
Contents lists available at SciVerse ScienceDirect

Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference 142 (2012) 1980–1990
0378-37

doi:10.1

$ Ha

contribu
n Corr

E-m
1 Re
journal homepage: www.elsevier.com/locate/jspi
Fiducial prediction intervals$
C.M. Wang a,n, Jan Hannig b, Hari K. Iyer a,c,1

a Statistical Engineering Division, National Institute of Standards and Technology, Boulder, CO 80305, United States
b Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599, United States
c Department of Statistics, Colorado State University, Fort Collins, CO 80523, United States
a r t i c l e i n f o

Article history:

Received 3 June 2011

Received in revised form

11 October 2011

Accepted 11 February 2012
Available online 18 February 2012

Keywords:

Fiducial inference

Gamma distribution

Statistical intervals
58/$ - see front matter Published by Elsevier

016/j.jspi.2012.02.021

nnig and Iyer’s research was supported in p

tion of the National Institute of Standards a

esponding author.

ail address: jwang@boulder.nist.gov (C.M. Wa

search Information Fellow at Caterpillar Inc.
a b s t r a c t

This paper presents an approach for constructing prediction intervals for any given

distribution. The approach is based on the principle of fiducial inference. We use several

examples, including the normal, binomial, exponential, gamma, and Weibull distribu-

tions, to illustrate the proposed procedure.
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1. Introduction

Prediction intervals, used in many practical applications, are statistical intervals that contain, with a specific
probability, future realizations of a random variable from a distribution of interest. Hahn and Meeker (1991) provided a
summary of methods for constructing statistical intervals, which include prediction intervals, for the normal, binomial,
and Poisson distributions. Prediction intervals for the gamma distribution were considered by Hamada et al. (2004),
Bhaumik and Gibbons (2006), and Krishnamoorthy et al. (2008). For applications involving the Weibull distribution,
prediction intervals based on censored and uncensored data were proposed by Escobar and Meeker (1999), Nelson (2000),
Nordman and Meeker (2002), and Krishnamoorthy et al. (2009).

Methods for constructing prediction intervals described in the literature include the pivotal-based method for the
normal distribution, the approximate pivotal-based method for the gamma, and the simulation-based method for the
Weibull. Lawless and Fredette (2005) described a general method, called pivotal method, that can be used to construct
predictions intervals for a wide variety of problems. Let X and Y be random variables, representing the current and future
data, from a distribution indexed by a parameter y. Their approach is based on the random variable

U ¼ F ŷ ðYÞ, ð1Þ

where Fyð�Þ is the distribution function of X (and Y) and ŷ ¼ ŷðXÞ is the maximum likelihood estimator of y. Prediction
intervals for Y are obtained from the distribution function of U, GyðuÞ, which may or may not depend on y. If GyðuÞ is free of
y, i.e., U is a pivotal, the resulting prediction intervals are ‘‘exact’’. If GyðuÞ depends on y, prediction intervals are obtained
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from an approximate distribution such as Gŷ ðuÞ. In many applications, G(u) is intractable and needs to be approximated by
simulation. Lawless and Fredette (2005) also showed that their predictive distributions are optimal in certain settings and
illustrated the procedure with several examples.

In this paper we propose an alternative procedure for constructing prediction intervals for a variety of distributions. The
procedure is based on the fiducial method described by Hannig et al. (2006) and Hannig (2009a). The fiducial-based
methods have been used in other inference problems where classical methods do not lead to satisfactory procedures, for
example, see Iyer et al. (2004) and E et al. (2008). Recent research results (Hannig et al., 2006; Hannig, 2009a) and many
simulation studies show that fiducial inference is a valid statistical method with good operating characteristics.

The proposed fiducial method is similar to the pivotal method of Lawless and Fredette (2005) in the case of
independently and identically distributed (iid) data. In many problems, fiducial prediction intervals can be obtained from
the distribution function of

U%

¼ FRy ðYÞ, ð2Þ

where Ry is a function of observed data and random variables whose distributions are completely known and free of y.
Notice that the similarity between (1) and (2). We use an exponential-distribution example in Section 3 to illustrate this
similarity.

The rest of the paper is organized as follows. In the next section we describe the procedure for constructing prediction
intervals based on the fiducial inference approach. We show that under regularity conditions, fiducial prediction intervals have
asymptotically correct frequentist coverage. In Section 3 we use several examples, including the normal, binomial, exponential,
gamma, and Weibull distributions, as well as a simple linear regression, to illustrate the proposed procedure. For the Weibull
distribution, we consider only uncensored data in this paper. Summary remarks are provided in the final section.

2. The fiducial approach

In this section we describe a general procedure for constructing prediction intervals for future observations from a
population of arbitrary distribution. The procedure we propose is based on the fiducial method described by Hannig et al.
(2006) and Hannig (2009a).

We use a simple example throughout this section to illustrate the idea and procedure. Let X1 and X2 be a random
sample from Nðm,1Þ. Suppose, based on these two measurements, we desire a prediction interval on the mean of three
future observations from the same population. Let Yi, i¼ 1;2,3, be the random variables denoting the three future
observations from Nðm,1Þ. We represent the current and future data with the following models:

X1 ¼ mþE1, ð3Þ

X2 ¼ mþE2 ð4Þ

and

Yi ¼ mþE%

i , i¼ 1;2,3, ð5Þ

where E1, E2, and E%

i are independent Nð0;1Þ random errors.
The original fiducial recipe described in Hannig (2009a) is as follows. Let X 2 Rn be a random vector with a distribution

indexed by a parameter x 2 X. Assume that the data generating mechanism for X is expressed as

X ¼ Gðx,UÞ, ð6Þ

where G is a jointly measurable function and U is a random variable or vector with a completely known distribution
independent of any parameters. Eq. (6) is termed the structural equation. For the above example, Eqs. (3) and (4) are the
structural equations.

We define for any observed value x 2 Rn a set-valued function

Q ðx,uÞ ¼ fx : Gðx,uÞ ¼ xg: ð7Þ

Assume that Q ðx,uÞ is a measurable function of u. The function Q ðx,uÞ is an inverse image of the function G.
Let us now assume that a data set was generated using (6) and it has been observed that the sample value is x. Clearly,

the values of x and u used to generate the observed data will satisfy Gðx,uÞ 2 Rn. This leads to the following definition of a
generalized fiducial distribution for x:

Q ðx,U%

Þ9fQ ðx,U%

Þa|g, ð8Þ

where U% is an independent copy of U.
There are two possible issues with (8). First, Eq. (7) might not be a singleton, in which case we propose to randomly

select one of the elements of Q ðx,uÞ. Second, for many examples Pr½Q ðx, U%

Þa|� ¼ 0. In this case, Hannig (2009a) proposes a
way of interpreting the conditional distribution (8) that has been theoretically justified by Hannig (2009b).

For the above example, a fiducial distribution for m is the distribution of x1�E1 conditional on E1�E2 ¼ x1�x2, which is
Nðx,1=2Þ, where x1 and x2 are the realized values of X1 and X2, and x ¼ ðx1þx2Þ=2. This is obtained by solving for m in (3)
(inverse image), replacing X1 in the solution with x1, and plugging the solution into (4) for conditioning.
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The problem of prediction can be easily incorporated into this scenario by modifying the structural equation (6). Let us assume
that X ¼ ðXo, Xp

Þ, where Xo is observed and Xp is unobserved and needs to be predicted. The structural equation (6) for X is

ðXo, Xp
Þ ¼ ðGo

ðx,UÞ, Gp
ðx,UÞÞ: ð9Þ

Notice that the left-hand side of (9) has both observed values Xo and an unobserved quantity Xp that will be treated together
with x as the unknown parameters. Again U is a random variable with a fully known distribution independent of any parameters.

Following the generalized fiducial recipe above, the inverse image (7) becomes

Q ðxo,uÞ ¼ fðxp,xÞ : Go
ðx,uÞ ¼ xo, Gp

ðx,uÞ ¼ xpg

and the joint fiducial distribution on the parameters and the predicted values is given by

Q ðxo, U%

Þ9fQ ðxo,U%

Þa|g: ð10Þ

Define

Qp
ðxo,uÞ ¼ fxp : Go

ðx,uÞ ¼ xo, Gp
ðx,uÞ ¼ xp for some xg

and Qo
ðxo,uÞ ¼ fx : Go

ðx,uÞ ¼ xog. Notice that fu : Q ðxo,uÞa|g ¼ fu : Qo
ðxo,uÞa|g and therefore the condition in (10) is the

same as in the definition of the usual generalized fiducial distribution (8) ignoring the prediction part of the problem. The
predictive fiducial distribution of Xp is obtained by marginalizing (10) as

Qp
ðxo, U%

Þ9fQo
ðxo, U%

Þa|g: ð11Þ

If additionally, as in the case of iid data, the structural equation (9) factorizes to

Xo
¼ Go
ðx,Uo

Þ and Xp
¼ Gp
ðx,Up

Þ, ð12Þ

where Uo and Up are independent, then this recipe is equivalent to first deriving a generalized fiducial distribution from the
observed data

Qo
ðxo, Uo,%

Þ9fQo
ðxo,Uo,%

Þa|g ð13Þ

and then plugging it into the prediction part of the equation. In particular, denote a random variable having the same
distribution as the fiducial distribution of x by ~x. We call ~x a fiducial quantity of x. Then the predictive fiducial distribution
(11) in this situation simplifies to the distribution of

Xp
¼ Gp
ð ~x, Up,%

Þ,

where Up,% is a copy of Up independent of ~x. A simple algebra shows that in this case the density of the predictive
distribution becomesZ

X
f ðxp9xÞrðx9xoÞ dx,

where f ðxp9xÞ is the density of the predicted data and rðx9xoÞ is the fiducial density of (13).
For the above example, let ~m be the fiducial quantity, that is, ~m �Nðx, 1=2Þ. The predictive distribution (11) is then the

distribution of

~Y i ¼ ~mþE%

i : ð14Þ

That is, ~Y i is obtained from (5) by replacing m with its fiducial quantity ~m. Prediction limits for Yi are obtained from the
distribution of ~Y i. Specifically, a fiducial quantity for Y 3, the mean of Y1, Y2, and Y3, is obtained as

~Y 3 ¼
~Y 1þ

~Y 2þ
~Y 3

3
¼ ~mþ E%

1þE%

2þE%

3

3
: ð15Þ

Since ~m �Nðx, 1=2Þ, ~Y 3 is normally distributed with mean x and variance 5/6. A 95% two-sided prediction interval to
contain the mean of the three future observations is then given by

ðx�1:96
ffiffiffiffiffiffiffiffiffi
5=6

p
, xþ1:96

ffiffiffiffiffiffiffiffiffi
5=6

p
Þ: ð16Þ

This is exactly the prediction interval one would get using the frequentist approach.
In this simple example we were able to determine the prediction interval in (16) analytically. In many problems the

exact form of (11) cannot be obtained in closed form. In such cases, we will use Monte Carlo techniques to generate a
sample having the fiducial predictive distribution. The main idea is to first generate a random sample of U%

1, . . . ,U%

m from
the conditional distribution of

U%9fQo
ðxo, U%

Þa|g:

Then the random variables

Xp
i ¼ Gp

ðQo
ðxo,U%

i Þ, U%

i Þ, i¼ 1;2, . . . ,m

are a random sample from the predictive fiducial distribution of (11). Appropriate quantiles from this empirical
distribution can be used to compute prediction limits.
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2.1. Theoretical result

Theoretical properties of generalized fiducial inference for iid data has been studied in Hannig et al. (2006) and Hannig
(2009a,b). They prove that, under regularity conditions, confidence intervals based on the generalized fiducial distribution
(13) have asymptotically correct coverage. In particular, they prove a theorem similar to the Bernstein–von Mises theorem

for Bayesian posteriors, i.e., if x0 is the parameter used to generate Xo and Rx is random with the distribution given by (13),

then there is a random variable TðXo, x0Þ such that
ffiffiffi
n
p
ðRx�TðXo, x0ÞÞ�!

D
Nð0,SÞ and

ffiffiffi
n
p
ðTðXo, x0Þ�x0Þ�!

D
Nð0,SÞ as the

number of observed values n-1. This in particular means that the generalized fiducial distribution is consistent, Rx�!
P
x0.

We now show that if the generalized fiducial distribution is consistent, then the generalized fiducial predictive
distribution leads to prediction sets that have asymptotically correct coverage.

Theorem 1. Let us assume that the structural equation factorizes as in (12) with Gp
ðx,Up

Þ continuous in x at x0 for all Up and

such that the distribution of Gp
ðx0, Up

Þ is continuous. Further assume that the generalized fiducial distribution (13) is consistent.

Finally, assume that the prediction sets Cðx0Þ for future data are based on the fiducial predictive distribution (11) and have a

shape satisfying the Assumption 3 of Theorem 1 of Hannig (2009a), such as the equal tailed region or one sided interval. Then the

prediction set has asymptotically correct frequentist coverage.

Proof. Let Rx be a random variable with the distribution given by (13). By assumption Rx�!
P
x0. Because of the

independence of Up and U0 in (12) we see that the predictive fiducial distribution (11) is equal to the distribution of
Gp
ðRx, Up,n

Þ, where Up,n is an independent copy of Up and is independent of Rx. By continuity

Gp
ðRx,Up,n

Þ�!
P

Gp
ðx0, Up,n

Þ:

The proof now follows similar arguments as in the proof of Theorem 1 in Hannig (2009a). &

We use several examples to illustrate this procedure.

3. Examples

3.1. One-sample normal distribution

In the first example, we consider a one-sided fiducial prediction interval to contain at least p out of m future
observations based on a random sample of size n from a normal distribution Nðm,s2Þ. A fiducial quantity for ðm,s2Þ can be
derived from the structural equations based on the minimal sufficient statistics of the model, and is given by

Rðm,s2Þðx,s2Þ ¼ ðx�sZð1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nV=ðn�1Þ

p
, ðn�1Þs2=VÞ,

where x and s are the observed sample mean and standard deviation of the random sample; Zð1Þ �Nð0;1Þ; and V � w2
n�1 and

is independent of Zð1Þ. Let Yi be the ith future observation. Then the data-generating mechanism is given by

Yi ¼ mþsZð2Þi , i¼ 1, . . . ,m, ð17Þ

where Zð2Þi are iid Nð0;1Þ random variable and independent of Zð1Þ. Substituting ðm,s2Þ with Rðm,s2Þðx,s2Þ into (17), we obtain
a fiducial prediction quantity for Yi as

~Y i ¼ x�sZð1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nV=ðn�1Þ

p
þsZð2Þi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=ðn�1Þ

p
: ð18Þ

Let Y ðsÞ be the sth order statistic of fY1, . . . ,Ymg. Then the event that at least p out of m future observations will exceed L is
equivalent to the event that Y ðm�pþ1Þ4L. The fiducial prediction quantity for Y ðm�pþ1Þ is ~Y ðm�pþ1Þ, where ~Y ðsÞ is the sth
order statistic of f ~Y ð1Þ, . . . , ~Y ðmÞg. Thus, a 1�a lower prediction limit L on Y ðm�pþ1Þ is the a quantile of the distribution of
~Y ðm�pþ1Þ. Since the ordering among

ð ~Y i�xÞ=s¼�Zð1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nV=ðn�1Þ

p
þZð2Þi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=ðn�1Þ

p
, i¼ 1, . . . ,m

is identical to the ordering among ~Y i, i¼ 1, . . . ,m, the a quantile of the distribution of ~Y ðm�pþ1Þ is given by x�rs, where r is the a
quantile of the distribution of the ðm�pþ1Þth order statistic of Zð2Þi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=ðn�1Þ

p
�Zð1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nV=ðn�1Þ

p
, which can be obtained easily

by simulation. For example, the following R code will calculate the value of r based on nrun Monte Carlo samples:
z1o�rnormðnrunÞ=sqrtðnÞ
Vo�sqrtðrchisqðnrun,n�1Þ=ðn�1ÞÞ

z2io�matrixðrnormðmnnrunÞ,byrow¼ T,ncol¼ mÞ

xijo�applyððz2i�z1Þ=V,1,functionðx;qÞsortðxÞ½q�,m�pþ1Þ

quantileðxij,alphaÞ
Values of r so obtained are identical to the factors calculated and tabulated by Fertig and Mann (1977), using numerical
procedures. Similarly, the two-sided symmetric fiducial prediction intervals can be constructed by use of the 1�a quantile
of the distribution of the appropriate order statistic of the absolute value of Zð2Þi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=ðn�1Þ

p
�Zð1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nV=ðn�1Þ

p
. These

quantiles are identical to the factors calculated and tabulated by Odeh (1990).
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3.2. Binomial distribution

Let X be a random variable representing the number of ‘‘successes’’ in n repeated independent Bernoulli trials when p is
the probability of success at each trial. If we define the value of the random variable to be 1 if a trial results in success, and
0 otherwise, then we have the following structural equation:

X ¼
Xn

i ¼ 1

I½0,p�ðUiÞ,

where IAð�Þ is the indicator function and Ui, i¼1,y,n, are independent uniformð0;1Þ random variables. Following Hannig
(2009a), a fiducial quantity for p is given by

~p ¼UðxÞ þðUðxþ1Þ�UðxÞÞD, ð19Þ

where UðsÞ is the sth order statistic of fU1, . . . ,Ung, and D is a uniformð0;1Þ random variable and independent of
Ui, i¼1,y,n. Let Y be the number of successes in a future random sample of size m from the same population. Then we can
write

Y ¼
Xm

i ¼ 1

I½0,p�ðU
%

i Þ, ð20Þ

where U%

i , i¼1,y,m, are independent uniformð0;1Þ random variables. Substituting p in (20) with ~p of (19), we obtain a
fiducial prediction quantity for Y as

~Y ¼
Xm

i ¼ 1

I½0, ~p �ðU
%

i Þ:

Prediction limits on Y can be obtained from the appropriate quantiles of the distribution of ~Y .
We use an example from Hahn and Meeker (1991) to illustrate the above procedure. In a test of 1000 randomly selected

integrated circuits,20 nonconforming units were found. An upper 95% prediction bound for the number of nonconforming
units in a future lot of 1000 units,which are randomly sampled from the same production process,is desired. This upper
bound is found to be 31,calculated by use of the following R code based on 50 000 Monte Carlo samples:
no�1000 # current sample sizes

xo�20 # observed nonconforming units

mo�1000 # future sample sizes

nruno�50 000 # Monte Carlo samples

mat1o�matrixðrunifðnnnrunÞ, ncol¼ nÞ
mat2o�applyðmat1;1;sortÞ
uveco�runifðnrunÞ
fq:po�mat2½x,�þuvecnðmat2½ðxþ1Þ,��mat2½x,�Þ # FQ for p

Yo�1 : nrun
for ðiin ð1 : nrunÞÞ

Y½i�o�sumðrunifðmÞofq:p½i�Þ # realizations from ~Y

quantileðY,0:95Þ # 95% upper bound
For comparison, Hahn and Meeker (1991) calculated the upper prediction limit to be 32, based on a hypergeometric-
distribution approach.

3.3. Simple linear regression

Suppose

Yi ¼ b0þb1xiþEi, i¼ 1, . . . ,n,

where b0 and b1 are respectively the intercept and the slope of the straight line model relating Yi to xi, and Ei are
independently normally distributed random errors with mean 0 and unknown variance s2. Based on these n pairs of data,
a prediction interval to contain the mean of m future values of Y at x¼ x0 is derived by use of the fiducial approach.

The parameters of the model are b0, b1, and s. Let B¼ ðB0 B1Þ
t denote the least-squares estimator of b¼ ðb0 b1Þ

t . Then

B�Nðb, s2VÞ, ð21Þ

where

V ¼
n

Pn
i ¼ 1 xiPn

i ¼ 1 xi

Pn
i ¼ 1 x2

i

 !�1

¼
1

Dx

Pn
i ¼ 1 x2

i �
Pn

i ¼ 1 xi

�
Pn

i ¼ 1 xi n

 !

and Dx ¼ n
Pn

i ¼ 1 x2
i �ð

Pn
i ¼ 1 xiÞ

2. From (21) we can write

B¼ bþsTU, ð22Þ
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where U is a bivariate standard normal random variable, and T is the Cholesky factor of V; that is, TT t
¼V and is given by

T ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1ðxi�xÞ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 x2

i =n
q

0

�x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 x2
i =n

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1ðxi�xÞ2=

Pn
i ¼ 1 x2

i

q
0
B@

1
CA:

Also, let

S2
¼

Pn
i ¼ 1ðYi�B0�B1xiÞ

2

n�2

then S2 is independent of B and

V ¼
ðn�2ÞS2

s2
� w2ðn�2Þ: ð23Þ

Eqs. (22) and (23) are the structural equations that relate the observable random variables B and S2 to the model
parameters b, s, and the error processes TU and V, whose distributions are fully known. By solving b and s from these two
equations (no conditioning is needed), we obtain the fiducial quantities for s and b as

~s ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=ðn�2Þ

p ,

~b ¼ b� ~sTU, ð24Þ

where s and b¼ ðb0 b1Þ
t are observed values of S and B. The mean of m future values of Y at x¼ x0 is given by

Y
%

m ¼ b0þb1x0þE
%

m, ð25Þ

where E
%

m �Nð0,s2=mÞ and is independent of U. Replacing s and b in (25) with their fiducial quantities ~s and ~b, we obtain
the fiducial prediction quantity for Y

%

m as

~Y
%

m ¼ b0þb1x0�
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V=ðn�2Þ
p ðt11þt21x0ÞZ1þt22x0Z2�

1ffiffiffiffiffi
m
p Z3

� �
,

where Z1, Z2, and Z3 are mutually independent standard normal random variables (U¼ ðZ1 Z2Þ
t and E

%

m ¼ sZ3=
ffiffiffiffiffi
m
p

), and tij

are the (i,j)th elements of T . Routine calculation shows that ðt11þt21x0ÞZ1þt22x0Z2�Z3=
ffiffiffiffiffi
m
p

is distributed as normal with
mean 0 and variance

d2
¼

1

m
þ

1

n
þ

ðx0�xÞ2Pn
i ¼ 1ðxi�xÞ2

:

Thus, we can write

~Y
%

m ¼ b0þb1x0�dsTn�2,

where Tn�2 is distributed as t distribution with n�2 degrees of freedom. A 1�a two-sided prediction interval on Y
%

m is
obtained from

Pr½Lo ~Y
%

moU� ¼ 1�a,

which produces ðL,UÞ ¼ b0þb1x07t1�a=2,n�2ds. This prediction interval is identical to the one derived by use of the
frequentist approach, for example, see Draper and Smith (1981).

3.4. Exponential distribution

Let Xi, i¼ 1, . . . ,n, be a random sample from the exponential distribution, exponentialðlÞ, with density function

f ðxÞ ¼ le�lxIð0,1ÞðxÞ, l40:

This example is also used by Lawless and Fredette (2005). Let gammaða,lÞ denote the gamma distribution with density function

f ðxÞ ¼
la

GðaÞ x
a�1e�lxIð0,1ÞðxÞ, a40, l40:

It is known that
Pn

i ¼ 1 Xi is distributed as gammaðn,lÞ. Furthermore, l
Pn

i ¼ 1 Xi is distributed as gammaðn,1Þ. Let Fnð�Þ be the
distribution function of gammaðn,1Þ. Since

U ¼ Fn l
Xn

i ¼ 1

Xi

 !
� uniformð0;1Þ
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we have the following structural equation:

Xn

i ¼ 1

Xi ¼
F�1

n ðUÞ

l

for the model. As a consequence, a fiducial quantity for l is given by

~l ¼
F�1

n ðUÞPn
i ¼ 1 xi

: ð26Þ

Let Yi, i¼1,y,m, be the future observations from, and Glð�Þ be the distribution of, exponentialðlÞ. Since

U%

i ¼ GlðYiÞ ¼ 1�e�lYi � uniformð0;1Þ

we can write

Yi ¼
�logð1�U%

i Þ

l
: ð27Þ

Substituting l in (27) with ~l of (26), we obtain a fiducial prediction quantity for Yi as

~Y i ¼
�logð1�U%

i Þ

F�1
n ðUÞ

Xn

j ¼ 1

xj:

Prediction limits on functions of Yi can be obtained from the appropriate quantiles of the corresponding distribution of functions
of ~Y i.

It is easily seen that the distribution of ~Y i is identical to the distribution of G ~l ðYiÞ as indicated in (2). Also, for the case of
a single future observation, i.e., m¼1, the distribution function of ~Y is given by

Pr½ ~Y oy� ¼ Pr
�log ð1�U%

Þ

F�1
n ðUÞ

o
y

nx

" #
:

Since

�logð1�U%

Þ

F�1
n ðUÞ

¼
W

V
¼

1

n
F2;2n,

where W � exponentialð1Þ, V � gammaðn,1Þ and are independent, and F2;2n is distributed as an F with degrees of freedom 2
and 2n (Lawless and Fredette, 2005), we have

Pr½ ~Y oy� ¼

Z y=x

0
1þ

z

n

� ��ðnþ1Þ

dz¼ 1� 1þ
y

nx

� ��n

,

which is identical to the distribution derived based on the pivotal method.
Although the closed-form expression of the predictive distribution is available in this example, it is easier, however, to

obtain the desired prediction limits by simulation in practice. For example, an upper 95% prediction limit for a single future
observation (m¼1) when n¼30 and x ¼ 1 can be calculated by use of the following R code based on 500 000 Monte Carlo
samples:
no�30 # current sample sizes

xbaro�1 # observed mean

nruno�500 000 # Monte Carlo samples

U1o�runifðnrunÞ
lambdao�qgammaðU1,nÞ=ðnnxbarÞ # FQ for lambda

U2o�runifðnrunÞ
Yo��logð1�U2Þ=lambda
quantileðY,0:95Þ #95% upper bound
3.5. Gamma distribution

Let Xi, i¼ 1, . . . ,n, be a random sample from gammaða,lÞ. Let Fa,lð�Þ be the distribution function of gammaða,lÞ. Simple
calculation shows that

Ui ¼ Fa,lðXiÞ ¼ Fa,1ðlXiÞ � uniformð0;1Þ:

Denote the inverse distribution function BðUi, a,lÞ ¼ F�1
a,lðUiÞ. Thus, we have the following structural equations:

Xi ¼ BðUi, a,lÞ, i¼ 1, . . . ,n ð28Þ

for the model. A fiducial distribution of ða,lÞ can be obtained based on these equations.
In this model, a closed-form fiducial quantity for ða,lÞ is not available. Thus, fiducial prediction quantities for this model

must be based on realizations generated from the fiducial distribution of ða,lÞ. As an example, a fiducial prediction
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quantity for a future observation Y from gammaða,lÞ can be derived from

~Y ¼ BðU%, ~a, ~lÞ,

where ð ~a, ~lÞ is a realization from the fiducial distribution of ða,lÞ, and U%

� uniformð0;1Þ. The distribution of ~Y can be
estimated from a large number of realizations by simulation. The key requirement here is the ability to generate
realizations from the fiducial distribution of ða,lÞ.

To this end, Hannig (2009b) derives the density of the fiducial distribution for an iid sample from an absolutely
continuous distribution having a distribution function FhðxÞ and density f hðxÞ, where h¼ ðy1, . . . ,ypÞ is p-dimensional. If the
structural equations are formed using the inverse distribution function, then the fiducial density of h is proportional to

Lðh9xÞJðx,hÞ,

where Lðh9xÞ ¼
Qn

i ¼ 1 f hðxiÞ is the likelihood

Jðx,hÞ ¼
X

i1 o ���o ip

9detðrhFhðxi1 Þ, . . . ,rhFhðxip ÞÞ9

f hðxi1 Þ � � � f hðxip Þ

and detðrhFhðxi1 Þ, . . . ,rhFhðxip ÞÞ is the determinant of the p� p matrix of gradients of Fhðxij Þ, j¼ 1, . . . ,p, computed with
respect to h. In the present case of structural equation (28), the likelihood is

Lða,l9xÞ ¼
lna expð�l

Pn
i ¼ 1 xiþða�1Þ

Pn
i ¼ 1 log xiÞ

GðaÞn

and the Jacobian term is

Jða,l,xÞ ¼
X

1r io jrn

det

@

@a
Fa,1ðlxiÞ

@

@a
Fa,1ðlxjÞ

@

@l
Fa,1ðlxiÞ

@

@l
Fa,1ðlxjÞ

0
BB@

1
CCA

��������

��������
l2a
ðxixjÞ

a�1e�lðxiþ xjÞ=GðaÞ2
¼ ðlaÞ�1

X
1r io jrn

xixj

Gðaþ1Þ
@

@aFa,1ðlxiÞ

ðlxiÞ
ae�lxi

�

Gðaþ1Þ
@

@aFa,1ðlxjÞ

ðlxjÞ
ae�lxj

�������
�������:

Thus the fiducial distribution of ða,lÞ has a density proportional to

lna�1e�l
Pn

i ¼ 1
xiþða�1Þ

Pn

i ¼ 1
log xi

aGðaÞn
X

1r io jrn

xixj

Gðaþ1Þ
@

@aFa,1ðlxiÞ

ðlxiÞ
ae�lxi

�

Gðaþ1Þ
@

@aFa,1ðlxjÞ

ðlxjÞ
ae�lxj

�������
�������: ð29Þ

We use an example in Hamada et al. (2004) to illustrate the proposed fiducial procedure. In the example, the first
breakdown times (in hours) of 20 machines were recorded. Assuming breakdown times are distributed as gammaða,lÞ, a
90% one-sided (lower-limit) prediction interval to contain the fifth breakdown time of five similar machines that are to be
used simultaneously is desired. Let Yi, i¼ 1;2, . . . ,5, be the breakdown times of five future machines, we are interested in
constructing a lower-limit prediction interval for Y ð5Þ, where Y ð1Þo � � �oY ð5Þ. We use simulation to estimate the
distribution of ~Y ð5Þ, the fiducial prediction quantity for Y ð5Þ. A single realization of ~Y ð5Þ may be generated as follows:
1.
 Obtain a realization ð ~a, ~lÞ from the fiducial distribution of ða,lÞ.

2.
 Generate five independent uniform ð0;1Þ random deviates u1, . . . ,u5 and calculate yi ¼ Bðui, ~a, ~lÞ, i¼ 1, . . . ,5.

3.
 Calculate the maximum, yð5Þ, of y1, . . . ,y5.
To simulate ð ~a, ~lÞ from density (29), we implement an importance sampling algorithm. The algorithm produces a
weighted sample from (29) and consequently a weighted sample from the predictive distribution of yð5Þ. The details are
given in Appendix. Based on a weighted sampling algorithm with effective sample size 9:644� 106, the 0.1 quantile of
these realizations is found to be 74.36 (hours), which is the desired prediction lower limit on the fifth breakdown time. For
comparison, Hamada et al. (2004) determined the lower prediction limit to be 71.8 (hours) based on a Bayesian approach.
Notice that because we are computing the lower prediction limit, higher values are more desirable.

To evaluate the true frequentist prediction probability of the proposed procedure, we used the MLE estimates of
a¼ 0:8763,l¼ 0:0110 to generate 10 000 data sets. Based on these data sets we have computed the empirical coverage
probability associated with the prediction limits using the proposed procedure. The estimated prediction probability of the
nominal 10% prediction interval was estimated as 10.11% indicating acceptable coverage. Additionally, we performed a
small scale simulation study. In this study we considered Gamma distribution with the scale parameter l¼ 1 and the
shape parameter a¼ 0:5, 1, 10, 100 and sample sizes n¼5, 25, 125. For each of these parameter combinations we
simulated 10 000 data sets and found the upper and lower predictive interval for one future observation and the fifth
largest future observation. The estimated coverage probabilities of 95% prediction interval were all between 94.71% and
95.69%; the estimated coverage probabilities of 5% prediction interval were all between 4.73% and 5.31% indicating
coverage within expected simulation error of the stated value.
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3.6. Weibull distribution

Let Xi, i¼ 1, . . . ,n, be a random sample from the Weibull distribution, weibullða,bÞ, with density function

f ðxÞ ¼ abðaxÞb�1e�ðaxÞb Ið0,1ÞðxÞ, a40, b40:

Using the distribution function we get

Ui ¼ Fa,bðXiÞ ¼ 1�e�ðaXiÞ
b

ð30Þ

is a uniformð0;1Þ random variable. From (30) we have the following structural equations:

Xi ¼ BðUi,a,bÞ ¼
ð�logð1�UiÞÞ

1=b

a , i¼ 1, . . . ,n ð31Þ

for the model. A fiducial distribution of ða,bÞ can be obtained based on these equations.
Applying the same method that was used for deriving a fiducial distribution of ða, lÞ in the gamma-distribution case, we

obtain the likelihood

Lða,b9xÞ ¼ anbbn
Yn

i ¼ 1

ðxb�1
i Þe�a

b
Pn

i ¼ 1
xb

i

and the Jacobian

Jða,b,xÞ ¼
X

1r io jrn

xixj9 log xi�log xj9
ab :

Consequently, the density of the fiducial distribution of ða,bÞ is proportional to

anb�1bn�1
Yn

i ¼ 1

ðxb�1
i Þe�a

b
Pn

i ¼ 1
xb

i : ð32Þ

We point out that in this case the fiducial distribution is the same as a Bayesian posterior computed using the reference
prior ðabÞ�1 of Berger et al. (2009). Prediction intervals for the Weibull distribution can be constructed from realizations of
the fiducial distribution of ða,bÞ in the same way as described in the gamma-distribution case.

We use an example in Krishnamoorthy et al. (2009) to illustrate the proposed fiducial procedure. In the example, the
vinyl chloride concentration collected from 34 clean upgradient monitoring wells. As argued by Krishnamoorthy et al.
(2009), Weibull distribution fits the data well. We computed the 95% one-sided (upper-limit) prediction interval for at
least l of m observations at each of r locations; i.e., let Yij, i¼ 1, . . . ,r, j¼ 1, . . . ,m, be the future m observations at r locations,
we are interested in constructing a upper-limit prediction interval for Y ¼maxi ¼ 1,...,r Yi,ðlÞ, where Yi,ð1Þo � � �oYi,ðmÞ for
each i¼1,y,r.

We use simulation to estimate the distribution of ~Y , the fiducial prediction quantity for Y. A single realization of ~Y may
be generated as follows:
1.
Tab
95%

r

1

1

1

Obtain a realization ð ~a, ~bÞ from the fiducial distribution of ða,bÞ.

2.
 Generate r�m independent uniform ð0;1Þ random variables uij and calculate yij ¼ Bðuij, ~a, ~bÞ, i¼ 1, . . . ,r, j¼ 1, . . . ,m.

3.
 Calculate y¼maxi ¼ 1,...,r yi,ðlÞ.

Using an importance sampling algorithm with effective sample size of 9:774� 107 we took the 0.95 quantile of the
sampled values of y. The computed values for r,m,l combinations taken from Krishnamoorthy et al. (2009) are summarized
in Table 1; recall that smaller values are desirable for upper-limit prediction bounds. The computed values are compared
to the values obtained by Krishnamoorthy et al. (2009) using a different generalized variable approach. Notice that the
prediction bounds computed using the proposed method are all smaller than the prediction bounds of Krishnamoorthy
et al. (2009).

To check the true frequentist coverage probability of the proposed procedure, we used the MLE estimates of
a¼ 0:52968,b¼ 1:01022 to generate 10 000 data sets. Based on this we have computed the empirical coverage probability
associated with the prediction limits using the proposed procedure for the various r, m, and l values. The estimated
le 1
Upper prediction limits for vinyl chloride data.

m l Fiducial Krishnamoorthy et al. (2009)

1 2 1 2.962 2.974

0 2 1 5.480 5.483

0 3 1 3.595 3.618

0 3 2 6.784 6.797



C.M. Wang et al. / Journal of Statistical Planning and Inference 142 (2012) 1980–1990 1989
coverage probability of the 95% prediction interval ranged from 0.9502 to 0.9506 indicating excellent coverage.
Additionally, we perform a small scale simulation study. In this study we considered Weibull distribution with the scale
parameter a¼ 1 and the shape parameter b¼ 0:1, 0.2, 0.5, 1, 2, 5, 10 and sample sizes n¼5, 25, 125. For each of these
parameter combinations we simulated 10 000 data sets and found the predictive interval for the various r,m,l values from
Krishnamoorthy et al. (2009). The estimated coverage probabilities of 95% prediction interval were all between 94.72% and
95.17% indicating coverage within expected simulation error of the stated value.
4. Concluding remarks

In this paper we have provided an approach for constructing prediction intervals for any model where a fiducial
distribution of the parameters is available. Since a fiducial recipe is available for arbitrary statistical models (Hannig,
2009a), the proposed method provides a general approach for constructing prediction intervals. These fiducial prediction
intervals coincide with the exact pivotal-based intervals, when they exist, and possess good statistical properties,
otherwise.

This paper did not deal with prediction intervals for censored data. Censored data can be viewed as a special case of
discretely observed data. Hannig et al. (2007) presented a fiducial inference on the parameters of discretely observed
normal data. Hannig (2009b) studied asymptotic properties of fiducial inference for discretely observed data. Fiducial
prediction intervals based on censored failure or life data are currently under investigation and will be reported in a future
communication.
Appendix A

A.1. An importance sampling algorithm for fiducial distribution for gamma parameters

Let f(x) be a density. Importance sampling is a standard Monte Carlo computational procedure for approximating
quantities of the type I¼

R
hðxÞf ðxÞ dx (Robert and Casella, 2004). To approximate the quantity I, we generate a sample

X1, . . . ,Xm from an instrumental density g(x). Each of the observation is then associated with an unscaled weight
wi ¼ f ðXiÞ=gðXiÞ. This gives us a weighted sample generated from the density f(x) and allows us to estimate

I�

Pm
i ¼ 1 wihðXiÞPm

i ¼ 1 wi

:

By strong law of large numbers the approximation converges to the quantity of interest, provided that the support of f is
included in the support of g.

In this paper we will be interested in computing a quantiles of distributions. This can be done by inverting the
approximation

a¼
Z a

�1

f ðxÞ dx�

Pm
i ¼ 1 wiIfXi ragPm

i ¼ 1 wi

:

In particular, let Xð1Þo � � �oXðmÞ be the ordered sample with the corresponding weights wð1Þ, . . . ,wðmÞ. Here wðiÞ’s are
ordered to match the ordering of XðiÞ’s and are not necessarily increasing. Let j be so that

Pj
i ¼ 1 wðiÞraPm

i ¼ 1 wðiÞo
Pjþ1

i ¼ 1 wðiÞ and estimate a� XðjÞ.
The quality of the approximations depends on the choice of the instrumental distribution g(x), and consequently the

distribution of the weights w. For example, if the sample contains a small number of very large values, importance sampler
is effectively using only a small number of observations to compute its estimator leading to large variance. For this reason,
it is recommended to select g(x) so that the center of g is roughly in the same place as the center of f but the tails of g are
heavier than the tails of f. To measure the effective sample size (ESS) of the weighted sample, Kong et al. (1994) propose
using

ESS¼
ð
Pm

i ¼ 1 wiÞ
2Pm

i ¼ 1 w2
i

:

To sample from the fiducial distribution (29) we need to find a good instrumental distribution gða,lÞ. We chose to use
the following instrumental distribution. Denote the MLE of a by â, c¼ n logðn�1

Pn
i ¼ 1 xiÞ�

Pn
i ¼ 1 log xi, and the density

function of gammaða,lÞ by f a,lðxÞ. Let

gðaÞ ¼ 0:5f n�3,ðn�3Þ=â ðaÞþ0:5f âc,cðaÞ:

This is a mixture of gamma distributions chosen so that its mean is at the maximum likelihood estimator and the tails are
heavier than the tails of the fiducial distribution. Then let

gðl9aÞ ¼ f na,
P

xi
ðlÞ:
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So the instrumental distribution is given by

gða,lÞ ¼ gðaÞ gðl9aÞ

and the weight is computed as

wða,lÞ ¼
Ĵða,lÞGðnaÞ

Qn
i ¼ 1 xi

� 	a�1

aGðaÞn
Pn

i ¼ 1 xi

� 	na
gðaÞ

,

where

Ĵða,lÞ ¼
X

1r io jrn

xixj

Gðaþ1Þ
@

@a
Fa,1ðlxiÞ

ðlxiÞ
ae�lxi

�

Gðaþ1Þ
@

@a
Fa,1ðlxjÞ

ðlxjÞ
ae�lxj

�������
�������:

Finally we remark that the derivative in Ĵða,lÞ needs to be computed numerically. To increase numerical stability of the
numerical derivative in the tails we used the following identity:

Gðaþ1Þ
@

@a
Fa,1ðlxÞ

ðlxÞae�lx
¼

@

@a
Gðaþ1ÞFa,1ðlxÞ

ðlxÞae�lx
�
Gðaþ1ÞFa,1ðlxÞ

ðlxÞae�lx
ðcðaþ1Þ�logðlxÞÞ

¼ �
@

@a
Gðaþ1Þð1�Fa,1ðlxÞÞ

ðlxÞae�lx
þ
Gðaþ1Þð1�Fa,1ðlxÞÞ

ðlxÞae�lx
ðcðaþ1Þ�logðlxÞÞ

with cðaÞ is the digamma function. Thus instead of numerically computing @Fa,1ðlxÞ=@a, depending on which tail we are in,
we numerically compute

@

@a
Gðaþ1ÞFa,1ðlxÞ

ðlxÞae�lx

or

@

@a
Gðaþ1Þð1�Fa,1ðlxÞÞ

ðlxÞae�lx
,

which is more stable. The computer code is available from authors open request.
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