests that the assumed data-generating models are reasonable approximations to this real
casework data, with respect to quantifying the evidence in favor of the competing hypotheses,
Hd and Hp . Likewise, the LR and BF exhibit the same deficiencies that they did with the
synthetic data. The GFF tends to less extreme values than it did for the synthetic data, most
noticeably for the Hd true scenario, but nonetheless, the calibration of the values suggests that
the GFF is relatively well calibrated (aside from the four simulations due to the one outlier
window).

In forensic identification of source applications and particularly for those that rely on such
small sample sizes, it is very important that the inferential methods being used are appro-
priately calibrated to reflect the strength of evidence provided by the data. Accordingly, for
small sample sizes (m = 3 and mu = 2, in this case) practitioners should be very skeptical of
any tool that conveys extreme confidence in favor of either of the competing hypothesis.
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FIG. 8. Box plots of the sampling distributions of the GFF, BF and LR over the 3000 simulations under Hd

(left panel) and 320 simulations under Hp (right panel). For this “real NFI casework data” simulation, mu = 2,
m = 3, n = 659 and mi = 3. BF_p prior denotes the BF constructed from priors that favor Hp , whereas BF_d
prior denotes the BF constructed from priors that favor Hd . The shaded regions in each panel correspond to
values of the GFF, BF and LR that favor the true hypothesis. Outliers are omitted.

5. Concluding remarks. The motivations for this research and the writing of this
manuscript are multifaceted. The use of the BF or LR in the context of forensic identification
of source applications is problematic. Given the high stakes nature of such applications in
criminal justice systems around the world, the statistics community must take responsibility
for both communicating the dangerous shortcomings of these methods that are in widespread
use and for developing new methods that overcome such shortcomings.

In regards to the BF, the entire notion of “reasonableness” has no meaning in the context
of subjectivist Bayesian prior specification/choice, especially in an adversarial scenario (e.g.,
prosecution vs. defense). Furthermore, while we observed the BF to be effective at discrim-
inating between Hd and Hp , the BF values were highly influenced by the choice of prior,

FIG. 9. Fiducial distributions of the AUC for the GFF, BF and LR over the 3000 simulations under Hd and 320
simulations under Hp . For this “real NFI casework data” simulation, mu = 2, m = 3, n = 659 and mi = 3.
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FIG. 10. Calibration for the GFF, BF and LR over the 3000 simulations under Hd and 320 simulations under
Hp . The horizontal dashed line at zero corresponds to perfect calibration (i.e., LR(LR) = LR). The dotted grey line
is the fiducial median log discrepancy. The solid black and dot-dashed lines are upper and lower 0.95 pointwise
and simultaneous fiducial confidence intervals, respectively, for the log discrepancy. For this “real NFI casework
data” simulation, mu = 2, m = 3, n = 659 and mi = 3. Four outliers have been removed to produce these plots.
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FIG. 11. Calibration for the GFF, BF and LR over the 3000 simulations under Hd and 320 simulations under
Hp . The horizontal dashed line at zero corresponds to perfect calibration (i.e., LR(LR) = LR). The dotted grey line
is the fiducial median log discrepancy. The solid black and dot-dashed lines are upper and lower 0.95 pointwise
and simultaneous fiducial confidence intervals, respectively, for the log discrepancy. For this “real NFI casework
data” simulation, mu = 2, m = 3, n = 659 and mi = 3. No outliers have been removed to produce these plots.
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and they were not calibrated to represent the strength of evidence they appeared to convey. In
regards to the LR, ratios of likelihood functions, evaluated at MLEs, computed from exces-
sively small data sets are very unstable, the LR values fell short in their ability to discriminate
between Hd and Hp , and they were poorly calibrated. We have provided evidence to demon-
strate these assertions empirically and on real casework data, and we have constructed and
evaluated a GFF as an alternative methodological approach and tool that does not suffer from
the demonstrated deficiencies in the BF and LR. Moreover, there is an argument to be made
that the shortcomings in the BF approach can be remedied via the construction of objective
priors (however, that is to be defined). To this point, in reference to equation (1), the GFF
can be interpreted precisely as a BF arising from a particular choice of objective, data-driven
priors.

Lastly, while it is beyond the scope of our current investigation, an obvious next step is the
development of a GFF (and fiducial factors, more broadly) from a formal decision theoretic
perspective. Compelling ideas for fiducial decision theory were introduced in the seminal
paper Taraldsen and Lindqvist (2013). Developments since then are contributed and sum-
marized in the recent preprints (and references therein) Taraldsen and Lindqvist (2021) and
Martin (2021), the latter within the inferential models framework (Martin and Liu (2016)).

APPENDIX

In this section the details of the BF and LR specification and computations are given.
These details for the BF are as in Ommen, Saunders and Neumann (2017), Ommen and
Saunders (2019). Assuming the posterior distributions of θs and θa are independent, the BF
from equation (7) is expressed as

BF =
∫ ∫

fs({yu,j }|θs) · πs(θs |{ys,k}) · πa(θa|{ya,i,k}) dθs dθa∫ ∫
fa({yu,j }|θa) · πs(θs |{ys,k}) · πa(θa|{ya,i,k}) dθs dθa

=
∫ ∫

fs({yu,j }|θs)

fa({yu,j }|θa)
· πd

(
θs, θa|{ys,k}, {ya,i,k, yu,j }

)
dθs dθa,

(10)

where

πd
(
θs, θa|{ys,k}, {ya,i,k, yu,j }

) := fa({yu,j }|θa) · πs(θs |{ys,k}) · πa(θa|{ya,i,k})∫ ∫
fa({yu,j }|θa) · πs(θs |{ys,k}) · πa(θa|{ya,i,k}) dθs dθa

is the posterior distribution of (θs, θa) under the defense hypothesis that the unknown source
data are generated from the alternative source and is constructed after including the unknown
source data as part of the alternative source dataset. Note that this is simply a method for
computing the BF, and it does not favor one hypothesis over another.

The random effects term in (5) is assumed to follow a multivariate Gaussian distribution
in Ommen, Saunders and Neumann (2017), and they construct the following conjugate priors
for the various parameters:

µs ∼ Np(µπ ,'b),

AA′ ∼ inv-Wishartp('e,νe),

µa ∼ Np(µπ , k'b),

BB ′ ∼ inv-Wishartp('b,νb),

CC′ ∼ inv-Wishartp('e,νe),

(11)

where k is some scalar. Particularly with small samples sizes for the observed specific and
unknown source data, even small variations in the data can lead to numerically unreliable BF
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values, especially due to the light tails of the Gaussian likelihood function. Accordingly, from
these priors it follows that it is most consistent with a belief in the prosecution hypothesis
to set as diffuse as possible the specific source priors so that the unknown source data is as
consistent as possible with the specific source posterior distribution. This is done by choosing
large components for 'b for the prior on µs and small degrees of freedom parameter νe for
the prior on AA′. Conversely, it is most consistent with a belief in the defense hypothesis
to choose small components for 'b and a large νe so as to make the unknown source data
appear as distinct as possible from the specific source posterior distribution. In our simulation
studies throughout Section 4, the prosecution, oracle and defense priors are specified as

µπ =
{
(1,1)′ for BF_p and BF_d prior specification,

(0.6322523,0.6265417)′ for BF_o prior specification,

'b =






1000 ·
(

0.13 0.03
0.03 0.13

)

for BF_p prior specification,

(
0.07615601 0.02221717
0.02221717 0.08497993

)

for BF_o prior specification,

0.1 ·
(

0.13 0.03
0.03 0.13

)

for BF_d prior specification,

'e =






(
4.5 · 10−4 5 · 10−5

5 · 10−5 4.5 · 10−4

)

for BF_p and BF_d prior specification,

(
8.954729 · 10−4 4.636142 · 10−5

4.636142 · 10−5 5.302711 · 10−4

)

for BF_o prior specification,

νe =






5 for BF_p prior specification,

27 for BF_o prior specification,

100 for BF_d prior specification,

and νb = 27 and k = 10 for all prior specifications. These BF_p and BF_d prior specifications
are prescribed in Ommen, Saunders and Neumann (2017) (and the accompanying code). The
BF_o prior specifications are set as µπ = µ̂a , 'b = B̂B̂ ′ and 'e = ĈĈ′, as in (9) using the
alternative source data set. These values for µ̂a , B̂ and Ĉ are used to generate the synthetic
data in our simulation studies.

Recall from the computational expression of the BF in (10), the unknown source data is
appended to the alternative source data. With the updated {ya,i,k} = {ya,i,k, yu,j } and denoting
mn+1 := mu, the conditional posteriors resulting from the priors in (11) are

µs |{ys,k},AA′ ∼ Np
(
M−1L,M−1)

,

AA′|{ys,k},µs ∼ inv-Wishartp(Ss + 'e,νe + m),

µa|{ya,i,k},BB ′,CC′ ∼ Np
(
Q−1R,Q−1)

,

CVi,k|CC′ ∼ Np
(
0,CC′),

BB ′|{ya,i,k}, {CVi,k},µa ∼ inv-Wishartp(Sv + 'b,N + mn+1 + νb),

BTi |BB ′ ∼ Np
(
0,BB ′),

CC′|{ya,i,k}, {BTi},µa ∼ inv-Wishartp(Sa + 'e,N + mn+1 + νe),

(12)
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where Ss is defined in (4), Sa is defined in (6) with an additional mn+1 terms corresponding
to the {yu,j } components and

M := m
(
AA′)−1 + '−1

b ,

L := m
(
AA′)−1

ȳs,· + '−1
b µπ ,

Q := (N + mn+1)
(
BB ′ + CC′)−1 + (k'b)

−1,

R := (N + mn+1)
(
BB ′ + CC′)−1

ȳa,·,· + (k'b)
−1µπ ,

Sv :=
n+1∑

i=1

mi∑

k=1

(ya,i,k − µa − CVi,k)(ya,i,k − µa − CVi,k)
′.

To compute the joint posterior distribution of all the model parameters, we wrote a custom
Gibbs sampler that iterates according to the updates enumerated in (12). This code is available
in our Supplementary Material (Williams, Ommen and Hannig (2023), also available at https:
//jonathanpw.github.io/research.html).

The LR is constructed, from Chapter 7.2 of Ommen (2017), as

(13) LR := fs({yu,j }|θ̂ )
s ) · fs({ys,k}|θ̂ )

s ) · fa({ya,i,k}|θ̂a)

fa({yu,j }|θ̂ )
a ) · fs({ys,k}|θ̂s) · fa({ya,i,k}|θ̂ )

a )
,

where θ̂ )
s is the MLE of the specific source parameters θs = {µs,AA′} from the pooled data

{ys,k, yu,j } based on the prosecution hypothesis, θ̂s is the MLE of θs from the data {ys,k}, θ̂ )
a

is the MLE of the alternative source parameters θa = {µa,BB ′,CC′} from the pooled data
{ya,i,k, yu,j } based on the defense hypothesis and θ̂a is the MLE of θa from the data {ya,i,k}.
The lme function from the nlme R package (Pinheiro et al. (2019)) is used to compute the
MLE for each of the parameters.

SUPPLEMENTARY MATERIAL

Time capsuled code (DOI: 10.1214/22-AOAS1632SUPP; .zip). This Supplementary Ma-
terial contains the code used to produce all of the results presented in this manuscript. The
glass fragment data set that we investigate (van Es et al. (2017)) was kindly supplied by
the NFI, but the NFI was not further involved in this research. Currently, these data are not
publicly available, but are available on request by emailing p.zoon@nfi.nl.
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