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a b s t r a c t

Inference on the largestmean of amultivariate normal distribution is a surprisingly difficult
and unexplored topic. Difficulties arise when two ormore of themeans are simultaneously
the largest mean. Our proposed solution is based on an extension of R.A. Fisher’s fiducial
inference methods termed generalized fiducial inference. We use a model selection
technique along with the generalized fiducial distribution to allow for equal largest means
and alleviate the overestimation that commonly occurs. Our proposed confidence intervals
for the largest mean have asymptotically correct frequentist coverage and simulation
results suggest that they possess promising small sample empirical properties. In addition
to the theoretical calculations and simulations we also applied this approach to the air
quality index of the four largest cities in the northeastern United States (Baltimore, Boston,
New York, and Philadelphia).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many applications attempt to find the best or worst treatment when dealing with data from a correlated multivariate
normal distribution (e.g. pollution studies, drug trials, studiesmeasuring theQT interval, investments, etc.). This is equivalent
to finding the largest mean(s) of the normal distribution. Namely, if X ∼ N(µ, Σ), where µ = (µ1, . . . , µk)

T and Σ is an
unstructured covariance matrix, we are attempting inference on the largest mean, θ = maxi µi.

While most inference problems for the general multivariate normal distribution are well studied, interval estimation
for the largest mean is still relatively unexplored. Obvious solutions tend to grossly overestimate the largest mean when
several of the individual means are equal or close to the largest mean. We propose a new method using fiducial inference
and demonstrate the empirical coverage of the intervals using a novel approach seen in [8,10]. In addition to using the
general fiducial approach we use a model selection technique to allow multiple means to be the equal largest mean. By
allowing for some or all of the means to be the largest mean our method will asymptotically select the correct model. This
model selectionwill help to alleviate the common overestimation problem and allow our confidence intervals for the largest
mean to have asymptotically correct coverage.

A naive upper tailed confidence interval, seen in the literature, is based on the intersection–unionmethod that constructs
t-intervals for each of the k dimensions then uses the maximum upper bound as the upper tailed confidence interval for

∗ Corresponding author.
E-mail addresses: dvwandler@gmail.com (D.V. Wandler), hannig@mail.unc.edu (J. Hannig).

0047-259X/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2010.08.003



Author's personal copy

88 D.V. Wandler, J. Hannig / Journal of Multivariate Analysis 102 (2011) 87–104

the largest mean. Another technique, seen in [4], approximates the maximum with a smooth function and uses the delta
methodwith a bias adjustment to create a one sided upper-tailed interval. Additionally, Boos et al. [1] uses a linear model to
account for the variation and the bias of the largestmean. Thismethod produced two intervals using a normal approximation
and intervals using a parametric and nonparametric bias adjusted bootstrap technique. We compared our method to those
of the intersections–union, [4], and the bias adjusted method using a normal approximation from Boos et al. [1]. All of
the methods from Boos et al. [1] had similar coverage rates, and the one discussed here created the shortest upper tailed
interval. It seems reasonable that a Bayesian solution could also provide a viable method. However, we were not able to find
a Bayesian solution in the literature.

The most common method in practice, the intersection–union, has a major downfall when some or all of the k means
are equal or close to being equal. When there are multiple equal largest means, or means that are very close to being
equal, the construction of the t-intervals will systematically overestimate the largest mean. This produces very conservative
upper tailed confidence intervals. When two or more means are equal the intersection–union method produces confidence
intervals that do not have asymptotically correct coverage, c.f., [3]. The other twomethods attempt to account for the bias of
the largest mean but have other shortcomings. Simulations suggest that our upper tailed fiducial interval tends to be shorter
than the interval created by Eaton et al. [4] and, when the sample size is small, slightly longer than the interval from Boos
et al. [1]. When the sample size is large the fiducial interval is shorter than all the competing methods. Furthermore, our
method is the only method that also produces a lower tailed or two-tailed interval.

The fiducial approach was also applied to an interesting data set from the Environmental Protection Agency (EPA). This
data set measured the air quality for each of the cities of Baltimore, Boston, New York, and Philadelphia. We attempt to find
out if the cities experience adequate average air quality. This is analogous to finding out if the city with the worst air quality
(largest average value) still has adequate air. In addition to finding out if they all have adequate air quality we would also
like information as to which city or cities have the worst average air quality. The fiducial approach will accomplish both
and we will compare our results for this example to the competing intervals stated previously. The analysis shows that the
fiducial interval is shortest and Baltimore, New York, and Philadelphia are likely to have equally bad air quality, though all
of the cities have adequate air quality.

2. Generalized fiducial inference

Fiducial inference was first introduced by Fisher [6]. He proposed the idea in an effort to overcome what he perceived as
a deficiency in the Bayesian approach. Fisher opposed the Bayesian approach of assuming a prior distribution when there
was not substantial information available about the parameters.

Opposition to fiducial inference arose when researchers discovered that this inference technique did not possess some
of the properties that Fisher had originally claimed [11,14]. Recently, there has been somewhat of a resurgence in fiducial
inference following the introduction of generalized inference by Weerahandi [13] and the establishment of a link between
fiducial and generalized inference in [9]. Further information on the asymptotic and empirical properties and a thorough
survey of the fiducial literature can be found in [8].

The basis of generalized fiducial inference, similar to the likelihood function, ‘‘switches’’ the role of the data, X, and the
parameter(s) ξ . Fiducial inference uses themodel and the observed data,X, to define a probabilitymeasure on the parameter
space, Ξ . This is understood as a summary of the known information about the parameters, similar to a Bayesian posterior
distribution. In the rest of this section we will formally introduce this approach.

First, we assume that a relationship between the X and ξ exists in the form:
X = G(ξ ,U) (1)

where U is a random vector with a completely known distribution and independent of any parameters. With this
relationship, called the structural equation, the parameter ξ and the random vector U will determine the distribution of
X. After observing X we can use the relationship in (1) and what we know of the distribution of U to infer a distribution on
ξ .

We define the inverse of the structural equation as the set valued function:
Q (x,u) = {ξ : x = G(ξ ,u)}. (2)

We know that our observed data was generated using some unknown ξ0 and u0. Thus, we know the distribution of U and
that Q (x,u0) ≠ ∅. Using these two facts we can compute the generalized fiducial distribution from

V (Q (x,U⋆)) | {Q (x,U⋆) ≠ ∅} (3)
where U⋆ is an independent copy of U and V (S) is a random element for any measurable set, S, with support on the closure
of S, S̄. Essentially, V (·) is a (possibly random) rule for discerning among the values of the inverse Q (x,U⋆). We will refer
to a random element with the distribution given by (3) as Rξ . For a detailed discussion of the derivation of the generalized
fiducial distribution see [8].

We calculate the generalized fiducial density as proposed in [8] and justified theoretically in [7]. Let G = (g1, . . . , gn) be
such that Xi = gi(ξ ,U) for i = 1, . . . , n. Note that ξ is a p × 1 vector and denote Xi = G0,i(ξ ,Ui), where Xi = (Xi1 , . . . , Xip)
and Ui = (Ui1 , . . . ,Uip) for all possible combinations of the indices i = (i1, . . . , ip). Assume that the functions G0,i are
one-to-one and differentiable. Under some technical assumptions in [7] this will produce the generalized fiducial density:
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Table 1
Coverage for a 95% upper tailed interval when Σ = I for the naive method.

µ0 \ n 30 100 1000

(5, 5)T 99.6 99.9 99.8
(1, 5)T 92.3 94.9 95.3

fRξ
(ξ) =

fX(x|ξ)J(x, ξ)
Ξ
fX(x|ξ ′)J(x, ξ ′)dξ ′

(4)

where

J(x, ξ) =


n
p

−1 −
i=(i1,...,ip)


det


d
dξ G

−1
0,i (xi, ξ)


det


d

dui
G−1
0,i (xi, ξ)


 (5)

is the mean of all subsets, where 1 ≤ i1 < · · · < ip ≤ n and the determinants in (5) are the appropriate Jacobians. For
illustrative examples of this fiducial recipe see [8].

3. Main results

3.1. Two dimensional case

Before tackling the largest mean problem in full generality, we first consider the two dimensional case. Assume
X1, . . . ,Xn is an independent random sample from the N(µ, Σ) distribution, where µ = (µ1, µ2)

T and

Σ =

[
η1 ρ12

√
η1η2

ρ12
√

η1η2 η2

]
. (6)

The structural equation in (1) is given by

Xi = G(ξ ,Ui) = µ + VUi

where Ui ∼ N(0, Ik) and independent for all i, V is the lower triangle Cholesky decomposition of Σ , and ξ = (µ1,
µ2, η1, η2, ρ12)

T . The inverted structural equations are:

U1j =
X1j − µ1

V11
and U2j =

X2j − µ2 − V21U1j

V22

for any individual j = 1, . . . , n. Since there are five parameters, we need the same number of equations to define each of the
terms in (5). When we differentiate the function U0 = G−1

0 (X0, ξ) we could, for example, use the following five equations
from the first three individuals,

U11 U21
U12 U22

U23.

As it would be arbitrary to choose those five equations we average over all possible selections. These computations will
result in the generalized fiducial density:

f1(ξ) ∝
1

(2π)kn/2
(detΣ)−n/2 exp


−

1
2

n−
i=1

(xi − µ)T Σ−1 (xi − µ)



×


n

2, 1, n − 3

−1−
i

|g(xi)|

22η
3/2
1 η

1/2
2 (1 − ρ2

12)
(7)

where g(xi) is a function of the data and will be explained later. From (7) we could draw a fiducial random sample of
θ = max(µ1, µ2) by generating a sample of µ and taking the maximum. We calculate a 95% upper tailed interval by taking
the estimated 0.95 quantile from this sample. This would be a naive solution and would overestimate the true largest mean,
θ0, when the true means, µ(1)

0 and µ
(2)
0 , are equal or relatively close to equal. For example, Table 1 shows the coverage for a

95% upper tailed interval of θ0. When µ
(1)
0 and µ

(2)
0 are different the coverage is reasonable.

On the other hand, if µ1 = µ2 we can proceed in a similar fashion. If X1, . . . ,Xn is an independent random sample from
the N(µ, Σ) distribution, where µ = (µ, µ)T , our inverted structural equations change to:

U1j =
X1j − µ

V11
and U2j =

X2j − µ − V21U1j

V22
.
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Table 2
Coverage for a 95% upper tailed interval when Σ = I when µ1 = µ2 is assumed.

µ0 \ n 30 100 1000

(5, 5)T 94.4 94.4 94.9
(1, 5)T 0.8 0 0

We now have four parameters, so only four equations are necessary to define each of the terms in (5). The generalized
fiducial density for this case is then computed as:

f2(ξ) ∝
1

(2π)kn/2
(detΣ)−n/2 exp


−

1
2

n−
i=1

(xi − µ)T Σ−1 (xi − µ)



×


n

2, n − 2

−1−
i

|g(xi, µ)|

22η
3/2
1 η

1/2
2 (1 − ρ2

12)
. (8)

Comparing (7) and (8) we can see that the difference comes in the Jacobian calculation and the µ vector. The Jacobian in
(8) depends on µ, the equal mean, and (7) is only dependant on the data. This behavior is common to all fiducial densities
that have an equal mean. Table 2 shows that the coverage is much better when the true means are actually equal and much
worse in the other case.

Clearly we would like to use (7) when the means are different and (8) when the means are equal. We will achieve this
by incorporating a model selection step into our problem. The model selection step is the important factor in reducing the
overestimation that occurs when the true means are equal, and drives the asymptotic correctness of the intervals.

The largest mean could come from µ1 or µ2 by themselves, or µ1 = µ2, in which case they would both be the largest
mean. As we have seen, naively assuming that µ1 ≠ µ2 will overestimate the true largest mean when µ

(1)
0 = µ

(2)
0 and the

intervals are not asymptotically correct. In order to fix this deficiency we propose an alternative that allows for µ1 = µ2.
The structural equation for this scenario is

X =


µ1
µ2


+ V1U


I{µ1>µ2} +


µ1
µ2


+ V2U


I{µ2>µ1}

+


µ
µ


+ V1U


I{µ1=µ2=µ} (9)

where V1 is the lower triangle Cholesky decomposition of Σ and V2 is obtained by permuting the Σ matrix in (6) so that
X = (X2, X1)

T , taking the lower triangular Cholesky decomposition and re-permuting the resulting matrix back to the
original order. This permutation is done because the formulas simplify if the largest mean is in the first position. Notice that,
when generating the data, X, only one of the three terms in (9) is in effect at any given time. As a result, there is a model
selection aspect to this problem. To simplify subsequent notation, let J be the indexes corresponding to the largest mean,
i.e., J = {1} if µ1 > µ2, J = {2} if µ2 > µ1, and J = {1, 2} if µ1 = µ2.

In this two dimensional case we calculate the generalized fiducial distribution by taking p (4 or 5) equations from our
structural equation and condition on the fact that the remaining equations occurred (2n − p). As a result, when there are
more parameters there are less equations that will be part of the conditioning or, equivalently, less conditions have to
be satisfied. For example, when µ1 ≠ µ2 there are 2n − 5 equations to condition on and if µ1 = µ2 there are 2n − 4
equations to condition on. The conditional distribution will favor the model with less conditions or with more parameters.
We can combat this problem by introducing additional structural equations that are independent of our original structural
equations as proposed in [10]. These additional structural equations will balance out the number of conditions that need to
be met for each selected set of equal means.

Adding additional structural equations will also allow us to introduce a weight function. The weight function will serve
two purposes. First, the weight function will down-weight the models with more free means to increase the likelihood of
grouping severalmeans together as the largestmean. Secondly, our procedurewas not scale invariant sowe used theweight
function to make it more scale invariant. Attempting to make the method scale invariant in this fashion is rather ad hoc but
seemed to work well in simulations. The actual values that were incorporated into the weight function were obtained when
we observed the asymptotic behavior of the probability of selecting a particular model.

The additional structural equations are:

1
2
log


22

(MSX1 + MSX2 − 2MX1X2) n


= βi + Pi if i ∈ J

1
2
log


22

(MSX1 + MSX2 − 2MX1X2) n


= Pi if i ∈ Jc (10)

where MSXi and MX1X2 are the maximum likelihood estimates of the variance and covariance respectively and Pi are
independent Exp(1) random variables for all i. Because of the independence these structural equations will not affect the
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distribution of X but they will affect the conditional distribution in (3). When inverting the structural equations in (10), if
i ∈ J we can choose a βi for any Pi so that the equation is satisfied. Therefore, conditioning on this equation does not affect
the conditional distribution. On the other hand, when i ∈ Jc then Pi = 2−1 log


22 [(MSX1 + MSX2 − 2MX1X2) n]−1, which

creates an additional condition to be met. Combining the additional condition and the conditions that need to be met from
(9) there will now always be 2n − 4 conditions regardless of the number of equal means.

Adding the model selection component, we compute the generalized fiducial density as:

f (ξ) ∝ f{1}(ξ) + f{2}(ξ) + f{1,2}(ξ)

where

f{1}(ξ) = w(x)f1(ξ)I{µ1>µ2}, f{2}(ξ) = w(x)f̃1(ξ)I{µ2>µ1}, f{1,2}(ξ) = f2(ξ)I{µ1=µ2}

with f1(ξ) given by (7), f̃1(ξ) by (7) with η1 and η2 switched, f2(ξ) by (8), and the weight function

w(X) =
2

(MSX1 + MSX2 − 2MX1X2)
1/2 √

n
.

Again, the weight function is a result of having the additional structural equations and its value is chosen by us.

3.2. General case

The same derivation can be applied to a k dimensional problem. Keeping with the same notation J ⊆ {1, . . . , k} = Jk as
the index of the equal means, u (u ≥ 1) is the number of elements in J , and v (v ≥ 0) is the number of elements in Jc (note,
u + v = k). In general, for a k dimensional problem, the structural equation is

X =

−
J⊆{1,...,k}


µ1

...
µk

+ VJU

 I{µi=µj:,i,j∈J}I{µj>µl:j∈J,l∉J} (11)

where U ∼ N(0, Ik) is a k × 1 vector. To calculate VJ , permute the matrix

Σ =


η1 ρ12

√
η1η2 · · · ρ1k

√
η1ηk

ρ12
√

η1η2 η2
...

. . .

ρ1k
√

η1ηk ηk


such that the Xi’s with equal means are the first u variables, take the lower triangle Cholesky decomposition of Σ then
re-permute VJ back to the original order.

Just as before we introduce the additional structural equations akin to (10), obtaining the weight function

wJ(X) =

∏
i∈Jc

f (Pi) =
det


MJk

(v−1)/2 M∗v/2
J kv

det

MJ
(v−1)/2 M∗v/2

Jk
nv/2

where J ⊆ {1, . . . , k} = Jk and M andM∗ are defined in Appendix A. This defines the generalized fiducial density as:

f (ξ) =

∑
J⊆{1,...,k}

fJ(ξ)
Ξ

∑
J⊆{1,...,k}

fJ(ξ ′)dξ ′
(12)

where ξ is a vector of the µ and Σ variables. For each particular J ⊆ {1, . . . , k} the generalized fiducial density with the
weight function, wJ(X), is

fJ(ξ) ∝
wJ(X)

(2π)kn/2
(detΣ)−n/2 exp


−

1
2

n−
i=1

(Xi − µ)T Σ−1 (Xi − µ)



×


n
Cj,n

−1 −
i1,...,ik

|g(Xi, µ)|

detΣ
k−1∏
j=1

detΣ1,j
η∗
j

I{µj>µl:j∈J,l∉J}I{µi=µj:,i,j∈J}

=
wJ(X)Jx
(2π)kn/2

(detΣ)−n/2−1

k−1∏
j=1

detΣ1,j
η∗
j

exp

−

1
2
tr

SΣ−1 I{µj>µl:j∈J,l∉J}I{µi=µj:,i,j∈J} (13)
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where

S =

−
l

(Xi,l − µi)(Xj,l − µj)


i,j=1,...k

= n

((µi − X̄i,n)(µj − X̄j,n) + MXiXj)


i,j=1...k ,

MXiXj =

∑
l


Xi,l − X̄i,n

 
Xj,l − X̄j,n


n

, Jx =


n

CJ,n

−1 −
i1,...,ik

|g(Xi, µ)| ,

and the rest of the terms are defined in Appendix A.
After we calculate the generalized fiducial density we can also compute the fiducial probability that any J is the index

corresponding to the true largest means. This is done by calculating

P(J) =
pJ∑

J̃⊆{1,...,k}

pJ̃
(14)

where pJ =


Ξ
fJ(ξ)dξ . This added information can help to determine the mean or means that are most likely to be the

largest. We would like this value to be large when J correctly indexes the largest mean(s). A later asymptotic discussion will
show that this model selection technique results in P(J) → 1, as n → ∞, when J is the correct index. After proving that
we will asymptotically select the correct model we can apply previous results to prove that the confidence intervals for the
largest mean are asymptotically correct.

3.3. Confidence intervals and coverage

Using the fiducial density in (13) we propose confidence intervals for the largest mean, θ0 = max1≤i≤k µ
(i)
0 . The

intervals constructed using fiducial inference are analogous to the construction of Bayesian credible intervals. We define
one dimensional one tailed intervals as (c1, ∞) and (−∞, c2) for the lower and upper tailed intervals respectively, where
c1 and c2 are the α/2 and (1 − α/2) quantiles of the generalized fiducial distribution. A two tailed (1 − α)100% confidence
interval is obtained by combining the two one tailed intervals as (c1, c2). When calculating the confidence intervals for the
largest mean we do not select the model that is most likely and then get the confidence interval based on that. Instead we
average the fiducial distribution for the largest mean according to the fiducial probability (P(J)) of each of the models.

As is often the case, we cannot integrate Eq. (13) explicitly so we use a Monte Carlo approach to generate a sample from
the generalized fiducial density and calculate the estimated quantiles from that sample. We used the importance sampling
algorithm in Appendix C to draw a sample {θ ′

1, . . . , θ
′

E} from (12), where E is the number of samples needed in order achieve
some pre-specified effective sample size.

Classically, the way to check the coverage of confidence intervals is to choose a desired confidence level (e.g. 95%),
simulate data, and check the frequency in which the true parameter is captured by the constructed interval. By preference,
we check the coverage rate at all confidence levels simultaneously using a graphic device demonstrated in [8]. To achieve
this, set C(X, θ0) = P(Rθ < θ0|X). C(X, θ0) (which can be thought of as a p-value) is the lowest coverage level necessary
for an upper tailed confidence interval to contain the true value, θ0.

If the confidence interval for θ0 were exact at all confidence levels, then C(X, θ0) would follow the U(0, 1) distribution.
UsingQQ-plots,we can evaluate howclosely C(X, θ0) follows theU(0, 1)distribution.Weplot the nominal p-values (desired
coverage probability) vs. actual p-values (actual coverage probability). Fig. 1 is an example of the QQ-plots. If the coverage is
exact for all confidence levels, the p-values (C(X, θ0)) would follow the diagonal line. Due to randomness of the simulation
we also provided 95% confidence bands (dashed lines). The p-values (simulated line) cannot be distinguished from a sample
of theU(0, 1)distribution if they staywithin the 95% confidence bands.When this occurswe claimgood coverage properties.

To check the coverage of our intervals, look at the QQ-plots at the nominal p-value and note the corresponding actual
p-value that coincides with the simulated line. For example, the dotted line in the first plot in Fig. 1 shows that a 0.95 upper
tailed interval has actual coverage of 0.987. The dotted line in the second plot shows our method has 0.129 probability in
the lower tail or, equivalently, the 0.95 lower tailed interval has an actual coverage rate of 0.871.

Our simulation used 1000 data sets and an effective sample size of 10000.Wewill highlight a fewdifficult and interesting
cases before discussing the full simulation study. Fig. 1 illustrates the generated QQ-plots when n = 30, µ0 = (5, 5, 5)T ,
Σ0 = I and 25I for the top and bottom rows respectively. The fiducial method tends to overestimate the largest mean
when the true means are equal. This overestimation is common to all solutions and our method tends to have a smaller
overestimation problem than the competitors. The overestimation leads to conservative upper tailed and liberal lower tailed
intervals, as seen in Fig. 1. When the correlation is positive the upper and lower tailed intervals are closer to exact. As the
correlation becomes negative the upper and lower tailed intervals become even more conservative and liberal respectively.
These plots also illustrate that changing the magnitude of the variance does not seem to affect the coverage. This behavior
was seen in the other µ0 and Σ0 configurations as well.
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Fig. 1. QQ-plots when n = 30, µ0 = (5, 5, 5)T , Σ0 = I and 25I for the top and bottom rows respectively.

Fig. 2. QQ-plots when n = 30, µ0 = (3, 4, 5)T and Σ0 = 25I .

When the true means are close, but not equal, our method will tend to select the model where the means are equal. This
results in underestimating the largest mean, producing liberal upper tailed and conservative lower tailed intervals. This is
seen in Fig. 2 when n = 30, µ0 = (3, 4, 5)T and Σ0 = 25I .

Cases where the largest mean ismuch different from the othermeans results in confidence intervals that are, expectedly,
close to exact. This is reflected in Fig. 3 when n = 30, µ0 = (1, 3, 5)T and Σ0 = I .

When the sample size is dramatically increased to n = 10 000 in the case where µ0 = (3, 4, 5)T and Σ0 = 25I , the
QQ-plots in Fig. 4 reflect close to exact coverage. This motivates our later discussion on the asymptotics of our intervals.

3.4. Simulation results and discussion

In addition to the select configurations that were previously highlighted, we also performed an extensive simulation
study for two and three dimensional data. We looked at all combinations of the parameter values listed in Tables 3 and 4.
Each ρ

(ij)
0 in the last configurations were randomly generated values from the U(0, 1) distribution, where the resulting Σ0

matrix was positive definite.
The coverage and length of the upper tailed fiducial interval was compared to the upper tailed intervals produced by

the intersection–union method (t), [4] (Eaton), and the bias adjusted interval based on a normal approximation from Boos
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Fig. 3. QQ-plots when n = 30, µ0 = (1, 3, 5)T and Σ0 = I .

Fig. 4. QQ-plots when n = 10 000, µ0 = (3, 4, 5)T and Σ0 = 25I .

Table 3
Simulation combinations in two dimensions.

µ0 (2, 5)T (4, 5)T (5, 5)T
η0 (1, 1) (25, 25)
ρ

(1,2)
0 0 ±0.4 ±0.9

n 30 100

Table 4
Simulation combinations in three dimensions.

µ0 (1, 3, 5)T (3, 4, 5)T (1, 5, 5)T

(4, 5, 5)T (5, 5, 5)T

η0 (1, 1, 1) (25, 25, 25)

ρ
(i,j)
0 0 ±0.4 0.9 1

0.051 1
−0.392 0.754 1

  1
0.104 1

−0.528 −0.710 1

  1
−0.133 1
0.844 −0.154 1


n 30 100

et al. [1] (Boos). As previously noted, Boos et al. [1] also introduced an interval without a bias adjustment and two bias
adjusted intervals using a bootstrap approach. The code for the bootstrap methods was proprietary, so we attempted to
recreate the intervals described by the authors. Based on our attempt, the interval we compared with performed the best in
terms of length and coverage. This agrees with results reported in [1].

The coverage for the 95% and 99% intervals when the data is two dimensional can be seen in Figs. 5 and 7. The coverage
when the covariance matrix was randomly generated is seen in Fig. 9. When the correlation is positive, as is the likely case
in practice, the upper tailed fiducial interval is close to the nominal coverage level. At the larger sample size, the median
coverage appears to be very close to the nominal coverage rate for the fiducial method. The very liberal outliers, seen in
Fig. 7, occur when the truemeans are relatively close together and there is negative correlation. For instance, when n = 100,
µ0 = (4, 5),η0 = (25, 25) andρ(1,2)

= −0.9, the 0.95 upper tailed interval has an actual coverage rate of 0.60. As the sample
size increases these intervals will converge to the exact coverage level, but they seem to converge slower than the caseswith



Author's personal copy

D.V. Wandler, J. Hannig / Journal of Multivariate Analysis 102 (2011) 87–104 95

Fig. 5. Coverage when the data is two dimensional and ρ(1,2) > 0.

Fig. 6. Length of the upper tailed intervals relative to the fiducial interval when data is two dimensional and ρ(1,2) > 0.

Fig. 7. Coverage when the data is two dimensional and ρ(1,2)
≤ 0.

positive correlation. Similar behavior also occurred with the three dimensional data. Additional plots are available from the
authors.

Figs. 6, 8 and 10 compare the length of the upper tailed fiducial interval to its competitors. The median fiducial interval
is shorter than the intervals created by the intersection–union (t) and Eaton. At the small sample size our method is slightly
longer than the Boos interval. At the larger sample size our interval is the shortest. Additionally, the Boos interval assumes
that the data is equicorrelated and equivariant, where we allow for a totally unstructured covariance matrix.
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Fig. 8. Length of the upper tailed intervals relative to the fiducial interval when data is two dimensional and ρ(1,2)
≤ 0.

Fig. 9. Coverage when the data is three dimensional and ρ(i,j) is random.

Fig. 10. Length of the upper tailed intervals relative to the fiducial interval when data is three dimensional and ρ(i,j) is random.

4. Asymptotic results

In this section we will prove that the coverage rate for this method is asymptotically correct. We prove that the fiducial
probability of the correct model goes to 1 and, therefore, for large n the inference will be almost entirely based on the
unknown correct model. We assume the following:

Assumption 1. Xi is an independent random variable from the N


µ
(1)
0 , . . . , µ

(k)
0

T
, Σ0


distribution.
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Table 5
AQI range of health effects.

AQI Air quality

0–50 Good
51–100 Moderate

101–150 Unhealthy for sensitive groups
151–200 Unhealthy
201–300 Very unhealthy
301–500 Hazardous

Assumption 2. η
(i)
0 is in a compact set of the positive values of R1 for all i.

Assumption 3. ρ
(ij)
0 is in a compact set of the interval (−1, 1) for all i, j.

The probability that the means from a particular J are equal to the largest mean is given in (14). If J is the index
corresponding to the true largest means and P(J) is large, then the method is selecting the correct model at a high rate.
The following proof will show that this method will asymptotically select the correct model. This result does not follow
from previous theory on generalized fiducial inference.

Theorem 1. If µ0 is the true mean and J correctly identifies the equal largest means then P(J) → 1 in probability.

We could not integrate (13), so we bound it from above and below using the last two assumptions to show pJ̃/pJ → 0
for any J̃ ≠ J . If J̃ incorrectly identified the largest means, then pJ̃/pJ converged to zero exponentially. On the other hand, if
J̃ was a valid model but had too many free means, then pJ̃/pJ converged to zero polynomially as n → ∞. This was proved
without the use of the weight function. The details of the proof are relegated to Appendix B.

Theorem 2. The confidence intervals for θ0 = max1≤i≤k µ
(i)
0 are asymptotically correct.

Proof. Using Theorem 1 we will asymptotically select the correct model. By asymptotically selecting the correct model it
follows from the standard methods in [8] to prove that the confidence intervals are asymptotically correct. �

5. Air quality example

The EPA measures the air quality to help inform people of the daily air conditions. This measurement is called the air
quality index (AQI) and is calculated from the five major air pollutants regulated by the Clean Air Act. The AQI ranges from
0 to 500, where the higher the value the greater the level of pollution and the greater the health risk. Table 5 breaks down
the air quality for different AQI values. Overall, an AQI value of 100 or less is the standard at which the EPA determined as
satisfactory.

We obtained monthly AQI measurements from January 1, 1998 to October 1, 2008 from the EPA [5] to perform inference
on the largestmean AQI for the cities of Baltimore, Boston, NewYork, and Philadelphia. The data set is available upon request
from the authors. Because of the proximity of these cities there is clearly spatial correlation.

Monthly data was used to eliminate the temporal correlation between successive data points. It was determined from
auto correlation plots that data points that were a month apart were reasonably uncorrelated. Using normal QQ-plots we
determined that the transformed data of X ′

= log(X), where X is the original data and X ′ is the transformed data, appeared
to be reasonably normal. Thus, all analysis was done on the transformed data. The sample mean and covariance for X ′ is are:

x̄′
=

3.959
3.845
3.928
3.963

 and Σ̂ ′
=

0.251 0.123 0.161 0.194
0.123 0.161 0.132 0.137
0.161 0.132 0.193 0.172
0.194 0.137 0.172 0.230

 . (15)

If we were to assume that those were the true values for µ0 and Σ0, the coverage for θ0 is shown in Fig. 11. Our method
appears to be slightly liberal for the upper tailed interval and slightly conservative for the lower tailed interval. The equal
tailed interval appears to have exact coverage. The coverage of the competing methods can be seen in Fig. 12. Because
the means are relatively close together, two of the methods tend to overestimate the maximum and produce conservative
intervals.

At the 99% level the fiducial method has an approximate coverage rate of 98.3% (based on the Fig. 11) and a back
transformed upper limit of 56.8. The intersection–union (t) interval has a coverage rate and upper limit of 99.9% and 58.1,
the Eaton interval has a coverage rate and upper limit of 99.5% and 58.0, and the Boos interval has coverage rate and upper
limit of 99.3% and 57.5. Even though all themethods produce intervals with upper tails in themoderate range, our method’s
interval is the shortest and allows for a two tailed interval when needed.

The fiducial method also provides added information as to which city or cities are likely to have the largest average AQI.
Table 6 illustrates these fiducial probabilities for any J when P(J) > 0 (note, 1 = Baltimore, 2 = Boston, 3 = New York, and
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Fig. 11. Fiducial method QQ-plots using µ0 and Σ0 from (15).

Fig. 12. Competing methods QQ-plots using µ0 and Σ0 from (15).

Table 6
Probabilities for each model, J .

J {1} {3} {4} {1, 3}
P(J) 0.009 0.002 0.012 0.014
J {1, 4} {3, 4} {1, 3, 4} {1, 2, 3, 4}
P(J) 0.271 0.095 0.595 0.001

4 = Philadelphia). The probability that J = {1, 3, 4} is 0.595, which reflects the likelihood that Baltimore, New York, and
Philadelphia are the equal largest mean. This information could be used in an effort to clean up the worst polluting cities.

6. Conclusion

The application of inference on the largest mean of a multivariate normal distribution is wide reaching. There are
applications in drug trials, stock returns, agriculture, pollution (as seen in this paper), etc. Clearly, a viable inference
technique for the largest mean is necessary.

We proposed a method based on fiducial inference that possesses many nice qualities. First, from simulation results,
the empirical coverage for the one and two tailed intervals is close to exact in small sample sizes when the correlation is
positive. Second, the upper tailed interval is shorter than two of the competitors when the sample size is small and shorter
than all of them when the sample size is large. Unlike the other methods, we have proven our intervals are asymptotically
correct. Lastly, this method also provides information as to how likely any of the means are to be the equal largest mean.
This could serve as valuable resource management information when any sort of action is taken with the group(s) that have
the largest mean.

Our illustrative example examined the air quality of the four largest northeastern cities in the United States. The fiducial
approach produced a shorter 99% upper tailed interval than the competitors and it provided information as to which cities
had theworst air quality. If a reclamation project were to take place, it would be reasonable to focus the efforts on Baltimore,
New York, and Philadelphia.
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Appendix A. Definitions

We derived the generalized fiducial density to be

fJ(ξ) ∝
wJ(X)Jx
(2π)kn/2

(detΣ)−n/2−1

k−1∏
j=1

detΣ1,j
η∗
j

exp

−

1
2
tr

SΣ−1 I{µj>µl:j∈J,l∉J}I{µi=µj:,i,j∈J}.

Wewill now define all of the components of the equation. First, Σ1,j is the upper left j× jminor of Σ and η∗

j =
∏j

z=1 ηz . As

noted before, Jx =


n

Cu,n

−1∑
i1,...,ik

|g(Xi, µ)|, where g(Xi, µ) =
1
2k

det(X2)
∏u+1

j=3

X∗

j

∏k+1
j=u+2

Xj
, i = (i1, . . . , ik+1),

Xj =


1 Xi1,1 · · · Xi1,j−1
1 Xi2,1 · · · Xi2,j−1
...
1 Xij,1 · · · Xij,j−1

 , X∗

j =


1 µ · · · µ
1 Xi1,1 · · · Xi2,j−1
...
1 Xij−1,1 · · · Xij,j−1

 ,

Cu,n =

2, 1, . . . , 1, n − k − 1 u = 1
2, 2, 1, . . . , 1, n − k − 1 u = 2, . . . , k − 1
2, 1, . . . , 1, n − k u = k,

and u is the number of elements in J or the number of equal means (u ≥ 1). This method was not scale invariant, so we
attempted to reduce the scale dependence through our weight function. In order to add a weight function the additional
structural equations

1
2v

log


det


MJk

(v−1) M∗v
J k2v

det

MJ
(v−1) M∗v

Jk
nv


= βi + Pi if i ∈ J

1
2v

log


det


MJk

(v−1) M∗v
J k2v

det

MJ
(v−1) M∗v

Jk
nv


= Pi if i ∈ Jc (A.1)

were used, where Pi are independent random variables from the Exp(1) distribution. Thus, the weight function is

wJ(X) =
det


MJk

(v−1)/2 M∗v/2
J kv

det

MJ
(v−1)/2 M∗v/2

Jk
nv/2

where v is the number elements in Jc or the number of unequal means (u + v = k), J ⊆ {1, . . . , k} = Jk, J = {j1, j2, . . . , ju},
MJ =


MXiXj


i,j∈J , and M∗

J = det

1 + MJ


− det


MJ

.

Appendix B. Proof of Theorem 1

Preliminary work for the proof of Theorem 1

To find the fiducial probability that we select a particular model, we will be calculating the probabilities P(J) =

pJ
∑

J̃⊆{1,...,k} pJ̃
−1

. Since we cannot integrate fJ , upper and lower bounds were used to observe the asymptotic behavior
of P(·). With the addition of Assumptions 2 and 3 the upper and lower bounds are:

fJ(ξ) ≤
J (·)x

bρ(2π)kn/2
(detΣ)−n/2−1 exp


−

1
2
tr

SΣ−1

= f N
J (ξ) (B.1)

and

fJ(ξ) ≥ f ĎJ (ξ)I{µj>µl:j∈J,l∉J}I{−r≤ρij≤r:∀i,j}I{w1≤ηi≤w2:∀i} = f H
J (ξ) (B.2)
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where f ĎJ (ξ) = b(2π)−kn/2 (detΣ)−n/2−1 exp

−

1
2 tr

SΣ−1


I{µi=µj:,i,j∈J}. Additionally,

ρ(ij)
0

 ≤ r < 1 and 0 < w1 ≤

η
(i)
0 ≤ w2 < ∞ for all i and j, bρ > 0 is a lower bound for

∏k−1
j=1 detΣj


η∗

j

−1, and b > 0 is a lower bound for Jx. When
proving the asymptotic consistency we will assume, without loss of generality, that E(X) = (µ1, µ2, . . . , µv, µ, . . . , µ)T .
That is saying that Xv+1, . . . , Xk share the common mean, µ.

If we notice that Σ−1 and µi follow aWishart and t distribution for all i, the resulting integration for the upper bound is

pN
J =

∫
Ξ

f N
J (ξ)dξ

=
1
bρ

2k(k+3)/2π k(k−2n−1)/4
k∏

i=1
Γ
 n+k+4−i

2


nk(n+k+3)/2s(n+k+3)/2

1 s(n+k+2)/2
2 · · · s(n+k+4−v)/2

v

×

πv/2Γ
 n+k+2

2


Γ
 n+k+1

2


· · · Γ


n+k+3−(k−u)

2


Γ
 n+k+3

2


Γ
 n+k+2

2


· · · Γ


n+k+4−(k−u)

2


×

∫
R

J (·)x

(σ 2
v − ζ 2

v )(n+k+3−v)/2
dµ

where J (·)x is the appropriate Jacobian, which will be discussed later. From this point we will break the integration into 3
cases. When u = 1, u > 1 and even, and u > 1 and odd. The first case, when u = 1 (all means are different denoted J1)
results in

pN
J1 =

J (0)x

bρ

2k(k+3)/2π k(k−2n−1)/4π k/2
k∏

i=1
Γ
 n+k+3−i

2


nk(n+k+3)/2s(n+k+3)/2

1 s(n+k+2)/2
2 · · · s(n+4)/2

k

1
(σ 2

k − ζ 2
k )(n+3)/2

.

When u > 1 and odd,

pN
Ju =

1
bρ

2k(k+3)/2π k(k−2n−1)/4
k∏

i=1
Γ
 n+k+4−i

2


nk(n+k+3)/2s(n+k+3)/2

1 s(n+k+2)/2
2 · · · s(n+k+4−v)/2

v s̃(n+u+3)/2
u

×

π (v+1)/2
v∏

i=1
Γ
 n+k+3−i

2


v∏

i=1
Γ
 n+k+4−i

2

 (u+1)/2−
i=1

J (1)xi

(σ̃ 2
u − ζ̃ 2

u )(n+1+2i)/2

Γ
 n+2i+1

2


Γ
 n+2i+2

2

 .
When u > 1 and even,

pN
Ju =

1
bρ

2k(k+3)/2π k(k−2n−1)/4
k∏

i=1
Γ
 n+k+4−i

2


nk(n+k+3)/2s(n+k+3)/2

1 s(n+k+2)/2
2 · · · s(n+k+4−v)/2

v s̃(n+u+3)/2
u

×

π (v+1)/2
v∏

i=1
Γ
 n+k+3−i

2


v∏

i=1
Γ
 n+k+4−i

2

 u/2+1−
i=1

J (2)xi

(σ̃ 2
u − ζ̃ 2

u )(n+2i)/2

Γ
 n+2i

2


Γ
 n+2i+1

2

 .
Integrating the lower bound f H

J (ξ) will result in a very similar calculation. First notice that from Eq. (B.2),

pH
J =

∫
Ξ

f H
J (ξ)dξ

=

∫
Ξ

f ĎJ (ξ)I{µj>µl:j∈J,l∉J}I{−r≤ρij≤r:∀i,j}I{w1≤ηi≤w2:∀i}dξ

=

∫
Ξ

f ĎJ (ξ)dξ + Ln

where

Ln = −

∫
Ξ

f ĎJ (ξ)

1 − I{µj>µl:j∈J,l∉J}


dξ −

∫
Ξ

f ĎJ (ξ)

1 − I{−r≤ρij≤r:∀i,j}


dξ
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−

∫
Ξ

f ĎJ (ξ)

1 − I{w1≤ηi≤w2:∀i}


dξ

+

∫
Ξ

f ĎJ (ξ)

1 − I{µj>µl:j∈J,l∉J}

 
1 − I{−r≤ρij≤r:∀i,j}


dξ

+

∫
Ξ

f ĎJ (ξ)

1 − I{µj>µl:j∈J,l∉J}

 
1 − I{w1≤ηi≤w2:∀i}


dξ

+

∫
Ξ

f ĎJ (ξ)

1 − I{−r≤ρij≤r:∀i,j}

 
1 − I{w1≤ηi≤w2:∀i}


dξ

−

∫
Ξ

f ĎJ (ξ)

1 − I{µj>µl:j∈J,l∉J}

 
1 − I{−r≤ρij≤r:∀i,j}

 
1 − I{w1≤ηi≤w2:∀i}


dξ . (B.3)

We do not need explicitly integrate Ln, because this term will converge to 0. Using the transformation
√
n

Rξ − ξ0


= p (B.4)

where Rξ is a vector of the fiducial random variables for ξ , ξ0 is a vector of the values of µ0 and Σ0, and p is a vector of the
transformed variables. Observing the indicators from (B.3) with the transformation in (B.4), we can see that they converge
to 1 in probability. Therefore, as n → ∞ the convergence of Ln → 0 in probability follows, by comparison with theWishart
and t densities. Thus,

pH
J =

∫
Ξ

f ĎJ (ξ)dξ


1 +

Ln
Ξ
f ĎJ (ξ)dξ



= b
2k(k+3)/2π k(k−2n−1)/4

k∏
i=1

Γ
 n+k+4−i

2


nk(n+k+3)/2s(n+k+3)/2

1 s(n+k+2)/2
2 . . . s(n+k+4−v)/2

v s̃(n+k+3−v)/2
u

×

π (v+1)/2
v+1∏
i=1

Γ
 n+k+3−i

2


v+1∏
i=1

Γ
 n+k+4−i

2

 1

(σ̃ 2
u − ζ̃ 2

u )(n+k+2−v)/2


1 +

Ln
Ξ
f ĎJ (ξ)dξ



where

1 + Ln


Ξ
f ĎJ (ξ)dξ

−1


→1 inprobability. For future referenceweuse thenotation IJ =

1+ Ln


Ξ
f ĎJ (ξ)dξ

−1

.

To define the Jacobian term, J (·)x , a lower bound can be Jx > b for some b > 0. If u = 1, meaning all of the means are
different, then Jx is independent of µ and we can explicitly write Jx = J (0)x , where an upper bound is unnecessary. For all
other cases we will bound Jx from above as follows. First,

Jx =
Jx1µu−1

+ Jx2µ
u−2

+ · · · + Jxu


≤
Jx1  µu−1

+ Jx2  µu−2
+ · · · +

Jxu  .
We can bound

µt
 < µt+1

+ 1 when t is odd. If u is odd the equation above is bounded by

Jx ≤
Jx2,1 µu−1

+
Jx2,2  µu−1

+ 1

+ · · · +

Jx2,u 
≤ J (1)x1


µ − ζ̃u

2
+ σ̃ 2

u − ζ̃ 2
u

(u−1)/2

+ J (1)x2


µ − ζ̃u

2
+ σ̃ 2

u − ζ̃ 2
u

(u−3)/2

+ · · · + J (1)x u+1
2

+ J (1)x u+1
2 +1


µ − ζ̃u

2
+ σ̃ 2

u − ζ̃ 2
u
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2 +2


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2
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u
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(µ − ζ̃u) + · · · + J (1)xu (µ − ζ̃u).

Note that

µ − ζ̃u

2
+ σ̃ 2

u − ζ̃ 2
u =

σ 2
v −ζ 2

v

s̃u
, then

Jx ≤

(u+1)/2−
i=1

J (1)xi


σ 2

v − ζ 2
v

s̃u

(u−2i−1)/2

+

(u+1)/2−
i=1

J (1)x u+1
2 +i


σ 2

v − ζ 2
v

s̃u

(u−2i)/2

(µ − ζ̃u)

= J (1)x .
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Using the exact same logic when u is even, we can show that

Jx ≤

u/2+1−
i=1

J (2)xi


σ 2

v − ζ 2
v

s̃u

(u−2i−2)/2

+

u/2−
i=1

J (2)x u
2 +1+i


σ 2

v − ζ 2
v

s̃u

(u−2i)/2

(µ − ζ̃u)

= J (2)x

where ζ̃u and σ̃ 2
u − ζ̃ 2

u are the mean and a scale factor of µ. They are functions of (X̄v+1, . . . , X̄k) and the values from MJ .
Likewise, Jx· is an average of some combinations of X. Thus, J (1)x· and J (2)x· are combinations of ζ̃u, σ̃ 2

u and Jx· , and will converge
to some value by the strong law of large numbers.

Now we will introduce some notation for this scenario:

X̄d,v =

X̄v+1 − X̄v+2, X̄v+1 − X̄v+3, . . . , X̄v+1 − X̄k, X̄v+2 − X̄v+3, . . . , X̄k−1 − X̄k

T
is the difference in the sample mean of the variables that share a common mean, µ. Next, X̄h =


X̄h, . . . , X̄k

T
,

X̄µ,h =

X̄h, X̄h+1 − µh+1, X̄h+2 − µh+2, . . . , X̄k − µk

T
,

Mj,k =


MJ for J = {j, . . . , k}
1 otherwise, M∗

u,k = det

1 + Mv+1,k


− det


Mv+1,k


,

sj =


det


M2,k


for j = 1

det

Mj+1,k


det


Mj−1,k


det


Mj,k

2 for j = 2, . . . , k,
and

su =


M∗

u,k det

Mv,k


det


Mv+1,k

2 for u < k

M∗

k,k for u = k.

The next two terms σ 2
h − ζ 2

h and ζh can be thought of as a scale and mean of µh conditional on µh+1, . . . , µk, µ. They are
defined as:

σ 2
h − ζ 2

h =
det


Mh,k


det


Mh+1,k

 1 +
X̄T

µ,hDhX̄µ,h

det

Mh+1,k

 , and ζh =
X̄T

µ,hDh10

det

Mh+1,k


for h = 1, . . . , v where 10 = (1, 0, . . . , 0)T . Likewise, σ̃ 2

u − ζ̃ 2
u and ζ̃u can be thought of as a scale and mean of µ, the equal

mean.

σ̃ 2
u − ζ̃ 2

u =
det


Mv+1,k


M∗

u,k


1 +

X̄T
d,vDX̄d,v

M∗

u,k


, and ζ̃u =

X̄T
v+1D1
M∗

u,k

where 1 = (1, . . . , 1)T . The matrix Dh is the 1st adjugate matrix ofMh,k and D is the 2nd adjugate matrix orMv+1,k.
First and second adjugate matrix

Constructing a first order adjugate matrix will be done in a similar manner as laid out in [2]. C1(A) with elements c(1)
ij is

the first adjugate of A, anm×mmatrix. c(1)
ij is calculated by removing row i and column j from A, taking a determinant of the

resulting minor, and multiplying it by (−1)i+j. Specifically, c(1)
ij = (−1)i+j det(A−i,−j), where A−i,−j is the (m− 1)× (m− 1)

minor of Awith row i and column j removed.
The second order adjugate matrix of A, denoted C2(A) with elements c(2)

ij , is calculated in a similar fashion. First, let
a(1), a(2), . . . , a(r) be the

m
2


pairs of the series 1, . . . ,m in lexicographic order. Now, to calculate c(2)

ij we will remove rows

a(i) and columns a(j) from A, take the determinant of the resulting minor, and multiply it by (−1)
∑2

l=1 a(i)l +a(j)l . Specifically,
c(2)
ij = (−1)

∑2
l=1 a(i)l +a(j)l det(A−a(i),−a(j)), where A−a(i),−a(j) is the (m− 2) × (m− 2) minor of Awith rows a(i) and columns a(j)

removed, and
∑2

l=1 a
(i)
l + a(j)

l is the sum of the rows and columns that were removed from A.

Proof of Theorem 1. After integrating the bounding equations we can now look at the asymptotic behavior of P(·). We will
break this into 2 cases: first, when the correct model has only one largest mean, when J = {i : i = 1, . . . , k} = J1 or
equivalently u = 1. The second case is when there are multiple largest means, J ⊆ {1, . . . , k} and u ≥ 2. We will show that

if J correctly indexes the largest mean(s) then P(J) = pJ
∑

J̃⊆{1,...,k} pJ̃
−1

→ 1, or equivalently pJ̃/pJ → 0 for any J̃ ≠ J .
Before completing the proof we need to observe the following. Using Stirling’s formula:

Γ
 n+3

2


Γ
 n+k+2−v

2

 ≤
2(k+1−v)/2

n(k−1−v)/2
eventually a.s.
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Also, because the matrix D is the 2nd adjugate matrix, or Mv+1,k, and we know that Mv+1,k is positive definite, then D is
also a positive definite matrix. This comes from a result obtained by Rados [12], which states that the eigenvalues of D are a
product of the k− 2 eigenvalues ofMv+1,k with different indices (e.g. the first eigenvalue of D is λD

1 = λ3, λ4, . . . , λu, where
λi is the ith eigenvalue of Mv+1,k).

When J correctly indexes the largest means note that X̄d,v → 0. As a result, using the fact that D is positive definite along
with the law of iterated logarithms, then we can write:

n + u + 2
2

log


1 +

X̄T
d,vDX̄d,v

M∗

u,k


≤ c log log n for some c > 0.

This means that

1 + X̄T

d,vDX̄d,v

M∗

u,k

−1
(n+u+2)/2

≤ (log n)c eventually a.s. For any J̃ that incorrectly indexes the largest

mean(s) then

1 + X̄T

d,vDX̄d,v

M∗

u,k

−1
(n+u+2)/2

grows exponentially.

Now we have the tools to show that pJ̃/pJ ≤ pN
J̃
/pH

J → 0 in probability when J indexes the largest means and J ≠ J̃ . For
example, if Ju is the correct index for the largest means, then

pN
J1

pH
Ju

=
J (0)x

IJubρb
Γ
 n+3

2


Γ
 n+k+2−v

2

 ×
π k/2s̃(n+k+4−(v+1))/2

u (σ̃ 2
u − ζ̃ 2

u )(n+k+3−(v+1))/2

π (v+1)/2s(n+k+3−v)/2
v+1 s(n+k+2−v)/2

v+2 . . . s(n+4)/2
k s(n+3)/2

k+1

=
J (0)x

IJubρb
Γ
 n+3

2


Γ
 n+k+2−v

2

π (u−1)/2M∗1/2
u,k


1 +

X̄T
d,vDX̄d,v

M∗

u,k

(n+2+u)/2

≤
J (0)x

IJubρb
π (u−1)/2M∗1/2

u,k
2(u+1−v)/2

n(u−1)/2 (log n)c eventually a.s.

P
→ 0.

We can see that this converges polynomially. A similar calculation when J1 correctly indexes the largest mean shows
exponential convergence when u is odd:

pN
Ju

pH
J1

≤
1

IJ1bbρ

4nu/2

π (u−1)/2

(u+1)/2−
i=1

J (1)xi det

Mv+1,k

(u+1−2i)/2

M∗(u+2−2i)/2
u,k


1 +

X̄T
dDX̄d
M∗

u,k

(n+1+2i)/2 eventually a.s.

P
→ 0.

In a similar fashion, we have shown that pN
Ju/p

H
J1

→ 0 in probability when u is even, and pN
Ju1

/pH
Ju2

→ 0 in probability for
some Ju2 that correctly indexes the largest means and u1, u2 ≥ 2.

These calculations have shown that for any J ≠ J̃ then pJ̃/pJ ≤ pN
J̃
/pH

J → 0 in probability when J correctly indexes

largest mean(s). Specifically, we have shown, P(J) = pJ
∑

J̃⊆{1,...,k} pJ̃
−1

→ 1 in probability. This completes the proof of
Theorem 1. �

Appendix C. Importance sampling algorithm

The following steps were implemented in order to obtain a fiducial sample for ξ .

1. Start by generating µ = ζ̃u +


σ̃ 2
u −ζ̃ 2

u
n+u+2Tu, where Tu ∼ t(n + u + 2).

2. Generate (µh|µh+1, . . . , µv, µ) = ζh +


σ 2
h −ζ 2

h
n+k+3−hTh, where Th ∼ t(n + k + 3 − h) for all h = 1, . . . , v.

3. Generate

Σ−1

|µ


= W , whereW ∼ Wishart(n + k + 3, S−1)

4. Calculate weights of each generated sample with

wJ =
fJ(ξ)

g(µ)


v∏

i=1
gi(µi)


h(Σ−1)

where fJ(ξ) is the generalized fiducial density for the model with index J , and g(µ), gi(µi) and h(Σ−1) are the densities
from distributions described in steps 1, 2 and 3 respectively.
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5. This processwas repeated until we achieved the effective sample size calculated by ESSJ = nJ


1 +


s2wJ


w̄−2

J

−1
, where

nJ is the sample size for model J , s2wJ
is the sample variance of the weights, and w̄J is the sample mean of the weights.

6. Lastly the weights were divided by the ESSJ , and all samples that did not meet the condition of µ > maxi≤v µi were
eliminated.

7. This process was repeated for all possible models J ⊆ {1, . . . , k}.
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