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Abstract: Simultaneous tracking of multiple moving objects extracted
from an image sequence is an important problem which finds numerous
applications in science and engineering. In this article we conduct an inves-
tigation of the theoretical properties a statistical model for tracking such
moving objects, or targets. This tracking model allows for birth, death,
splitting and merging of targets, and uses a Markov model to decide the
times at which such events occur. This model also assumes that the track
traveled by each target behaves like a Gaussian process. The estimated
tracking solution is obtained via maximum likelihood. One of the contri-
butions of this article is to establish the almost sure consistency to the
data association problem by using these maximum likelihood tracking es-
timates. A major technical challenge for proving this consistency result is
to identify the correct track (data association) amongst a group of similar
(but incorrect) track proposals that are results of various combinations of
target birth, death, splitting and/or merging. This consistency property of
the tracking estimates is empirically verified by numerical experiments. To
the best of our knowledge, this is the first time that a comprehensive study
is performed for the large sample properties of a multiple target track-
ing method. In addition, the issue of how to quantify the confidence of a
tracking estimate is also addressed.
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1. Introduction

Multiple target tracking has application to many scientific problems. It has im-
portance in radar and signal processing, air traffic control, robot vision, GPS-
based navigation, biomedical engineering, and video surveillance to name a few.
Typically the objects of interest (i.e., the targets) are captured in the form of
an image sequence. Each image frame contains the locations and perhaps other
attribute (such as sizes and shapes) information of the targets. The goal of
tracking is to recover this information and use it to help reconstruct the tracks
that the targets traveled. Quite often the following two-step strategy would be
adopted to solve this problem. The first step is to extract the locations and/or
other attributes of the targets from each image frame. There is no unified solu-
tion for this first step, as different targets need different methods for extraction;
e.g., human faces and missiles require very different target recognition meth-
ods to detect their appearances in an image. Once the target coordinates are
located, the second step for solving the tracking problem is to link these coor-
dinates together in such a way that coordinates of the same target detected at



Data association asymptotics 1229

different image frames are connected together as a reconstruction of the path
that this target traveled. This article assumes that the target coordinates have
already been extracted from the image sequence and focuses on the second step
of coordinate linking. This second step is also known as the data association
problem.

The work discussed in this paper was motivated by the practical need for
tracking (i) storm activities captured in radar images and (ii) vortices gen-
erated in turbulence fields. In these two tracking applications, the splitting
and merging of targets is quite common. A promising method is proposed
Storlie, Lee, Hannig & Nychka (2009) for tracking of such, and other kinds of,
merging and splitting targets. This tracking method models target locations
with Gaussian processes, and estimates their tracks using a maximum likeli-
hood approach. Movies presenting the results obtained by applying this track-
ing method to the storm activities and the vortices applications can be viewed
at http://www.stat.unm.edu/~storlie/tracking/. In this article we com-
plement the work of Storlie et al. (2009) by studying the asymptotic properties
of their solution to the data association problem. We show that under certain
regularity conditions this solution is strongly consistent. While this result is
useful in and of itself, it is also our hope that the method of proof adopted here
could be valuable for studying the large sample properties of solutions to other
tracking problems as well. To the best of our knowledge, this is the first time
that a comprehensive study is performed for the large sample properties of a
multiple target tracking method.

1.1. A first description of the tracking problem

As mentioned before, in this article we assume that the coordinates (x, y) of the
targets have been extracted from every frame of the image sequence. We do not
know however which of the (x, y) locations corresponds to which target. The
goal of a tracking method then, is to take the location data extracted over time
and recover the track of each target. A track is defined to be the (x(t), y(t))
coordinates of a target at each time t during the image sequence.

To illustrate the idea further, consider the tracking problem depicted in as-
sume that there are 4 targets at each time step as in Figure 1. The locations of
the targets in this figure are simulated from the model to be described in Sec-
tion 2. We are however ignoring the possibility of birth and death of targets as
well as splitting and merging for the time being. The targets are free to change
position from one time step (or image) to the next. The data association problem
is to determine which temporal set of locations corresponds to one particular
target. In other words, the goal is to sequentially connect the targets in the
bottom left plot to form tracks. Since this is simulated data, the corresponding
solution is known and the correct tracks are given in the bottom right plot. In
many instances the observed locations of the targets include a non-negligible
measurement error. In this case, it is typical to first solve the data association
problem. The observations forming a track can then be smoothed to obtain the
estimated paths of the solution.

http://www.stat.unm.edu/~storlie/tracking/
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Fig 1. Illustration of the tracking problem.

Many statistical approaches to the target tracking problem have been studied
in the engineering literature over the past thirty years; e.g., see the two very com-
prehensive books Bar-Shalom, Li & Kirubarajan (2001) and Blackman & Popoli
(1999), and the references given therein. Most of these methods employ a sta-
tistical model to describe the motion of the targets to be tracked. Usually a
Gaussian state space model is assumed, and the “best” estimates are defined
as the set of tracks that maximizes the likelihood of the model. Note that we
use the term likelihood to be the unconditional likelihood of the data as typical
in statistics literature, as opposed to the conditional likelihood which is what
is often meant in the tracking community. Virtually no attempts have been
made to investigate the theoretical properties of these maximum likelihood es-
timates, although various practical algorithms have been proposed for comput-
ing them. The two most widely used algorithms are the Multiple Hypothesis
Tracking algorithm of Reid (1979) and the Joint Probabilistic Data Associa-
tion algorithm developed by Fortmann, Bar-Shalom & Scheffe (1983). See also
Mori, Chong, Tse & Wishner (1986) for a good general mathematical frame-
work for this problem. Most recently, a new class of filtering methods based on
particle filtering or sequential Monte Carlo (Gordon, Salmond & Smith (1993),
Kitagawa (1996), Liu & Chen (1998), Doucet, Godsill & Andrieu (2000) and
Doucet, de Freitas & Gordon (2001)) have been developed. Still other meth-
ods such as the probability hypothesis density method (Mahler (2003) and
Vo, Singh & Doucet (2005)) approximate the likelihood by propagating only the
posterior expectation instead of the entire distribution through to subsequent
times. Since the major focus of this article is to present a thorough theoreti-
cal analysis of the tracking estimates provided by the method of Storlie et al.
(2009), the algorithmic issue of how to computing the estimates of target loca-
tion will not be further discussed.
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1.2. Merging and splitting of targets

The example shown in Figure 1 is often a simplistic representation of reality.
Many applications will not have the same number of targets in each image. For
examples, imperfect detection and occlusion will lead to missing targets in some
images. There can also be false alarms or clutter. Furthermore, some targets
may appear for the first time or disappear permanently in the middle of the
image sequence. We will call these events birth and death respectively.

In addition, this article is motivated by the scientific need of tracking merg-
ing and splitting targets, such as storms or vortices. Figure 2 illustrates a more
realistic example of an actual tracking problem motivating this work. These
images are from a two-dimensional turbulence simulation of freely decaying
vortexes. The white objects are centers of vorticity rotating in a clockwise di-
rection, whereas the black vortexes have the opposite rotation. Vortexes of the
same spin will merge together as they move close to each other. There is a good
example of a merger, between times 8 and 9, of two white vortexes that are left
of center and below center in the images.

In the example in Figure 2, there will be birth, death, and merging. In prac-
tice, the vortices also need to be identified with some target extraction proce-
dure, and there is no perfect method for doing this. This leads to false alarm
observations and missing observations in some time windows. The ability to deal
with these issues is important for a practical tracking system. For the descrip-
tion of a tracking procedure that allows for birth, death, splitting, merging, false
alarms, and missing observations, see Storlie et al. (2009). In this presentation,
we are only interested in studying the asymptotic behavior of the estimator pro-
posed in Storlie et al. (2009) as observations become more and more frequent. To
this end, the asymptotic analysis is greatly simplified if false alarms are ignored.
Studying the asymptotic properties under this simplification provides insight
into the more complex situation when missing observations and false alarms are
present. For example, false alarms can be thought of intuitively as targets that
last only for a short time frame. If this is the case, the results presented here
would still apply to the actual targets, even if false alarms are present.

Merging and splitting of targets can be common in radar applications as well,
though in a slightly different context. That is, when two targets are close to-
gether, resolution limits may prevent them from being simultaneously detected.
The detection method will then return only one (or even no) observation for
these two targets. This certainly poses additional difficulties and challenges.
Although this is perceived as a very important issue by Daum (1994) and
Blackman (2004), we are unaware of any satisfactory solution to this. Most
existing methods for tracking merging targets are not well defined in terms of
an overall probabilistic model (Trunk & Wilson, 1981; Chang & Bar-Shalom,
1984; Koch & van Keuk, 1997; Genovesio & Olivo-Marin, 2004).

Another limitation of most existing work on tracking methodology is the
lack of theoretical understanding. Some notable exceptions are the work of
Cong & Hong (1999) and Li & Jing (2003) which study the numerical con-
vergence properties of their optimization algorithms, and the work of Chen,
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Fig 2. 2D Turbulence Simulation.

Li & Bar-Shalom (2004) which provides some theoretical justification for their
method to choose the correct number of targets as the number of image
frames goes to infinity. Also, for a somewhat different class of tracking problems,
Hall & Rau (2000), Hall, Peng & Rau (2001) and Hall, Qiu & Rau (2007) pro-
vide tracking solutions with theoretical support. Despite of these various pieces
of work, however, many important theoretical problems remain unsolved. For
example, under what conditions can we obtain a consistent tracking estimate
as the time increment between observations goes to zero? At what rate does
this convergence take place? The novel contribution made in this article is to,
via analyzing the method of Storlie et al. (2009), provide a first attempt at ad-
dressing these questions. While it is not surprising to expect the existence of a
perfect tracking method when the number of observations increases to infinity,
it is not obvious that the MLE of our tracking model converges almost surely
to the correct solution. The current paper establishes this convergence result.

The rest of this article is organized as follows. Section 2 summarizes the
major ingredients of the tracking method of Storlie et al. (2009). The almost
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sure convergence of the maximum likelihood solution of this tracking method
is established in Section 3. These properties are then illustrated via numerical
experiments in Section 4. Concluding remarks and possible future work are
offered in Section 5, while technical details are deferred to the appendix.

2. The tracking model of Storlie, Lee, Hannig & Nychka

In this section, for completeness, we summarize the multiple target tracking
model proposed by Storlie et al. (2009), for which its theoretical properties are
to be studied. This model has a continuous time stochastic component that
describes (i) the events that occur and (ii) the locations of the targets to be
tracked. The tracking estimate for the targets is obtained by using the model
likelihood given in Appendix A.

Define a path, (X(t), Y (t)), to be the coordinates of a target at time t > 0.
We observe the targets at discrete times t = (t0, t1, . . . , tn). We assume a two-
dimensional path, but the following could easily allow for paths in ℜ3. We wish
to model the path of a target by a two-dimensional Gaussian process. The
complication is that, due to the following reasons, we may not be able to observe
the target at all times:

1. it will exist in the future, but does not exist yet (birth),
2. it no longer exists (death),
3. it broke off into 2 new targets (splitting), and
4. it combined with another target (merger).

The tracking model to be studied below has two parts which we will refer to
as (i) the Event Model and (ii) the Location Model. The Event Model describes
how and when targets come into existence and termination, while the Location
Model describes how an existing target travels around.

Before describing the Event Model, again note that in many practical track-
ing problems, there may be missing observations and false alarms. Also, addi-
tional target attribute variables, such as size and shape, may be available. For
the description of a more complete model that allows for the all of the above
complications as well as attributes, false alarms, and missing observations, see
Storlie et al. (2009). In the following we omit these features in order to sim-
plify the asymptotic analysis. As mentioned, we can gain a lot of insight about
the asymptotic behavior of the solution to the data association problem in this
simplified case, and project this understanding to more complex scenarios (i.e.,
those with false alarms and missing observations).

2.1. Event Model

The Event Model is a continuous time Markov chain model that is very similar
to a birth and death process. Four types of events can occur: births, deaths,
splits, and mergers. The rate at which these events happen are λb, N(t)λd,
N(t)λs, and (N(t) − 1)λm respectively, where N(t) is the number of targets
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in existence at time t. It is assumed that the initial number of targets, N0 =
N(0) ∼ Poisson(λ0).

The following notation will be used to describe the Event Model

Ub,j = number of births in the interval [tj , tj+1)

Ud,j = number of deaths in the interval [tj , tj+1)

Us,j = number of splits in the interval [tj , tj+1)

Um,j = number of mergers in the interval [tj , tj+1). (1)

We will write U b = (Ub,1, . . . , Ub,n) and similarly for Ud, U s, and Um. Also,
denote the collection of N0 and the U ’s by U = (N0,U b,Ud,Us,Um).

Each target, regardless of its status (e.g., alive or dead), will be uniquely
identified by a positive integer starting from 1.We shall call such integers indices.
The initial targets alive at time t1 are arbitrarily labeled with indices 1 through
N0. The following actions will be taken at the time whenever any one of the
four possible events happens. When there is a birth the new target will be given
the next available index. For example, if there are already 10 targets in the
model (some currently alive, some could be dead), these targets would have
been labeled uniquely with indices from 1 to 10, and the new target will be
given an index of 11. When there is a death, all targets that are still alive are
equally likely to be selected as the one that dies. When there is a split, all of the
living targets are equally likely to be the parent, and the children will be given
the next two available indices. Finally, for merging events all of the possible
pairs of all living targets are equally likely to be the parents, and the child will
be given the next available index.

Notice that the assumption that all targets are equally likely to be parents
in a merger appears to be at odds with the principle that only close targets are
eligible to merge together. We will rectify this issue in the Location Model to
be described in Section 2.2. In short, locations of the parents of a merger are
conditioned to be “close” to each other right before the merger. This shifts the
burden of enforcing the property that “only close targets merge together” to
the location model. This leads to an important simplification of the likelihood
calculation since the location model depends on the Event Model but not vise-
versa. On the other hand, this arrangement leads to complications in studying
the theoretical properties of our tracking algorithm due to the loss of the Markov
property.

We will specify which targets were involved in the events by

Vb,j =the collection of indices of targets that were born in the interval [tj , tj+1)

Vd,j =the collection of indices of targets that died in the interval [tj , tj+1)

Vs,j =the collection of triplets (i1, i2, i3) where i1 is the index of the parent

and i2, i3 are the children for every split in the interval [tj , tj+1)

Vm,j =the collection of triplets (i1, i2, i3) where i1, i2 are the indices of the

parents and i3 is the child for every merger in the interval [tj , tj+1). (2)
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Let V b = (Vb,1, . . . , Vb,n) and similarly for V d, V s, and V m. The collection of
all the V ’s will be denoted as V = (V b,V d,V s,V m).

Lastly, it should be noted that this is a hidden Markov model in the sense
that we do not actually observe the variables U , and V from the data. Predicting
these variables is part of the tracking problem. This will be described further in
Section 2.3.

2.2. Location Model

When a target is determined to exist by the Event Model, the observed path of
the ith target (Xi(t), Yi(t)) will be modeled by a Gaussian process. The Gaussian
process is commonly used in tracking applications because it is mathematically
straightforward to work with and yet it models the paths well in most appli-
cations. Target paths are assumed to run their course independently of other
targets unless they are required to split or merge as determined by the Event
Model. The dependency introduced by splitting and merging are described be-
low.

The distribution of Xi(t) will be defined below for the three cases of a target
resulting from (i) birth, (ii) merger, and (iii) split. The distribution of Yi(t) will
be similar with the obvious changes in notation and parameters and independent
of Xi(t) given the event variables U and V .

Let the x component of location of the ith target at time t be denoted by
Xi(t). Also denote the time of initiation of the ith target by ξi. If the i

th target
exists at the first observation time t1, then it is assumed that ξi = t1. Observed
location is then governed by

Xi(t) = Xi(ξi) +Hi(t− ξi) + σiGi(t− ξi), (3)

where Hi(t) is a smooth function corresponding to the target location, Gi(t) is
some continuous mean zero Gaussian process, describing random fluctuations
such as errors of measurement; both Hi(0) = Gi(0) = 0. The initial position,
Xi(ξi) will depend on whether the target resulted from a birth, merger, or split.
These are described in Sections 2.2.1 to 2.2.4 below.

The model in (3) is designed for Gi(t) to be a Brownian motion. If we change
the model for Gi(t), we may wish to change (3) accordingly. For example, if we
use integrated Brownian motion, we may want to add an initial velocity term
instead of assuming that it is equal to zero.

2.2.1. Initial conditions for a target resulting from a birth event

Suppose that the ith target resulted from a birth. It is assumed that the initial
position is Gaussian. Specifically, Xi(ξi) ∼ N

(

µX0 , σ
2
X0

)

. For many problems,
it may also seem reasonable to use a uniform distribution to model the initial
location Xi(ξi). However, very often the likelihood of a uniform distribution can
be satisfactorily mimicked by sufficiently increasing the variance of a normal dis-
tribution. Thus we will keep the original Gaussian assumption for mathematical
convenience.
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Fig 3. Physical Description of a Merger.

2.2.2. Initial conditions for a target resulting from a merging event

Now suppose that the ith target is initiated from a merger. Let pi be a vector
containing the indices of the two targets that merge together to create the
ith target. If there is no size measurement made on the targets, which we are
assuming here, then we can let the initial position of the child be the simple
average of the positions of the parents at the time of merger plus a noise term
ψm,i. We model ψm,i as ψm,i ∼ N (0, σ2

Xm
) with a small σ2

Xm
so that the new

target location is likely to be close to the average of the parents. Figure 3 displays
a physical representation of this. Therefore we have

Xi(ξi) =
1

2

{

Xpi,1(ξi) +Xpi,2(ξi)
}

+ ψm,i. (4)

The two parent targets are currently not required to be close to each other at
the time of merger. To ensure that the parents locations are close to each other
before merging, the difference between locations of the parents is conditioned
to be small at the time of merger, ξi. This can be achieved as follows. Let d
be a vector containing the three targets involved in the merger. The indices of
the parents are d1 and d2 where d3 is the index of the child. The difference in
location between the two parents at the time of merger plus a random noise
term is given by D = Xd1(ξd3) − Xd2(ξd3) + ψd, where ψd ∼ N (0, σ2

Xd
). In a

manner similar to a Brownian Bridge process, we then condition on the event
D = 0. If σXd

is small, this will make it very likely that the two parent paths
are close together right before the merger. Referring to Figure 3 once again, we
see a merging event with a possible realization of ψd.

2.2.3. Parent locations at the time of a merging event

Notice that in our modeling so far, the two parent targets are not required to be
close to each other at the time of a merging event. To ensure that the parents
move close to each other before merging, the difference between locations of the
parents at the time of merger is conditioned to be small. This is achieved as
follows.
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Let d = (d1, d2, d3) be a vector containing the indices of the three targets
involved in a merging event where d1 and d2 are the parents while d3 is the
index of the child. Let D be the difference in location between the observed
locations of the two parents at the time of merger plus a noise term,

D = Xd1(ξd3)−Xd2(ξd3) + ψd (5)

where ψd ∼ N (0, σ2
Xd

) and independent of the targets. If σXd
is small, then it is

likely that ψd is small in absolute value. If we then condition the model for Xd1

and Xd2 on the event D = 0, this will ensure that the parents are only a small
distance ψd apart at the time of the merging event. In Figure 3 once again, we
see a merging event with a possible realization of ψd.

In general, there will be Nm =
∑n

j=1 Um,j merging events during the time
window [t1, tn]. We will condition the target paths on all of these mergers in a
manner similar to that above. This is described more precisely as follows. Let
Di be the D from (5) and ψd,i be the corresponding ψd for the ith merging
event, i = 1, . . . , Nm. In a manner similar to a Brownian Bridge, the paths for
(X1, . . . , XM ) are then conditioned on the event {(D1, . . . , DNm

) = (0, . . . , 0)},
where M is the total number of targets that existed before time tn.

2.2.4. Initial conditions for a target resulting from a splitting event

Suppose that the ith target is initiated by a splitting event. To keep notation
consistent with that for mergers, let pi be a vector of length one that contains
the index of the parent of the ith target. The initial location of a target resulting
from a split is given by

Xi(ξi) = Xpi,1(ξi) + ψs,i, (6)

where ψs,i ∼ N (0, σ2
Xs

). Similar to the model for a merger, the initial position
of a new target from a split is the same as that of the parent plus some error. It
is assumed that σ2

Xs
is small so that the new targets are likely to appear close

to where the parent split.

2.3. The tracking estimate

Here we formally define our estimand and our method for estimating it. The
setup for this estimation problem is as follows. We collect data at the following
times t1, . . . , tn. At each time there are mj observations. Let Zij be the ith

observation at time tj , i = 1, . . . ,mj . Each Zij is a vector of the location values
for a target. Further denote Z(t) as the collection of observations at time t, so
that Z(tj) = (Z1,j , . . . , Zmj,j), and let Z = {Zij : j = 1, . . . , n, i = 1, . . . ,mj}
be the collection of observations at all observed times.

From our data, Z, we need to decide which target to assign each observation
to. Note that each observation can be assigned to only one target and each
target can have only one observation assigned to it. We will create the variable
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pij to be the index of the target that observation Zij originated from. Let
P = {pij : j = 1, . . . , n, i = 1, . . . ,mj}.

Now for a given Z, the indices contained in P will specify the tracks of each
target. To completely specify a solution to the tracking problem, in addition
to P, we must also specify the events (births, deaths, splits, and mergers) that
occurred with the variables U and V defined in (1) and (2). Thus the variables
U and V together with P denote a solution to the data association problem or
the tracking solution. As mentioned before, the estimated paths can then be
obtained by smoothing the observed locations of each track. We will denote our
estimate of the tracking solution (U ,V,P) as (Û ,V̂ ,P̂).

2.4. Calculating (Û ,V̂,P̂)

Assume for the moment that the parameters in the model described in Section 2
are known quantities. We will consider the estimation of these parameters later.
We adopt the Gelfand style for density notation (Gelfand, 1990), and let [X ]
denote the probability density function of the random variable X , [X ](x) to
denote [X ] evaluated at x, and [X | Y ] to denote the conditional density of
X given Y . Notice that the evaluation [X | Y ](x) is a random variable (i.e.,
a function of the random variable Y ). Finally, we will use [X | Y ](x | y) to
denote the evaluation of the conditional density for some observed value of the
random variable Y = y. To achieve our tracking estimate, we will compute an
approximation to the conditional density of (U ,V ,P) given the data Z = z,

[U ,V ,P | Z](u, v, p | z). (7)

Note that this is also a probability mass function since the variables (U ,V,P)
are discrete. From this it is natural to define our tracking estimate as

(Û ,V̂ ,P̂) = argmax
u,v,p

[U ,V,P | Z](u, v, p | z). (8)

We can also interpret [U ,V,P | Z](Û ,V̂,P̂ | z) as the probability that (Û ,V̂ ,P̂)
is the correct solution given the data Z = z.

We now consider the calculation of the density in (7). With the one-to-one
mapping g : (P ,Z) → (X ,Y ,Z), for a given Z, the information contained in P
and (X ,Y) is the same. Let g∗ : (P ,Z) → (X ,Y) be the function g without the
last variable in its output. In Storlie et al. (2009) it is shown that (7) can be
written as

[U ,V ,P | Z](u, v, p | z) =
[U ,V,X ,Y ](u, v, g∗(p, z))

∑∞
j=1[U ,V,X ,Y](uj , vj , g

∗(pj , z))
, (9)

where {(uj, vj , pj) : j = 1, 2, . . .} is an enumeration of the possible tracking
solutions. Of course in practice it may not be possible to exhaust all possible
enumerations, but the solution (u, v, p) that maximizes (9) is the same one that
maximizes the numerator.
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In Appendix A a closed form approximation is derived for the model like-
lihood [U ,V ,X ,Y]. It is important to note that the estimator defined in (8)
uses (9) with this approximation for [U ,V ,X ,Y] rather than the actual den-
sity [U ,V ,X ,Y ]. In fact, the actual density would not be tractable to work
with. Thus, all of the main results in Section 3 assume that (Û ,V̂ ,P̂) is calcu-
lated with the approximate likelihood, which is explicitly presented in Equa-
tions (A1)-(A5). There are several optimization methods available to search for
this maximum; see Blackman & Popoli (1999) for example.

Confidence Sets: We can also use (9) to get an approximation to the dis-
tribution of the possible tracking solutions given the data Z. This is much more
informative than just the estimate (Û ,V̂ ,P̂). For example, we could make a confi-
dence set of solutions such that the probability that the correct solution was any
of the solutions in that set was 100(1− α)%. We could also calculate the prob-
ability that a given observation belongs to a certain target or the probability
that two targets merged, etc.

Up until this point, we have ignored the issue of estimating the model pa-
rameters. If the tracking application requires the estimation of such parameters,
one could do so with maximum likelihood or other suitable estimation method.
The problem is that, before any tracking solution (U ,V ,P) is specified, we would
not know the values of the variables that should go into these estimates. We
allow each of the solutions that we consider in (8) to have its own parameter es-
timates. This will necessarily make incorrect solutions have an overly optimistic
likelihood and bias the distribution given in (9). We can limit the amount of
this bias by setting reasonable bounds for the parameter estimates. This can be
done very effectively in many practical problems, since prior information like
a possible range for the numbers of targets and their velocities are typically
available to the researcher. In the next section we show that as the sampling
rate approaches infinity, the estimate (8) is identical to the correct solution
eventually, even when the model parameters are estimated.

3. Main results: Asymptotic properties

In this section we show the strong consistency of the estimator (Û ,V̂ ,P̂) defined
by (8). First we highlight that our estimator assumes the observations are pro-
duced from the model described in Section 2, and that the estimator itself is
constructed with the likelihood approximation given in (A1)–(A5).

We begin with the following notation. For each k = 1, 2, . . . we collect from
the process the observations Zk =

(

Z(tk1) . . .Z(tknk
)
)

at times 0 ≤ tk1 < tk2 <

· · · < tknk
≤ T . Let ∆tkj = tkj+1 − t

k
j . Further let t

k
i,j , j = 1, . . . , nk

i denote the jth

time that the ith target is observed, where nk
i is the number of times the the ith

target is observed. Also let ∆tki,j = tki,j+1 − tki,j . At times it will be convenient

to write ti,j = tki,j , ∆ti,j = ∆tki,j and ni = nk
i , keeping in mind that these are

still a function of k.
We will assume that we are using a Brownian motion model for the error

componentGi(t) in (3), (4) and (6). In addition, we will assume that the variance
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scalers σ2
i = σ2 for all i. The estimator we will use for σ2 is defined as

σ̂2 =
1

N

m
∑

i=1

ni
∑

j=1

(Xi(ti,j+1)−Xi(ti,j))
2

∆ti,j
IEi,j

, (10)

where N =
∑m

i=1(ni − 1) is the total number of consecutive differences from
all tracks, IA is the 0,1 indicator function of the event A, and the event Ei,j is
given by

{

(Xi(ti,j+1)−Xi(ti,j))
2 + (Yi(ti,j+1)− Yi(ti,j))

2

∆ti,j
≤ K1

√

log logN

}

for some constant K1 > 0. The indicator in (10) is to make the estimator
more robust. Essentially this will eliminate extreme observations from biasing
the variance estimate if the tracking estimate has incorrectly connected tracks.
It will also be important to exclude extreme observations from the estimator
even when the tracks are correctly specified as we will see. Following arguments
similar to that of the proof of the Strong Law of Large Numbers it is straight
forward to show that (10) is a consistent estimator of σ2 when the tracks are
correctly specified; see Lemma 8.

The conditions needed for Theorem 1 are as follows.

Condition 1. supj{∆t
k
j } = O(k−1) as k → ∞.

Condition 2. The events of birth, death, splitting, and merging are distributed
according to the Event Model of Section 2.1.

Condition 3. The location component, Hi(t), of the observed location model

in Section 2.2, satisfies Hi(t) =
∫ t

0 hi(s) ds, where hi ∈ Lloc
2 is locally square

integrable for all targets.

Condition 4. The error component, Gi(t), of the observed location model in
Section 2.2, is a Brownian motion for all targets.

Condition 5. The likelihood [U ,V ,X ,Y] is calculated according to the approx-
imation given in (A1)–(A5) which treats Hi(t) + σGi(t) as a scaled Brownian
motion for all targets.

Condition 6. The parameter estimates are confined to a compact set such that
λ0, λb, λd, λs, and λm are greater than zero and all the variance components
of the location model are greater than 0.

Condition 7. The variance parameters for the random process components of
Xi(t) and Yi(t) which are σ2

i and η2i respectively are such that σ2
i = σ2 and

η2i = η2 for all i. The estimates for σ2 and η2 are given by (10).

Condition 8. The estimate (Û ,V̂,P̂) given in (8) is restricted to those with
less than M < ∞ targets with M > m, where m is the number of targets in
the correct solution (U ,V ,P). The estimate (Û ,V̂ ,P̂) is further restricted so that
consecutive observations in a track must be such that

{Xi(ti,j+1)−Xi(ti,j)}
2 + {Yi(ti,j+1)− Yi(ti,j)}

2 ≤ K2(log k)
−1
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for some positive constant K2.

The following theorem uses the propositions in the appendix to show that
the tracking solution is estimated correctly in the limit.

Theorem 1. Assume Conditions 1-8. Let (U ,V ,P)k be the sequence of correct
tracking solutions. Let (Û ,V̂ ,P̂)k be given by (8) restricted by Condition 8 for
each k. Then there exists a K s.t. (Û ,V̂,P̂)k = (U ,V ,P)k for all k > K almost
surely (a.s.).

The conclusion in Theorem 1 implies that for a given ω in a set with probabil-
ity 1, there exists a K(ω) such that the estimate will equal the correct solution
for all k > K(ω). This also implies that the parameters in the model can be
estimated consistently as well, provided that the estimators used are consistent
for their respective parameters when the tracks are correctly specified. Some
possible estimators are given in Storlie et al. (2009).

Theorem 1 is proved in Appendix F by computing the likelihood ratio of
a possible sequence of alternatives (i.e., any sequence of solutions that is not
equal to (U ,V ,P)k for each k), (Ũ ,Ṽ ,P̃)k, to that of the correct solution sequence,
(U ,V ,P)k. We will then show that the supremum of this ratio converges to zero.

Remark 1. In practical terms, the consistent solution to the data association
problem implies that we know without error the correct number of targets, as
well as the number and time of the event for all births, deaths, splits, and
mergers, respectively. The location of each target at each time is still not known
exactly, but it can be inferred with standard smoothing techniques since it is
known exactly which observations correspond to which target.

Remark 2. When k = ∞ it is clear that the target to track associations can
be resolved since (Xi(t), Yi(t)) is a continuous process. However, for finite k it
is not always clear how to achieve a good estimate (U ,V ,P), in a way such that
this estimate is also consistent. These results show that (Û ,V̂ ,P̂)k is one such
estimate.

Remark 3. It is only for the purpose of deriving a likelihood [U ,V ,X ,Y ] for
the estimator in (8), that we assume a scaled Brownian motion model for
Hi(t) + σGi(t) from (3), or equivalently that Hi(t) = 0, as stated in Condi-
tion 5. Theorem 1 still allows for the actual motion of the target to be any Hi(t)
satisfying Condition 3. This is due to the Cameron Martin theorem, Theorem
18.22 of Kallenberg (2002), which under the assumptions of Conditions 3 and 4,
implies that the distribution of Hi(t) + σGi(t) and the distribution of σGi(t)
are mutually absolutely continuous. Since in the proof of the main Theorem, we
are only interested in events of probability one, this allows us to just prove the
result under the assumption that Hi(t) = 0. See Appendix F for more details.

Remark 4. Condition 8 contains a mild regularity condition to ensure that the
number of targets is not allowed to increase without bound in the estimation
process. That is, some finite bound on the number of targets needs to be specified
a priori, which has no effect on the result, provided this bound is greater than
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the true number of targets present in the actual event. In practice, we can make
this bound some large number that we are sure is larger than the number of
targets present in the case at hand. The second part of Condition 8 is basically
a form of screening or “gating” as it is called in the tracking literature. It simply
prevents us from entertaining very unlikely matches.

Remark 5. Recall again that the estimate (Û ,V̂ ,P̂) defined by (8) is constructed
with the approximation to the model likelihood given in (A1)–(A5). Thus the
results above hold for this estimator and not necessarily for the hypothetical
estimator constructed using the true likelihood. For the following two reasons,
we do not study the estimator that is based on the true likelihood. First, the form
of this estimator is not tractable, making it very difficult to study analytically.
Second, from a practical perspective, the consistent estimate (Û ,V̂,P̂) that is
being studied here can be calculated in a reasonable amount of time, while for the
true likelihood based estimator, a large number of likelihood evaluations would
need to be numerically approximated, and hence making its use practically
infeasible.

Remark 6. The result of Theorem 1 does not apply directly to situations
with missed detections and false alarms. However, if we assume an independent
over time spatial Poisson process for false alarms, and an independent in time
Bernoulli process for missed detections, as is often done in the tracking liter-
ature, it would not seem to affect the result (at least intuitively). Therefore,
we conjecture that the same result holds even in this more complex case. The
addition of these features, however, would add substantial complication to the
proof, so we leave this result for a future work.

4. Simulated data results

This section presents simulation results from numerical experiments that were
conducted to give a numerical example of Theorem 1 from Section 3. For all
of these simulations, the data, Z, is assumed to come from the model given
in Section 2. The parameters used to simulate the different cases are given as
follows: mean initial X location (µX0 = −113), variance of initial X location
(σ2

X0
= 100), variance scalar for BM’s inX location (σ2

i = 0.1 for all i), variance
of difference in X location between parent and child after a split (σ2

Xs
= .5),

variance of difference in X location between parent and child after a merger
(σ2

Xm
= .125), variance of difference in X location between parents at time of

merger (σ2
Xd

= 1), mean initial Y location (µY0 = 37.5), variance of initial Y
location (σ2

Y0
= 100), variance scalar for BM’s in Y location (η2i = .1 for all i),

variance of difference in Y location between parent and child after a split (σ2
Ys

=
.5), variance of difference in Y location between parent and child after a merger
(σ2

Ym
= .125), and variance of difference in Y location between parents at time

of merger (σ2
Yd

= 1), where µX0 , σ
2
X0
, . . . , σ2

Yd
are more precisely defined in

Section 2.2. The event model parameters were set as mean number of initial
targets (λ0 = 4), rate of birth (λb = 0.1), rate of death (λd = .02), rate of split
(λs = 0.06), and rate of merger (λm = .08).
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For the parameter estimation, we restricted the parameter values to the fol-
lowings sets λ0 ∈ [0, 25], λb ∈ [0.001, .25], λd ∈ [0.001, .15], λs ∈ [0.001, .15],
λm ∈ [0.001, .15], µX0 ∈ [−120,−85], σ2

X0
∈ [50, 1000], σ2

i ∈ [0.001, 10.0], σ2
Xs

∈
[0.001, 1.5], σ2

Xm
∈ [0.001, 0.5], σ2

Xd
∈ [0.001, 5.0], µY0 ∈ [25, 50], σ2

Y0
∈ [50, 1000],

η2i ∈ [.001, 10.0], σ2
Ys

∈ [0.001, 1.5], σ2
Ym

∈ [0.001, 0.5], and σ2
Yd

∈ [0.001, 5.0].

For these simulations the random location component Hi(t) is an integrated
Brownian motion, and the error component Gi(t) is a Brownian motion for all
targets. The three different cases studied here use three different time incre-
ments, ∆t = 1.0, ∆t = 0.5, and ∆t = 0.1. For ∆t = 1.0 we collect obser-
vations at times 0.0, 1.0, . . . , 9.0, for ∆t = 0.5 we collect observations at times
0, 0.5, . . . , 9.0, etc. For each of the three cases we obtained the results of N = 100
realizations.

Recall that the aim of this numerical exercise is to empirically demonstrate
the consistency of the tracking estimate (Û ,V̂ ,P̂). Therefore we are interested
in comparing the correct solution with other possible solutions that have high
likelihood values. We use the following idea to find a set of high likelihood
solutions that also contains the correct solution. First, we start with the correct
solution and then consider making different changes to it. These changes are the
same as those mentioned in the proof of Theorem 1; i.e., breaking apart a split
into two deaths and a birth, breaking a track apart to form a birth and a death,
etc. It is demonstrated in the proof of Theorem 1 that any other solution can
be obtained by making a sequence of changes of this type.

The algorithm provided below is not intended as an algorithm to estimate
unkown tracking solutions as it requires knowledge of the correct solution. How-
ever, it is sufficient for our purposes here, which is to show that eventually
the correct solution has a high likelihood relative to other possible solutions.
For an algorithm to use to solve the data association problem in practice see
Storlie et al. (2009). Algorithm 1 proceeds as follows.

Algorithm 1.

Step I: begin with the correct solution
Step II: consider all possible changes of the types below to the solution

1. breaking a track into two track segments.

2. labeling a merger as two deaths and a birth.

3. labeling a split as a death and two births.

4. connecting a death with a birth to make one track.

5. labeling two deaths and a birth as a merger.

6. labeling a death and two births as a split.

Step III: of the solutions resulting from these changes keep only solutions
(Ũ ,Ṽ,P̃) such that L(Ũ ,Ṽ ,P̃)>L(U ,V ,P)/M where L(·)= [U ,V ,P | Z](· | z)
is the conditional density given the data.

Step IV: repeat Steps II-III on the solutions obtained from Step III until the
top K solutions remain unchanged.
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Table 1

Results of 100 Realizations from a Brownian Motion Model. % Est Correct is the
percentage of times that (Û ,V̂,P̂) was equal to the correct solution (U ,V,P). % Births
Correct, % Deaths Correct,% Splits Correct, % Mergers Correct are the

percentages of all birth, death, splitting, and merging events, respectively, in the simulation
that were labeled correctly by the estimate. % Falling in 95% CS is the percentage of

times that the 95% confidence set (formed for each of the 100 data realizations) contained
the correct solution

∆t=1.0 ∆t=0.5 ∆t=0.1

% Est Correct 51.0 84.0 92.0

% Births Correct 90.1 97.9 99.4

% Deaths Correct 86.7 94.0 95.9

% Splits Correct 58.3 95.7 98.3

% Mergers Correct 86.4 98.3 99.5

% Falling in 95% CS 90.0 93.0 99.0

When Algorithm 1 converges, we have a set of solutions with high relative
likelihood, and we are also assured that the correct solution is in this set. The
estimate (Û ,V̂ ,P̂) is the solution from this set with highest likelihood. Notice that
Algorithm 1 does not directly consider switching observations between tracks,
but this possibility is considered by breaking two tracks apart at the same time,
then reconnecting them via Steps II-1 and II-4.

The simulation results for each of the time increments are given as the
columns of Table 1. From Table 1 we can see that the estimation does im-
prove substantially as ∆t gets smaller. We see a dramatic improvement in the
number of correct estimates. The percentage goes from 51.0% for the ∆t = 1.0
case, to 84.0% for the ∆t = 0.5 case, to 92.0% for the ∆t = 0.1 case. The 95%
confidence sets also have reasonable coverage for all sample sizes. It is worth
noting that these results are actually illustrating a convergence in probability
to the correct solution; i.e., P ((Û ,V̂,P̂) = (U ,V ,P)) → 1, which is guaranteed
by the stronger result of Theorem 1. From Theorem 1 we know that the 8 re-
alizations in the ∆t = 0.1 simulation that still have incorrect estimates could
eventually be estimated correctly if we made ∆t small enough.

5. Conclusions & further work

In this paper we have provided theoretical justification for the multiple target
tracking method developed in Storlie et al. (2009). We have given sufficient con-
ditions under which the estimate will converge to the correct solution almost
surely. Our theoretical analysis revealed the importance of using a robust esti-
mate of the variance component for the random process Gi(t). The theoretical
results were then demonstrated by simulation.

One important direction for future work is to generalize these results to more
complicated multiple target tracking problems. For example one could exam-
ine the asymptotic properties of the estimate when using a more complicated
(and more realistic) model such as integrated Brownian motion in the likelihood
calculation. Also, it would be of much practical interest to investigate the prop-
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erties of a model that allows for false alarms and missing observations such as
that given in Storlie et al. (2009).
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Appendix A: Model likelihood

Here we present a closed form approximation to the likelihood of the model
described in Section 2. We denote the times at which the ith target is ob-
served as ti = (ti,1, . . . , ti,ni

). Also let X i = (Xi(ti,1), . . . , Xi(ti,ni
)) and let

X = (X1, . . . ,Xm) be the collection of all observed x-coordinates of all targets.
Define similarly for {Y i}mi=1 and Y. Lastly recall the definition of U and V from
Section 2.1. Our goal is to obtain an approximate expression for the density, or
likelihood, for the collection of random variables {U ,V ,X ,Y} that correspond
to the targets. Since X and Y are independent given {U ,V}, we can write the
corresponding density as

[U ,V,X ,Y ] = [U ,V] · [X | U ,V ] · [Y | U ,V ]. (A1)

We shall call [U ,V] the Event Density and {[X | U ,V ], [Y | U ,V]} the Location
Density. It is discussed in Appendix B that the Event Density [U ,V ] can be
approximated in closed form by

[U ,V] ≈ [N0]

n
∏

j=1

[Ub,j] · [Vb,j | Ub,j ] · [Ud,j] · [Vd,j | Ud,j] · [Us,j] · [Vs,j | Us,j ]·

[Um,j ] · [Vm,j | Um,j]. (A2)

Depending on the choice of Gi(t) in (3) (e.g., Brownian motion), the Location
Density {[X | U ,V ], [Y | U ,V]} can also be approximated by a closed form
expression; see Appendix C.

Appendix B: Derivation of event density (A2)

Since the Event Model has independent increments, the target Event Density
can be written as

[U ,V] = [N0]
n
∏

j=1

[Ub,j , Ud,j, Us,j , Um,j | N(tj)]·

[Vb,j , Vd,j, Vs,j , Vm,j | N(tj), Ub,j, Ud,j, Us,j , Um,j], (A3)

where recall that N(t) is the number of targets that exist at time t. Also, N0

is the initial number of targets and is Poisson with parameter λ0 so [N0](k) =
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λk0e
−λ0/k!. It is difficult to calculate the exact density for (Ub,j, Ud,j, Us,j , Um,j |

N(tj)), as they are dependent on each other. The rate of death λdN(t), for
example, changes when there is a birth, death, split or merger. Suppose Uj =
Ub,j +Ud,j +Us,j +Um,j. The exact distribution of (Ub,j , Ud,j, Us,j , Um,j) would
require us to sum over all the permutations of the order that the Uj events could
happen in the interval [tj , tj+1). For each of these permutations, we would have
to calculate the probability that the sum of Uj independent exponential random
variables with respective rates (which are generally different) would be less than
∆tj = tj+1 − tj .

Instead, we will approximate this probability by assuming that the rate of the
occurrence of events stays constant during the interval [tj , tj+1). Specifically,
we assume that the rate of each of the events during the interval is λ̄b,j = λb,
λ̄d,j = λdN(tj), λ̄s,j = λsN(tj) and λ̄m,j = λmN(tj) for birth, death, splitting,
and merging respectively.

With this approximation, the variables (Ub,j , Ud,j, Us,j , Um,j) are independent
and P (Ud,j = u) for example is the probability that the sum of u iid exponential
random variables with rate λ̄d,j are less than ∆tj . This is the same as the Poisson
density with parameter λ̄d,j∆tj evaluated at u. Hence we have

[Ub,j | N(tj)] (u) ≈ (λb∆tj)
ue−λb,j∆tj/u!,

[Ud,j | N(tj)] (u) ≈ (λ̄d,j∆tj)
ue−λ̄d,j∆tj/u!,

[Us,j | N(tj)] (u) ≈ (λ̄s,j∆tj)
ue−λ̄s,j∆tj/u!,

and
[Um,j | N(tj)] (u) ≈ (λ̄m,j∆tj)

ue−λ̄m,j∆tj/u!.

Now consider the variables (Vb,i, Vd,i, Vs,i, Vm,i). Under the same approxima-
tion that N(t) is constant during the interval [tj , tj+1), we have

[Vb,j | N(tj), Ub,j ] (v) ≈ 1,

[Vd,j | N(tj), Ud,j] (v) ≈ (1/N(tj))
Ud,j ,

[Vs,j | N(tj), Us,j ] (v) ≈ (1/N(tj))
Us,j ,

and

[Vm,j | N(tj), Um,j ] (v) ≈

(

1/

(

N(tj)

2

))Um,j

.

Thus we approximate (A3) as (A2).

Appendix C: Derivation of location density

Recall, that only for the purpose of evaluating the likelihood in (7), we use
the assumption that Hi(t) + σGi(t) is a Brownian motion, or equivalently that
Hi(t) = 0, as stated in Condition 5. In this case,Xi(t) is normally distributed for
all t, and the observed location of all targets at all time points, has a multivariate
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normal distribution. Recall that the times at which the ith target is observed
are denoted by ti = (ti,1, . . . , ti,ni

), X i = (Xi(ti,1), . . . , Xi(ti,ni
)) and X =

(X1, . . . ,Xm). Then, X ∼ N(µX ,ΣX).

Recall from Section 2.2 that this mean and covariance will depend on the
time of initiation, ξ, of the targets. The event variables U and V do not specify
the exact values of ξi and ζi. They do however specify the interval between
observations they are in. For the following, if it is known that ξi is in the interval
(tj , tj+1), we will set ξi = tj +∆tj/2.

Since µX and ΣX depend on the exact values of ξ, this will be an approxi-
mation to the true density. In order to get the exact density, we would have to
integrate out on the joint distribution of X and ξ, given that the ξi’s are in their
respective intervals. This would have to be done numerically and would not be
feasible in practice. If the ∆tj are sufficiently small though, this approximation
will be quite close to the true density.

Also recall from Section 2.2 that we need to then condition X on the random
variable D and evaluate this density at D = 0. Let di be the vector d defined
in the last paragraph of Section 2.2.2 for the ith merging event, i = 1, . . . , Nd.
Then let

Di = Xdi,1(ξdi,3)−Xdi,2(ξdi,3) + ψi (A4)

be the difference, D, for the ith merging event. The random variable D =
(D1, . . . , DNd

) is also normally distributed, D ∼ N(µD,ΣD). For the collection
of both X and D we have (X ,D)′ ∼ N(µ,Σ), where

µ =

(

µX

µD

)

and Σ =

(

ΣX ΣX,D

Σ′
X,D ΣD

)

. (A5)

The conditional distribution of X given D = 0, which we will just call the
distribution of X from this point forward, is given by the density [X | D =
0](x) = φ(x;µ∗,Σ∗), where φ(x;µ∗,Σ∗) is the multivariate normal density with
µ∗ = µX − ΣX,DΣ−1

D µD and Σ∗ = ΣX − ΣX,DΣ−1
D Σ′

X,D.

In Section 3 we assume a Brownian motion for the random process Gi(t)
in (3). Using the Markov property the means and the covariances in (A5) can
be well approximated by (A8) and (A9) below. If Gi(t) is modeled by an inte-
grated Brownian motion, the corresponding approximations for the means and
covariances are given in Storlie et al. (2009).

Appendix D: Technical Lemmas

Here we present the Lemmas used in the proofs of Appendix E. All of the
results in this section assume the Brownian motion model for Gi(t) in (3). We
begin with the Law of Iterated Logarithm for two-dimensional Brownian motion.
The proof of Lemma 1 for Brownian motion in d dimensions can be found in
Kallenberg (2002). Let ‖·‖ denote the Euclidean norm.
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Lemma 1 (Law of the Iterated Logarithm). For B a Brownian motion in ℜ2,

P

{

lim
t↓0

‖B(t)‖

(2t log log(1/t))
1/2

= 1

}

= 1. (A6)

Lemma 2 is Levy’s Modulus of Continuity for two-dimensional Brownian
motion. Its proof follows the same general argument as for the one dimensional
case given in Revuz & Yor (1999).

Lemma 2 (Levy’s Modulus of Continuity). For B a Brownian motion in ℜ2,

P











lim
ε→0






sup

0≤t1≤t2≤1

t2−t1≤ε

‖B(t2)−B(t1)‖

(2ε log(1/ε))1/2






= 1











= 1. (A7)

For the purposes of comparing likelihoods, we need a convenient form for
the location density. This will require the following Lemma. To write the over-
all location density, each observation is conditioned on the previous observa-
tions and all of the Dj variables from the mergers. We then take the product
of all these conditional densities. Let Xi = (Xi,1, . . . , Xi,ni

) and let F i,j =
(Xi,1, . . . , Xi,j ,Xi−1, . . . ,X1, D1, . . . , DNm

,U ,V). As usual let ti,j be the jth

time at which the ith target is observed. Notice that we can write the x compo-
nent of the likelihood as

[X | U ,V,P ] =

m
∏

i=1

ni
∏

j=1

[Xi,j | F i,j−1]. (A8)

So we will need to give a convenient expression for [Xi,j | F i,j−1].

Lemma 3. Under Conditions 1-4 of Theorem 1, and further that Hi(t) = 0,
for j = 2, . . . , ni, the distribution of Xi,j given F i,j−1 is Gaussian with mean
and variance given respectively by

µ = Xi(ti,j−1) +O(k−1) and σ2 = ∆ti,jσ
2 +O(k−2). (A9)

Proof. We can write the density of Xi,j given F i,j−1 as

[Xi,j | F i,j−1](xi,j | fi,j−1) =

∫ ∞

−∞

[Xi,j , Xi(ζ) | F i,j−1](xi,j , xi,ζ | fi,j−1)dxi,ζ ,

(A10)
where ζ is the termination time of the ith target. But

[Xi,j , Xi(ζ) | F i,j−1](xi,j , xi,ζ | fi,j−1)

= [Xi,j | Xi(ζ),F i,j−1](xi,j | xi,ζ , fi,j−1)·[Xi(ζ) | F i,j−1](xi,ζ | fi,j−1)

= [Xi,j | Xi,j−1, Xi(ζ)](xi,j , xi,j−1, xi,ζ)·[Xi(ζ) | F i,j−1](xi,ζ , fi,j−1).

For convenience of notation, drop the subscript i on ti,j to let tj = ti,j . Now the
conditional distribution of Xi,j given Xi,j−1 = xi,j−1 and Xi(ζ) = xi,ζ can be
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shown to be Gaussian with mean and variance given respectively by

µ =
ζ − tj
ζ − tj−1

xi,j−1 +
∆tj

ζ − tj−1
xi,ζ and τ2 = ∆tjσ

2 −
(∆tj)

2

ζ − tj−1
σ2.

Also the conditional distribution of Xi(ζ) given F i,j−1 = fi,j−1 is Gaussian with
mean and variance denoted by µxζ

and σ2
xζ
. Notice that we never observe Xi(ζ)

so this conditional distribution has a variance σ2
xζ
> 0. We can then write the

integral in (A10) as

C

∫ ∞

−∞

exp











−

(

xj −
ζ−tj

ζ−tj−1
xj−1 +

∆tj
ζ−tj−1

xζ

)2

2
(

∆tjσ2 −
(∆tj)2
ζ−tj−1

σ2
) −

(xζ − µxζ
)2

2σ2
xζ











dxζ .

Following some tedious algebra we can see that the above expression is equal to

C′ exp

{

−
(xj − xj−1 +O(∆tj))

2

2(σ2∆tj −O(∆tj)2)

}

which we can recognize as the density of a Normal distribution with mean
xj−1 +O(∆tj) and variance σ2∆tj −O(∆tj)

2. Now using Condition 1 gives the
desired result.

The following Lemma is a version of the main Theorem presented in Shepp
(1966). We will say that two measures µ1 and µ2 are equivalent if they have the
same sets of measure zero. We will denote this µ1 ∼ µ2. This Theorem gives
necessary and sufficient conditions for a measure µX imposed by a Gaussian
process X(t) on [0, T ] to be equivalent to the measure imposed by a Brownian
motion on [0, T ], µB. Let m(t) = EX(t) and γ(s, t) = E(X(s) − µ(s))(X(t) −
µ(t)).

Lemma 4 (Shepp’s Theorem). Assume that (∂/∂s)γ(s, t) = is continuous for
0 ≤ s ≤ T , s 6= t. Then µX ∼ µB if and only if

(∂/∂s)γ(s, s+)− (∂/∂s)γ(s, s−) ≡ 1, for 0 < s < T (A11)

and there exists a function k ∈ L2 for which

m(t) =

∫ t

0

k(u)du. (A12)

The function k is unique and is given by k(t) = m′(t) for almost every t.

We will now use Shepp’s Theorem to show that the measure imposed by a
Brownian motion conditioned on {Dj : 1 ≤ j ≤ Nm} is equivalent to µB.

Lemma 5. Assume that Gi(t) is the Brownian motion associated with path i
in (3). Consider the measure, µ̃ imposed by Gi given (D1 = 0, . . . , DNm

= 0)
where Dj is the difference between parent paths at the time of merger plus an
error as defined in (A4). Then µ̃ ∼ µB.
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Proof. Without loss of generality (WLOG) we assume that the birth and death
times are ξi = 0 and ζi = T so that Gi is on [0, T ]. Let m(t) and γ(s, t) be the
mean and covariance functions corresponding to µ̃. We need to first show that
(∂/∂s)γ(s, t) is continuous. Then show that conditions (A11) and (A12) hold.
But the second condition is trivially satisfied since m(t) = 0. So we just need to
show continuity and (A11).

Let s ≤ t and let Σ be the covariance matrix for the vector (Gi(s), Gi(t), D1,
. . . , DNm

)′. Also, let Σ1 and Σ2, be the covariance matrices for (Gi(s), Gi(t))
′

and (D1, . . . , DNm
)′ respectively. Finally let Σ12 be the matrix that contains

the pairwise covariances of the elements in (Gi(s), Gi(t))
′ with those in (D1, . . . ,

DNm
)′ as its elements so that

Σ =

(

Σ1 Σ12

Σ′
12 Σ2

)

.

Notice that

Σ1 =

(

s s
s t

)

and Σ12 =

(

f1(s) f2(s) · · · fNm
(s)

f1(t) f2(t) · · · fNm
(t)

)

for functions fj(t) = Cov(Gi(t), Dj), j = 1, . . . , Nm. The matrix Σ2 is positive
definite so let v1, . . . ,vNm

and λ1, . . . , λNm
be its eigenvectors and eigenvalues

respectively. We can write the covariance matrix of (B(s), B(t))′ conditional
on (D1, . . . , DNm

)′ as Σ∗ = Σ1 − Σ12Σ
−1
2 Σ′

12. The off diagonal element of the
matrix Σ12Σ

−1
2 Σ′

12 is given by

(f1(s), f2(s), . . . , fNm
(s)) Σ−1

2











f1(t)
f2(t)
...

fNm
(t)











=

Nm
∑

j=1

1

λj
(f1(s), f2(s), . . . , fNm

(s))vjv
′
j











f1(t)
f2(t)
...

fNm
(t)











=

Nm
∑

j=1

Nm
∑

k=1

Nm
∑

l=1

1

λj
vjkvjlfk(s)fl(t). (A13)

This gives γ(s, t) = Cov(Gi(s), Gi(t) | (D1, . . . , DNm
)) in general as

γ(s, t) = s ∧ t−
Nm
∑

j=1

Nm
∑

k=1

Nm
∑

l=1

1

λi
vjkvjlfk(s)fl(t).

Hence we have

∂

∂s
γ(s, t) = I{s≤t} −

Nm
∑

j=1

Nm
∑

k=1

Nm
∑

l=1

1

λj
vjkvjlf

′
k(s)fl(t). (A14)
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We claim that fj(t) = cjt for some constant cj . To see this notice that Dj =
Xdj,1(ζdj,1) − Xdj,2(ζdj,2) + ψj where the vector dj is defined in (A4) so that
Xdj,1 and Xdj,2 are the parents of a merger and Xdj,3 is the child. So we have
fj(t) = Cov(Gi(t), Xdj,1(ζdj,1))− Cov(Gi(t), Xdj,2(ζdj,2)).

Now consider a path Xj . If Xj did not result from a birth then we can
write Xj(t) as the position of its parent(s) at time ξj plus Gj(t). We can con-
tinue breaking the parent paths up in this same way until we have Xj(ζj) =
c1Gj1(ζj1 ) + . . . cmGjm (ζjm) + Yj , where the ck are constants and Yj is the sum
of random variables such as ψm,k’s, ψs,k’s, and Xk(ξk)’s which are initial loca-
tions of paths resulting from birth, all of which are independent of Gi. All of the
Gjk are also independent of Gi unless jk′ = i for some k′. In that case we have
Cov (Gi(t), Xj(ζj)) = Cov (Gi(t), ck′Gi(ζi)) = ck′(t∧ζi) = ck′t since t ≤ T = ζi.
If there is no such k′ so that jk′ = i then Cov(Gi(t), Xj) = 0. Hence fj(t) = cjt
for some constant cj possibly equal to zero.

This means that ∂
∂sγ(s, t) is continuous unless s = t and also

∂

∂s
γ(s, s+) = 1−

Nm
∑

j=1

Nm
∑

k=1

Nm
∑

l=1

1

λi
vjkvjlf

′
k(s)fl(s)

and

∂

∂s
γ(s, s−) = −

Nm
∑

j=1

Nm
∑

k=1

Nm
∑

l=1

1

λi
vjkvjlf

′
k(s)fl(s)

which satisfies (A11) and completes the proof.

The next Lemma is needed to compare the location densities of two different
sequences of solutions (Û ,V̂,P̂)k and (Ũ ,Ṽ ,P̃)k. It gives a bound for the ratio of
two location densities for two track segments with different F i,j variables. Let
F i(t) = F i,j′ for j

′ = max{j : ti,j ≤ t}.

Lemma 6. Assume Conditions 1-4 of Theorem 1, and further that Hi(t) = 0.

Let Θ be the set of all pairs of tracking solutions sequences, θ̂k = (Û ,V̂ ,P̂)k and
θ̃k = (Ũ ,Ṽ ,P̃)k that have one of the differences 1a, 1b, 2, 3, 5a, 5b or 6b from
the propositions. Consider a track segment (x1, . . . , xn′

k
) such that

(X̃i1(tj′ ), . . . , X̃i1(tj′+n′
k
))= (X̂i2(tj′ ), . . . , X̂i2(tj′+n′

k
))= (x1, . . . , xn′

k
) for all k

for some i1 and i2. If X̃i1(tj′ ) and X̂i2(tj′ ) are both the first observation of a
track in their respective solutions then

sup

(θ̂k,θ̃k)∈Θ

[X̃ i1(tj′) | F̃ i1(tj′−1)](x1)

[X̂ i2(tj′) | F̂ i2(tj′−1)](x1)
= O(1) as k → ∞ a.s. (A15)

and

sup

(θ̂k,θ̃k)∈Θ

∏n′
k

j=2[X̃i1(tj′+j−1) | F̃ i1(tj′+j−2)](xj)
∏n′

k

j=2[X̂i2(tj′+j−1) | F̂ i1(tj′+j−2)](xj)
≤ a(log(k))b as k → ∞ a.s.

(A16)
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for some constants a and b which depend on ω.
If neither X̃i1(tj′ ) and X̂i2(tj′ ) are the first observation of a track in their

respective solutions then

sup

(θ̂k,θ̃k)∈Θ

∏n′
k

j=1[X̃ i1(tj′+j−1) | F̃ i1(tj′+j−2)](xj)
∏n′

k

j=1[X̂ i2(tj′+j−1) | F̂ i1(tj′+j−2)](xj)
≤ a(log(k))b as k → ∞ a.s.

(A17)
for some constants a and b which depend on ω.

Proof. For (A15) consider the case where target i1 is a birth. Then

[X̃i1(tj′ ) | F̃ i1(tj′−1)](x1) ≤ φ(0; 0, σ2
X0

) (A18)

which is the mode of the normal density for the initial position of a target
resulting from birth. This is true for any θ̃. Similarly if target i1 is the result of
a split or a merger, then

[

X̃i1(tj′ ) | F̃ i1(tj′−1)
]

(x1) ≤ φ(0; 0, σ2
Xs

)

and
[

X̃i1(tj′ ) | F̃ i1(tj′−1)
]

(x1) ≤ φ(0; 0, σ2
Xm

), (A19)

respectively. Let C1 be the maximum of the three quantities in (A18) and (A19).
Now for any Brownian path on a finite interval P

(

sup0≤t≤T |B(t)| <∞
)

= 1.
Hence for every ω in a set with probability 1, sup0≤t≤T |B(t)| ≤ M(ω) <

∞. So we know that x1 is less than a constant for all ω. Also, [X̂ i2(tj′) |

F̂ i1(tj′−1)](x) > 0 for −∞ < x < ∞ since for any of the three cases (tar-
get i2 resulting from birth, split, or merger) it has support over the entire real
line. Thus

inf
(θ̂k,θ̃k)∈Θ

[X̂i2(tj′ ) | F̂ i1(tj′−1)](xj) ≥ C2(ω) > 0

and finally

sup

(θ̂k,θ̃k)∈Θ

[X̃ i1(tj′) | F̃ i1(tj′−1)](x1)

[X̂ i2(tj′) | F̂ i1(tj′−1)](x1)
≤
C1

C2

which gives the first result.
Now consider the ratios in (A16) and (A17). We only need to show (A16)

since they are equivalent if in (A17) we relabel x1 as x2 and so on. By Lemma 3
can write the ratio in (A16) as

∏n′
k

j=2[X̃i1(tj′+j−1) | F̃ i1(tj′+j−2)](xj)
∏n′

k

j=2[X̂i2(tj′+j−1) | F̂ i1(tj′+j−2)](xj)
=





nk
∏

j=2

Aj



 · B

where

Aj =

√

√

√

√

2π∆tkj′ σ̂
2 +O(k−2)

2π∆tkj′ σ̃
2 +O(k−2)

, (A20)
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B = exp







nk
∑

j=2

(

−
(xj − xj−1 +O(k−1))2

2∆tkj′ σ̃
2 +O(k−2)

+
(xj − xj−1 +O(k−1))2

2∆tkj′ σ̂
2 +O(k−2)

)







and all of the O(h) are possibly different functions that tend to zero like ch as
k → ∞.

We will need to calculate a bound for how much different the estimates σ̃2

and σ̂2 can be. Notice that in the conditions of any of the propositions, the sets
of variables D̃ and D̂ used to calculate σ̃2 and σ̂2 can be different only by one
variable.

Now all of the D̃i,j = D̂i,j except for possibly one, and |N̂ − Ñ | ≤ 1. Assume

for the moment that Ñ = N̂ − 1 and that D̂
2

i′,j′ does not appear in the estimate

σ̃2. Then

σ̂2 − σ̃2 =



(N̂ − 1)

m̂
∑

i=1

n̂i
∑

j=1

D̂
2

i,j − N̂

m̃
∑

i=1

ñi
∑

j=1

D̃
2

i,j



 /(N̂(N̂ − 1))

= −





m̃
∑

i=1

ñi
∑

j=1

D̃
2

i,j



 /(N̂(N̂ − 1)) + D̂
2

i′,j′/N̂

= −σ̃2/N̂ + D̂
2

i′,j′/N̂

so that −σ̃2/N̂ ≤ σ̂2 − σ̃2 ≤ D̂
2

i′,j′/N̂, but D̂
2

i′,j′ ≤ c

√

log log N̂ by Condition 7

and σ̃2 ≤ K for some constant K < ∞ by Condition 6. So we have K/N̂ ≤

σ̂2 − σ̃2 ≤ c

√

log log N̂/N̂. Then assuming that Ñ = N̂ +1 gives us the reverse

inequality which gives us |σ̂2 − σ̃2| ≤ c

√

log log N̂/N̂.

Now consider the quantity Aj in (A20) we have

Aj =

√

σ̂2 +O(k−1)

σ̃2 +O(k−1)
=

√

1 +
σ̂2 − σ̃2 +O(k−1)

σ̃2 +O(k−1)

≤

√

1 + c2

√

log log N̂/N̂ ≤

√

1 + (c2 log log N̂)/N̂

since N̂ ≤ ck. But N̂ ≥ n′
k − 1 so

n′
k
∏

j=2

Aj ≤
(

1 + (c2 log log N̂)/N̂
)N̂/2

.

Now if nk → ∞ as k → ∞, then

(

1 + (c2 log log N̂)/N̂
)N̂/2

(log N̂)c2/2
→ 1
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so that
∏nk

j=2 Aj ≤ (log N̂)c2/2 eventually which means that

nk
∏

j=2

Aj ≤ c3(log k)
c4 . (A21)

Of course if n′
k is bounded then

∏nk

j=2 Aj is also bounded.

Now for B notice that (xj − xj−1 + O(k−1))2 = (xj − xj−1)
2 + (xj −

xj−1)O(k
−1) +O(k−2),

2∆tkj σ̂
2

2∆tkj σ̂
2 +O(k−2)

= 1 +O(k−1),

and

2∆tkj σ̂
2

2∆tkj σ̃
2 +O(k−2)

= 1 +
σ̃2 − σ̂2

σ̂2 +O(k−1)
≤ 1 +

(

c1

√

log log N̂

)

/N̂.

So we can write B as

exp

{

nk
∑

j=2

(

−
(xj − xj−1)

2 + (xj − xj−1)O( 1
k
) +O( 1

k2 )

2∆tkj σ̂
2

(

1 +O

(

1

k

))

(A22)

+
(xj − xj−1)

2 + (xj − xj−1)O( 1
k
) +O( 1

k2 )

2∆tkj σ̂
2

(

1 +O

(
√

log log N̂/N̂

))

)}

= exp







nk
∑

j=2





(xj−xj−1)
2O( 1

k
)+(xj−xj−1)O( 1

k
)+(xj−xj−1)

2O
(

√

log log N̂/N̂
)

+O( 1
k2 )

2∆tkj σ̂
2











.

Now this track segment is from a solution from the conditions of one of
Propositions 1a, 1b, 2, 3, 5a, 5b, 6a, or 6b so all of the tracks are correct tracks
segments. Hence all of the (xj−1, xj) pairs are consecutive observations from a
scaled Brownian path. Therefore

(xj − xj−1)
√

∆tkj

∼ N (0, σ2).

Thus if n′
k → ∞ and remember that n′

k ≤ ck, then for any solutions θ̃ and θ̂, B
is no more than

exp











1

n′

k

n′
k
∑

j=2

(xj−xj−1)
2

∆tkj





O( 1
k
)n′

k

2σ̂2
+





n′
k
∑

j=2

(xj−xj−1)
√

2∆tkjn
′

k log log n
′

k





O( 1
k
)
√

2n′

k log log n
′

k

2
√

∆tkj σ̂
2

+





n′
k
∑

j=2

(xj−xj−1)
√

2∆tkjn
′

k log log n
′

k





O
(

√

log log N̂/N̂
)√

2n′

k log log n
′

k

2
√

∆tkj σ̂
2

+

n′
k
∑

j=2

O

(

1

k

)







.

(A23)
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The first term in the exponent is O(1) a.s. by the strong law of large num-
bers. The second term is less than (C2 log log k) a.s. by the Law of the Iterated
Logarithm and the fact that nk ≤ ck for some constant c by Condition 1. The

third term is less than (C3

√

k/N̂ log log k) a.s. also by the Law of the Iterated

Logarithm and the fact that N̂ ≤ ck and nk ≤ ck for some constant c. The last
term is O(1) because we are adding up less than k terms which are all O(k−1).
Hence we are left with

sup

(θ̂k,θ̃k)∈Θ

B ≤ exp

{

C1 + C2 log log k + C3

√

k

N̂
log log k

}

.

But in the propositions, we are restricting the solutions to have at most a total
of M tracks. This means that for some constant c, N̂ ≥ ck for any solution,
since at least one track must be accumulating observations as k → ∞. Thus

sup

(θ̂k,θ̃k)∈Θ

B ≤ exp {C′
1 + C′

2 log log k} = a(log k)b

for some constants a and b. Combining this with (A21) gives the desired result.

Lemma 7 states that the probability that any of the two-dimensional Brow-
nian motion paths will intersect at any time t in a finite interval is zero.
This Lemma is an immediate consequence of Proposition 1.4.1 on page 353
of Khoshnevisan (2002).

Lemma 7. Consider any two (x, y) paths (X1, Y1) and (X2, Y2) from the lo-
cation model in Section 2.2 where G1(t) and G2(t) are independent Brownian
motions. Then,

P

{

inf
0≤t≤1

‖(X1(t), Y1(t))) − (X2(t), Y2(t))‖ > 0

}

= 1. (A24)

Lastly, Lemma 8 states that our robust estimate of the Brownian motion
variance term is consistent.

Lemma 8. Assume Conditions 1-4 of Theorem 1, and further that Hi(t) = 0.
The estimate σ̂2 given by (10) is strongly consistent as k → ∞ when applied to
the any sequence tracking solutions, (Û ,V̂,P̂)k, that has less than M tracks and
its tracks are made up entirely of correct track segments.

Proof. Recall

σ̂2
k =

m
∑

i=1

nk
i
∑

j=1

(Xi(t
k
i,j+1)−Xi(t

k
i,j))

2

∆tkj
IEi,j
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where N =
∑m

i=1 n
k
i . Under the the assumption that all of the tracks are correct

track segments, for each of the terms

Xi(ti,j+1)−Xi(ti,j)
√

∆tj
∼ N (0, σ2).

and they are independent. If we let (Z∗
j )

2 = Z2
j IEi,j

then we can write σ̂2
k as

1

N
S∗
N =

1

N

N
∑

j=1

Z2
j IEi,j

=
1

N

N
∑

j=1

(Z∗
j )

2

where Zj
iid
∼ N (0, σ2). There are a finite number of tracks in (Û ,V̂ ,P̂) which

means N ≥ c1k for some positive constant c1, so N → ∞ as k → ∞. Hence it
is sufficient to show that 1

N S
∗
N → σ2 as N → ∞ a.s.

Let un = ⌊αn⌋, for α > 1 which is fixed for now. We first need to show that

∞
∑

n=1

P

(∣

∣

∣

∣

S∗
un

− ES∗
un

un

∣

∣

∣

∣

> ε

)

<∞. (A25)

But

Var(S∗
n) =

n
∑

k=1

Var
(

(Z∗
j )

2
)

≤
n
∑

k=1

E
(

(Z∗
j )

4
)

= nE
(

Z4
j IEi,j

)

≤ nE
(

Z4
j

)

= 2nσ2.

So it follows by Chebyshev’s Inequality that the sum in (A25) is no more than

∞
∑

n=1

Var(S∗
un

)

ε2u2n
≤

∞
∑

n=1

2unσ
2

ε2u2n
.

Now y ≤ 2⌊y⌋ for y ≥ 1 so we have that

∞
∑

n=1

1

un
≤

∞
∑

n=1

1

un
2α−n = K <∞

and finally
∞
∑

n=1

P

(∣

∣

∣

∣

S∗
un

− ES∗
un

un

∣

∣

∣

∣

> ε

)

<
2σ2

ε2
K <∞.

Hence by the first Borel-Cantelli Lemma, we have

P

(∣

∣

∣

∣

S∗
un

− ES∗
un

un

∣

∣

∣

∣

> ε eventually

)

= 0

for all ε > 0. Taking a union over positive rational ε gives us that (S∗
un

−ES∗
un

)/
un → 0 a.s. But ES∗

n/n = E(Z∗
j )

2 → EZ2
j = σ2, so that S∗

un
/un → σ2 a.s.
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If un ≤ k ≤ un+1, then

un
un+1

S∗
un

un
≤
S∗
k

k
≤
un+1

un

S∗
un+1

un+1

but un+1/un → α so

1

α
σ2 ≤ lim

S∗
k

k
≤ lim

S∗
k

k
≤ ασ2 a.s.

This is true for all α > 1. Now take α ↓ 1, rational, and we have

lim
k→∞

σ̂2
k = lim

N→∞

S∗
N

N
= σ2 a.s.

Corollary 1. The estimate σ̂2 given by (10) is strongly consistent as k → ∞
when applied to the correct sequence of tracking solutions, (U ,V ,P)k.

Proof. Immediate consequence of Lemma 8.

Appendix E: Propositions

In this section we introduce several propositions that are used to prove the main
theorem of Section 3. As mentioned before, this is accomplished by computing
the likelihood ratio of the best possible sequence of alternatives, (Ũ ,Ṽ ,P̃)k, to
that of the correct solution sequence, (U ,V ,P)k.

Before we can compare likelihoods, we must first consider how an alternative
solution can differ from the correct one. To this end we will make use of the
following notation. Recall that tki,j , j = 1, . . . , nk

i is the jth time that the ith

target is observed. At times it will be convenient to write Xi,j = Xi(t
k
i,j), and

ni = nk
i keeping in mind these are still a function of k. For the tracking esti-

mate (Û ,V̂ ,P̂)k we will will denote Xi,j and ni as X̂i,j and n̂i respectively. For

(Ũ ,Ṽ ,P̃)k we will denote them as X̃i,j and ñi. Adopt a similar notation for Y .
We will also make use of the following definition of a track and a track

segment. A target track for target i is defined to be a sequence of observed
locations (Xi,1, Xi,2, . . . , Xi,ni

). Define a track segment to be any subsequence
of a track where consecutive elements are the same as those in the track, i.e.
(Xi,j , Xi,j+1, . . . , Xi,l) where 1 ≤ j ≤ l ≤ ni. Define a correct track to be a
track in the correct solution (U ,V,P)k and a correct track segment to be a track
segment of a correct track.

We will consider the following six ways an alternative can differ from the
correct solution. We will then argue that any incorrect solution may be ob-
tained by applying these differences sequentially to the correct solution. These
six alternatives are

1. incorrectly breaking a correct track into two track segments.
2. incorrectly labeling a merger as two deaths and a birth.
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. .Y

X X

Y

tk,j' tk,j'+1

(U,V,p)k (U,V,p)k
~     ~ ~ 

1
1 m

^     ^ ^ 

~

Fig 4. (Ũ ,Ṽ,P̃)k incorrectly breaks target track 1 into two tracks.

3. incorrectly labeling a split as a death and two births.
4. incorrectly connecting a death with a birth to make one track.
5. incorrectly labeling two deaths and a birth as a merger.
6. incorrectly labeling a death and two births as a split.

The following propositions in this section deal with each of the six possible dif-
ferences between solutions listed above. Each one assumes something about two
sequences of tracking estimates (Û ,V̂ ,P̂)k and (Ũ ,Ṽ,P̃)k. Propositions 1a and 1b
deal with the first difference listed above. They basically say that asymptotically
it is not beneficial to break a correct target track into separate tracks. Propo-
sition 1a considers breaking the track at a fixed time, while Proposition 1b
considers breaking the track at an arbitrary time.

Proposition 1a. Assume Conditions 1-4, and further that Hi(t) = 0. Let Θ

be the set of all pairs of tracking solutions sequences, θ̂k = (Û ,V̂ ,P̂)k and θ̃k =

(Ũ ,Ṽ ,P̃)k that have the following property. All of the tracks that make up θ̂k
and θ̃k are correct track segments and θ̃k differs from θ̂k at every k only by
breaking a correct target track labeled i1 from θ̂k into two tracks by incorrectly
specifying the death of target i1 and the birth of target i2 during a fixed time
interval [tkj′ , t

k
j′+1) for each k. Then,

R1a = sup

(θ̂k,θ̃k)∈Θ

[(U ,V,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V,P)k | Zk]((Û ,V̂ ,P̂)k)
≤ O(k−3(log k)c) as k → ∞ a.s.

for some positive constant c which depends on ω.

Proof. WLOG assume that i1 = 1 and i2 = m̃, where m̃ is the number of tracks
in (Ũ ,Ṽ ,P̃)k; see Figure 4. Note that this implies m̂ = m̃ − 1 where m̂ is the
number of tracks in (Û ,V̂ ,P̂)k. From (9) of Section 2.3 the ratio of the densities
in the proposition can be written as

[(U ,V,P)k | Zk]((Ũ ,Ṽ,P̃)k)

[(U ,V,P)k | Zk]((Û ,V̂,P̂)k)
=

[Uk,Vk](Ũk,Ṽk)

[Uk,Vk](Ûk,V̂k)
·
[X̃ k | Ũk,Ṽk](X̃ k)·[Ỹk | Ũk,Ṽk](Ỹk)

[X̂ k | Ûk,V̂k](X̂ k)·[Ŷk | Ûk,V̂k](Ŷk)
.

(A26)
Write Xi = (Xi,1, . . . , Xi,ni

) and

F i,j = (Xi,1, . . . , Xi,j ,Xi−1, . . . ,X1, D1, . . . , DNm
),
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with Dj being the difference variables resulting from merger as given in (A4). By

convention let F i,0 = (X1, . . . ,Xi−1, D1, . . . , DNm
). Then let F̂ i,j and F̃ i,j de-

note the F i,j variable for the solutions (Û ,V̂,P̂)k and (Ũ ,Ṽ,P̃)k respectively. No-

tice that we can write the x component of the likelihood for (Û ,V̂ ,P̂)k given Z as

[X̂ | Û , V̂ ](X̂ ) =

m̂
∏

i=1

n̂i
∏

j=1

[X̂i,j | F̂ i,j−1](X̂i,j)

for example. So we can write the ratio of the x location densities in (A26)
by breaking it apart into tracks 2, . . . , m̃ − 1, which the two solutions have in
common, then handle tracks 1 and m̃ separately

[X̃ k | Ũk,Ṽk](X̃ k)

[X̂ k | Ûk,V̂k](X̂ k)
=

∏m̃
i=1

∏ñi

j=1[X̃i,j | F̃ i,j−1](X̃ i,j)
∏m̃−1

i=1

∏n̂i

j=1[X̂i,j | F̂ i,j−1](X̂ i,j)

=

∏m̃−1
i=2

∏ñi

j=1[X̃ i,j | F̃ i,j−1](X̃ i,j)
∏m̃−1

i=2

∏n̂i

j=1[X̂ i,j | F̂ i,j−1](X̂ i,j)
·

∏ñ1

j=1[X̃1,j | F̃1,j−1](X̃1,j)
∏ñ1

j=1[X̂1,j | F̂1,j−1](X̂1,j)

·
[X̃m̃,1 | F̃ m̃,0](X̃m̃,1)

[X̂1,ñ1+1 | F̂1,ñ1 ](X̂1,ñ1+1)
·

∏ñm̃

j=1[X̃m̃,j | F̃m̃,j−1](X̃m̃,j)
∏n̂1

j=ñ1+2[X̂1,j | F̂1,j−1](X̂1,j)
. (A27)

But for i = 2, . . . , m̃ − 1, and j = 1, . . . , n̂i, we have X̂ i,j = X̃ i′,j for some i′

in 1, . . . , m̃− 1. The number of observations n̂i = ñi′ for all of these tracks are
the same as well. Also X̂1,j = X̃1,j for j = 1, . . . , ñ1 and X̂1,ñ1+j = X̃m̃,j for
j = 2, . . . , ñm̃. So by Lemma 6 the first, second and third terms of (A27) are no
more than am̃(log k)m̃b for some uniform constants a and b so that

[X̃ k | Ũk, Ṽk](X̃ k)

[X̂ k | Ûk, V̂k](X̂ k)
≤

[X̃m̃,1 | F̃m̃,0](X̃m̃,1)

[X̂1,ñ1+1 | F̂1,ñ1 ](X̂1,ñ1+1)
· am̃(log k)m̃b a.s.

Since m̃ ≤M by Condition 8 we have

sup

(θ̂k,θ̃k)∈Θ

[X̃ k | Ũk,Ṽk](X̃ k)

[X̂ k | Ûk,V̂k](X̂ k)
≤ sup

(θ̂k,θ̃k)∈Θ

[X̃m,1 | F̃m,0](X̃m,1)

[X̂1,ñ1+1 | F̂1,ñ1 ](X̂1,ñ1+1)
aM (log k)Mb a.s.

(A28)
Notice that the term in the numerator of (A28) is the density of the first ob-
servation of a new track and hence for all (Ũ ,Ṽ ,P̃)k must be smaller than the
mode of the normal density with variance σ2

X0
. Also, the denominator can be

written out by utilizing Lemma 3. So we have,

sup

(θ̂k,θ̃k)∈Θ

[X̃ k | Ũk, Ṽk](X k)

[X̂ k | Ûk, V̂k](X k)

≤
φ(0; 0, σ2

X0
) · aM (log k)Mb

inf
(θ̂k,θ̃k)∈Θ

exp

{

−

(

X̂1(tk
j′+1

)−X̂1(tk
j′
)+O( 1

k
)
)2

2σ̂2
∆tk

j′
+O( 1

k2 )

}

/

√

2πσ̂2∆tkj′ +O( 1
k2 )

.

(A29)
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The same is true for Y and it is independent of X . Recall that the variance
parameter of the Brownian motion for Yi is denoted as ηi. Then we have

sup

(θ̂k,θ̃k)∈Θ

[X̃ k, Ỹk | Ũk, Ṽk](X̃ k, Ỹk)

[X̂ k, Ŷk | Ûk, V̂k](X̂ k, Ŷk)
≤
φ(0; 0, σ2

X0
)φ(0; 0, σ2

Y0
) · aM (log k)Mb

inf
(θ̂k,θ̃k)∈Θ

D

(A30)
where

D =

exp

{

−

(

(X̂1(t
k
j′+1

)−X̂1(t
k
j′
)+O(k−1))2

2σ̂2
∆tk

j′
+O(k−2)

+
(Ŷ1(t

k
j′+1

)−Ŷ1(t
k
j′
)+O(k−1))2

2η̂2
∆tk

j′
+O(k−2)

)}

2πσ̂η̂∆tkj′ +O(k−3/2)
.

Now
(

X̂1(t
k
j′+1)− X̂1(t

k
j′ )
)2

σ̂2

L
=
σ2

σ̂2 (B(tkj′+1)−B(tkj′ )) (A31)

whereB(t) is a Brownian motion or a Brownian motion conditional on theD′
js of

Lemma 5. In either case, because of Lemma 5, any path properties of Brownian
motion will apply. Also realize that all of the track segments in (Û ,V̂ ,P̂)k are
correct so by Lemma 8, σ̂2 → σ2. Using this fact along with (A31) on D, we have

inf
(θ̂k,θ̃k)∈Θ

D =

exp

{

−
(1+o(1))(B(tk

j′+1
)−B(tk

j′
))

2
+(1+o(1))(B̃(tk

j′+1
)−B̃(tk

j′
))

2

2∆tk
j′
+O(k−2)

}

2πσ1η1∆tkj′ +O(k−3/2)

=

exp

{

−
(B(tk

j′+1
)−B(tk

j′
))

2
+(B̃(tk

j′+1
)−B̃(tk

j′
))

2

2∆tk
j′

log log(1/∆tk
j′
)+log log(1/∆tk

j′
)O(k−2)

(1 + o(1)) log log(1/∆tkj′)

}

C∆tkj′ +O(k−3/2)

=

exp

{

−
(B(tk

j′+1
)−B(tk

j′
))

2
+(B̃(tk

j′+1
)−B̃(tk

j′
))

2

2∆tk
j
log log(1/∆tk

j′
)

(1 + o(1)) log log(1/∆tkj′)

}

C∆tkj′ +O(k−3/2)
,(A32)

whereB and B̃ are independent Brownianmotions. Now remember that [tkj′ , t
k
j′+1)

is a fixed interval for each k. Also assume that B is a Brownian motion (not con-

ditioned on Dj ’s) so that B(tkj′+1)−B(tkj′ )
L
= B∗(∆tkj′ ) where B

∗ is a Brownian
motion. We can now apply Lemma 1 to D which gives

inf
(θ̂k,θ̃k)∈Θ

D ≥
exp

{

− (1 + o(1)) log log(1/∆tkj′)
}

C∆tkj′ +O(k−3/2)
. (A33)

Note that B∗ may have been a different Brownian motion for each k, but there
is a countable number of them so the sets with probability zero can be joined.
If B(t) was a Brownian motion conditioned on Dj ’s then the result in (A33)
is still true since the path set for B(t) is the same as that of Brownian motion
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excluding the paths in a set with probability zero. Hence we are left with

inf
(θ̂k,θ̃k)∈Θ

D =
log(1/∆tkj′)

−1+o(1)

C∆tkj′ +O(k−3/2)
(A34)

≥ C′k(log k)−(1+ε) eventually a.s. (A35)

for some constant C′ and an arbitrarily small ε > 0. We used Condition 1 to get
from (A34) to (A35). This says that the location contribution to the density of
target 1 at time tkj′ goes to ∞ like k/(log(k))c. This along with (A30) gives,

sup

(θ̂k,θ̃k)∈Θ

[X̃ k, Ỹk | Ũk, Ṽk](X̃ k, Ỹk)

[X̂ k, Ŷk | Ûk, V̂k](X̂ k, Ŷk)
≤ O(k−1(log(k))c) a.s. (A36)

We also need to consider the event density contribution to the ratio of (A26).

The event densities [Uk,Vk](Ûk, V̂k) and [Uk,Vk](Ũk, Ṽk) will be different only
in their contribution of the number of events during the interval [tkj′ , t

k
j′+1). For

(Ũk, Ṽk), there is one more death and one more birth in the interval than for

(Ûk, V̂k), so from (A2) we have

[Uk,Vk](Ũk, Ṽk)

[Uk,Vk](Ûk, V̂k)

=
P (Ub,j′ =Ûb,j′+1)P (Ud,j′ =Ûd,j′+1)P (Us,j′ =Ûs,j′)P (Um,j′ =Ûb,j′)P (Vk=Ṽ k)

P (Ub,j′ =Ûb,j′)P (Ud,j′ =Ûd,j′)P (Us,j′ =Ûs,j′)P (Um,j′ =Û b,j′)P (Vk=V̂ k)

=

(

(λb∆tk
j′

)
(Û

b,j′
+1)

(Û
b,j′+1)!

e
−λb∆tk

j′

)(

(λdÑj′∆tk
j′

)
(Û

d,j′
+1)

(Û
d,j′+1)!

e
−λdÑj′∆tk

j′

)

P (Vk = Ṽ k)

( (λb∆tk
j′

)
(Û

b,j′
)

(Ûb,j′ )!
e
−λb∆tk

j′

)( (λdN̂j′∆tk
j′

)
(Û

d,j′
)

(Ûd,j′ )!
e
−λdN̂j′∆tk

j′

)

P (Vk = V̂ k)

=
(λb∆tkj′)(λdÑj′∆tkj′)

(Ûb,j′ + 1)(Ûd,j′ + 1)
. (A37)

But notice that Ûb,j′ ≥ 0 and Ûd,j′ ≥ 0 while Ñj′ ≤M . Hence

sup

(θ̂k,θ̃k)∈Θ

[Uk,Vk](Ũk, Ṽk)

[Uk,Vk](Ûk, V̂k)
= O(∆tkj′ )

2 = O(k−2) a.s. (A38)

Putting this together with (A36) gives us,

sup

(θ̂k,θ̃k)∈Θ

[(U ,V ,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V ,P)k | Zk]((Û ,V̂ ,P̂)k)
≤ O(k−3(log(k))c) a.s.

as we desired.

Proposition 1b. Assume Conditions 1-4, and further that Hi(t) = 0. Let

Θ be the set of all pairs of tracking solutions sequences, θ̂k = (Û ,V̂,P̂)k and
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θ̃k = (Ũ ,Ṽ ,P̃)k that have the following property. All of the tracks that make up

θ̂k and θ̃k are correct track segments and θ̃k differs from θ̂k at every k only by
breaking a correct target track labeled i1 from θ̂k into two tracks by incorrectly
specifying the death of i1 and the birth of target i2 during an arbitrary time
interval [tkj′ , t

k
j′+1). Then,

R1b = sup

(θ̂k,θ̃k)∈Θ

[(U ,V,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V,P)k | Zk]((Û ,V̂ ,P̂)k)
≤ O(k−2+ε) as k → ∞ a.s.

for some positive constant c which depends on ω and some ε > 0 which can be
made arbitrarily small.

Proof. This proof follows the exact same logic as the previous proof of Proposi-
tion 1a. The only difference being that now tkj′ is an arbitrary time. Hence the
only change will be to apply Lemma 2 instead of Lemma 1 to (A32). So for the
D of (A30) we end up with

D ≥

exp

{

− supj
(B(tkj+1)−B(tkj ))

2
+(B̃(tkj+1)−B̃(tkj ))

2

2∆tk
j
log(1/∆tk

j
)

(1 + o(1)) log(1/∆tkj′)

}

C∆tkj′ + O(k−3/2)
.

Now use Lemma 2 which results in

inf
(θ̂k,θ̃k)∈Θ

D ≥
exp

{

− (1 + o(1)) log(1/∆tkj′)
}

C∆tkj′ +O(k−3/2)

=
∆(tkj′ )

1+o(1)

C∆tkj′ +O(k−3/2)

≥ C′k−ǫ eventually a.s. (A39)

for some constant C′ and an arbitrarily small ǫ > 0. This along with (A30) gives
us

sup

(θ̂k,θ̃k)∈Θ

[X k,Yk | Ũk, Ṽk](X̃ k, Ỹk)

[X k,Yk | Ûk, V̂k](X̂ k, Ŷk)
≤ aMk−ǫ(log k)Mb ≤ C′′k−ε eventually a.s.

(A40)
for some constant C′′ and ε > ǫ which can still be taken to be arbitrarily small.

The event model is the same as previously in Proposition 1a,

sup

(θ̂k,θ̃k)∈Θ

[Uk,Vk](Ũk, Ṽk)

[Uk,Vk](Ûk, V̂k)
= O(k−2) a.s.

This along with (A40) gives us,

sup

(θ̂k,θ̃k)∈Θ

[(U ,V ,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V ,P)k | Zk]((Û ,V̂ ,P̂)k)
≤ O(k−2+ε) a.s.
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Propositions 2 and 3 deal with the second and third differences listed earlier.
These propositions say that it is not beneficial asymptotically to break apart a
correctly specified merging or splitting event.

Proposition 2. Assume Conditions 1-4, and further that Hi(t) = 0. Let Θ

be the set of all pairs of tracking solution sequences, θ̂k = (Û ,V̂ ,P̂)k and θ̃k =
(Ũ ,Ṽ ,P̃)k that have the following property. All of the track segments that make

up θ̂k and θ̃k are correct track segments and θ̃k differs from θ̂k at every k only
by relabeling a correct merging event of targets i1 and i2 into target i3 as the
deaths of targets i1 and i2 and the birth of target i3. Then

R2 = sup

(θ̂k,θ̃k)∈Θ

[(U ,V ,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V ,P)k | Zk]((Û ,V̂ ,P̂)k)
≤ O(k−2(log k)c) as k → ∞ a.s.

for some positive constant c which depends on ω.

Proof. WLOG assume that i1 = 1, i2 = 2 and i3 = 3. The relabeling described in
the proposition is portrayed in Figure 5. Here we have that for i = 1, . . . ,m, and
j = 1, . . . , n̂i, the locations X̂i,j = X̃i′,j for some i′. The number of observations
n̂i = ñi′ for all of these tracks are the same as well. Hence by Lemma 6 the
ratio of the x location densities in (A26) is no more than am̃(log k)m̃b for some
constants a and b,

[X̃ k | (Ũ ,Ṽ,P̃)k](X̃ )

[X̂ k | (Û ,V̂,P̂)k](X̂ )
≤ am̃(log k)m̃b a.s.

and since there are less than M tracks the solutions (Û ,V̂,P̂)k and (Ũ ,Ṽ ,P̃)k,
we have

sup

(θ̂k,θ̃k)∈Θ

[X̃ k | (Ũ ,Ṽ ,P̃)k](X̃ )

[X̂ k | (Û ,V̂ ,P̂)k](X̂ )
≤ aM (log k)Mb a.s.

Of course the same is true for Y as well so we have

sup

(θ̂k,θ̃k)∈Θ

[X̃ k, Ŷk | Ũk, Ṽk](X̃ , Ỹk)

[X̃ k, Ŷk | Ûk, V̂k](X̂ , Ŷk)
≤ a2M (log k)2Mb a.s. (A41)

. .
Y

X X

Y

(U,V,p)k (U,V,p)k
~     ~ ~ 

1 .
2

^     ^ ^ 

. .1 3.
2

3

Fig 5. (Ũ ,Ṽ,P̃)k incorrectly breaks apart a merger into two deaths and a birth.
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For the event model contribution, the event model for (Ũ ,Ṽ,P̃)k has 2 more
events in [tkj′ , t

k
j′+1), than (Û ,V̂,P̂)k. As in (A38) then we have

sup

(θ̂k,θ̃k)∈Θ

[Uk,Vk](Ũk, Ṽk)

[Uk,Vk](Ûk, V̂k)
≤ O(k−2) a.s.

This along with (A41) gives us the desired result.

Proposition 3. Assume Conditions 1-4, and further that Hi(t) = 0. Let Θ

be the set of all pairs of tracking solution sequences, θ̂k = (Û ,V̂,P̂)k and θ̃k =

(Ũ ,Ṽ ,P̃)k that have the following property. All of the tracks that make up θ̂k and

θ̃k are correct track segments and θ̃k differs from θ̂k at every k only by relabeling
a correct splitting event of target i1 into targets i2 and i3 as the death of target
i1 and the birth of targets i2 and i3. Then

R3 = sup

(θ̂k,θ̃k)∈Θ

[(U ,V,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V,P)k | Zk]((Û ,V̂ ,P̂)k)
≤ O(k−2(log k)c) as k → ∞ a.s.

for some positive constant c which depends on ω.

Proof. This is symmetric with respect to the difference between solutions in
Proposition 2. The proof will therefore be identical.

We will say that two targets labeled i1 and i2 at times t1 and t2 are distinct if
their labels are different in the correct solution (U ,V ,P). That is to say that they
are not the same physical target. Proposition 4 deals with the fourth difference
listed earlier in the chapter. It assumes that (Û ,V̂ ,P̂) has the death of a target
labeled i1 and the birth of a target labeled i2 in the same interval [tkj′ , t

k
j′+1).

These two events are not necessarily labeled correctly. However target i1 at time
tkj′ is assumed to be distinct from target i2 at time tkj′+1. The solution (Ũ ,Ṽ ,P̃)
then connects these two track segments which is not consistent with the correct
solution; see Figure 6. Proposition 4 then says that there can be no differences
of this type eventually.

Proposition 4. Assume Conditions 1-4, and further that Hi(t) = 0. Let Θ

be the set of all pairs of tracking solution sequences, θ̂k = (Û ,V̂,P̂)k and θ̃k =

. .Y

X X

Y

tk,j' tk,j'+1

(U,V,p)k (U,V,p)k
~     ~ ~ 

1
2

^     ^ ^ 

. .1
1

Fig 6. (Ũ ,Ṽ,P̃)k incorrectly joins target tracks 1 and 2 into one track.
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(Ũ ,Ṽ ,P̃)k that have the following property. The sequences θ̃k and θ̂k differ at
every k only by joining the birth and death of two targets i1 and i2 which are
distinct into one target track. Then Θ is the empty set.

Proof. WLOG assume that i1 = 1 and i2 = 2. The observations that get incor-
rectly joined together in a track in the solution (Ũ ,Ṽ ,P̃) are (X̂1(t

k
j′), Ŷ 1(t

k
j′))

and (X̂2(t
k
j′+1), Ŷ 2(t

k
j′+1)). Now these are observations from distinct targets in

the correct solution so by Lemma 7 and the continuity of Brownian paths, we
know that

inf
j

{

(

X̂2(t
k
j′+1)− X̂1(t

k
j′)
)2

+
(

Ŷ2(t
k
j′+1)− Ŷ1(t

k
j′ )
)2
}

= inf
j

∥

∥

∥

(

X̂1(t
k
j′ ), Ŷ 1(t

k
j′)
)

−
(

X̂2(t
k
j′ + 1), Ŷ 2(t

k
j′+1)

)∥

∥

∥

2

≥ C1 > 0 a.s.

So by Condition 8 there cannot be a solution that connects these two observa-
tions in the same track eventually. Hence such a sequence (Ũ ,Ṽ,P̃)k does not
exist.

Note that this is the only place where we use the second part of Condition 8.
This is a very reasonable assumption to make, since it only prevents us from
forming discontinuous paths. It seems however, that the likelihood should pre-
vent us from doing this anyway. We do indeed believe that this is the case, but
need to develop tighter bounds in formulation of Lemma 6 before we can remove
the second part of Condition 8.

The next proposition deals with the fifth difference listed in the beginning of
the chapter. It basically says that it is not advantageous asymptotically to take
actual deaths and a birth and merge them together.

We will say that an event in (Û ,V̂ ,P̂)k corresponds to an event in (U ,V ,P)k
if they happen to the same target in the same interval. For example if target 1
dies in the interval [tkj′ , t

k
j′+1) in (Û ,V̂ ,P̂)k and in (U ,V ,P)k target 1 merges with

target 2 in that interval, then the death of target 1 in (Û ,V̂ ,P̂)k corresponds to
the merger of target 1 with target 2 in (U ,V ,P)k. Also two events in a solution
are distinct if they are not the same event.

Proposition 5a. Assume Conditions 1-4, and further that Hi(t) = 0. Let Θ

be the set of all pairs of tracking solution sequences, θ̂k = (Û ,V̂ ,P̂)k and θ̃k =

(Ũ ,Ṽ ,P̃)k that have the following property. All of the tracks that make up θ̂k
and θ̃k are correct track segments and θ̃k differs from θ̂k at every k only by
declaring a merging event in place of two deaths and a birth for two targets i1
and i2 that died in (Û ,V̂ ,P̂)k with a target i3 that was born in (Û ,V̂ ,P̂)k. It is
further assumed that the deaths of targets i1 and i2 and the birth of target i3
may be incorrectly specified in (Û ,V̂ ,P̂)k, but at least two of these three events
must correspond to two distinct events in the correct solution (U ,V ,P)k. Then,

R5a = sup

(θ̂k,θ̃k)∈Θ

[(U ,V ,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V ,P)k | Zk]((Û ,V̂ ,P̂)k)
= 0 eventually as k → ∞ a.s.
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Y

X X

Y

(U,V,p)k (U,V,p)k
~     ~ ~ ^     ^ ^ 

. .1 3

.
2

. .1 3

.
2

Fig 7. (Ũ ,Ṽ,P̃)k incorrectly merges targets 1 and 2 into target 3.

Proof. WLOG let i1 = 1, i2 = 2, and i3 = 3. The relabeling described in the
proposition are portrayed in Figure 7. Let the unknown times at which the two
distinct events occur be denoted τ1 and τ2 and assume WLOG that τ1 ≤ τ2.
Since these are the times of actual events from the event model, τ1 < τ2 with
probability 1. Hence by condition 1 there is a K such that for all k > K there
will be a sample time, tkj′ , in the interval (τ1, τ2). For this sample time, one of

the targets involved in the proposed merging event in (Ũ ,Ṽ ,P̃)k will be missing
unless targets 1 and 2 merge before before τ1. But missing observations are not
allowed and both targets still exists in (Û ,V̂ ,P̂)k at time tkj′ so this would violate

the hypothesis. Thus [Ũ ,Ṽ,P̃)k,Zk]((Ũ ,Ṽ,P̃)k,Zk) = 0 eventually.

Proposition 5b is very similar to proposition 5a, but now there is no restriction
that any of the two deaths and a birth in (Û ,V̂ ,P̂)k correspond to events in
(U ,V ,P)k. Thus they can be at arbitrary times. In this case there may be an
advantage to combine these three events into a merger by switching to the
alternative (Ũ ,Ṽ ,P̃)k. This will not be a problem however as we will see that
there would have to be too many other negative differences before (Ũ ,Ṽ,P̃)k
could make use out of any possible advantage it may gain from the difference
in Proposition 5b.

Proposition 5b. Assume Conditions 1-4, and further that Hi(t) = 0. Let

Θ be the set of all pairs of tracking solution sequences, θ̂k = (Û ,V̂ ,P̂)k and
θ̃k = (Ũ ,Ṽ ,P̃)k that have the following property. All of the tracks that make up

θ̂k and θ̃k are correct track segments and θ̃k differs from θ̂k at every k only by
declaring a merging event in place of two deaths and a birth for two targets i1
and i2 that died in (Û ,V̂,P̂)k with a target i3 that was born in (Û ,V̂,P̂)k. Then

R5b = sup

(θ̂k,θ̃k)∈Θ

[(U ,V ,P)k | Zk]((Ũ ,Ṽ,P̃)k)

[(U ,V ,P)k | Zk]((Û ,V̂,P̂)k)
≤ bk2(log k)c as k → ∞ a.s.

for some positive constants b and c which depend on ω.

Proof. This differs from the previous proposition since, the deaths of targets
i1 and i2 and the birth of target i3 in (Û ,V̂ ,P̂)k do not necessarily correspond
to events in the correct solution. WLOG assume that i1 = 1, i2 = 2 and i3 =
3. Here we have the reverse case of Proposition 2, so again we have that for
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i = 1, . . . ,m and j = 1, . . . , n̂i, the observations X̂ i,j = X̃ i′,j for some i′. The
number of observations n̂i = ñi′ for all of these tracks are the same as well. The
same arguments as in the proof of Proposition 2 lead us to

sup

(θ̂k,θ̃k)∈Θ

[X̃ k, Ŷk | Ũk, Ṽk](X̃ , Ỹk)

[X̃ k, Ŷk | Ûk, V̂k](X̂ , Ŷk)
≤ a2M (log k)2Mb a.s. (A42)

For the event model contribution, the two deaths and a birth (Û ,V̂ ,P̂)k do not
necessarily correspond to events in the correct solution, so it is possible that they
are all in the same interval [tkj′ , t

k
j′+1). This would be the worst case, since if they

were not, by arguments of the previous proof, [(U ,V ,P)k,Zk]((Ũ ,Ṽ ,P̃)k,Zk) = 0
eventually. So assume that all three events are in the same interval for all k.
In which case, the event density for (Û ,V̂ ,P̂)k and (Ũ ,Ṽ ,P̃)k will differ only in
their contributions during the interval [tkj′ , t

k
j′+1). The event model for (Û ,V̂ ,P̂)k

has two more events in [tkj′ , t
k
j′+1) than does (Ũ ,Ṽ ,P̃)k. In the same manner we

derived (A37) we can see that

[(U ,V ,P)k]((Ũ ,Ṽ ,P̃)k)

[(Û ,V̂ ,P̂)k]((Û ,V̂ ,P̂)k)
=

(λd(Ñj′ − 1)∆tkj′)(Ũb,j′ + 1)(Ũd,j′ + 1)(Ũd,j′ + 2)

(λb∆tkj′ )(λdÑj′∆tkj′)
2(Ũm,j′ + 1)

.

After taking into account that Ũb,j′ , Ũd,j′ , and Ñj′ are no more than M while

Ûm,j′ ≥ 0, we have

sup

(θ̂k,θ̃k)∈Θ

[(U ,V,P)k]((Ũ ,Ṽ ,P̃)k)

[(Û ,V̂,P̂)k]((Û ,V̂ ,P̂)k)
≤ ck2 a.s.

Combining this with (A42) gives the desired result.

Proposition 6a is the counterpart of Proposition 5a for splitting instead of
merging.

Proposition 6a. Assume Conditions 1-4, and further that Hi(t) = 0. Let Θ

be the set of all pairs of tracking solution sequences, θ̂k = (Û ,V̂ ,P̂)k and θ̃k =

(Ũ ,Ṽ ,P̃)k that have the following property. All of the tracks that make up θ̂k
and θ̃k are correct track segments and θ̃k differs from θ̂k at every k only by
declaring a splitting event in place of two births and a death for a target i1 that
died in (Û ,V̂ ,P̂)k with two targets i1 and i3 that were born in (Û ,V̂ ,P̂)k. It is
further assumed that the death of target i1 and the birth of targets i2 and i3 may
be incorrectly specified in (Û ,V̂,P̂)k, but at least two of these three events must
correspond to two distinct events in the correct solution (U ,V ,P)k. Then,

R6a = sup

(θ̂k,θ̃k)∈Θ

[(U ,V ,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V ,P)k | Zk]((Û ,V̂ ,P̂)k)
= 0 eventually as k → ∞ a.s.

Proof. This follows the exact same arguments as the proof of Proposition 5a.
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Proposition 6b is also the counterpart of Proposition 5b for splitting instead
of merging. Again, when the events in (Û ,V̂ ,P̂)k that we join together into a
splitting event in (Ũ ,Ṽ,P̃)k do not correspond to actual events in the correct
solution, there may be an advantage to switch to (Ũ ,Ṽ,P̃)k. This will need to
be dealt with in the proof of Theorem 1.

Proposition 6b. Assume Conditions 1-4, and further that Hi(t) = 0. Let

Θ be the set of all pairs of tracking solution sequences, θ̂k = (Û ,V̂ ,P̂)k and
θ̃k = (Ũ ,Ṽ,P̃)k that have the following property. All of the track segments that

make up θ̂k and θ̃k are correct track segments and θ̃k differs from θ̂k at every k
only by declaring a splitting event in place of two births and a death for a target
i1 that died in (Û ,V̂,P̂)k with two targets i1 and i3 that were born in (Û ,V̂ ,P̂)k.
Then

R6b = sup

(θ̂k,θ̃k)∈Θ

[(U ,V ,P)k | Zk]((Ũ ,Ṽ,P̃)k)

[(U ,V ,P)k | Zk]((Û ,V̂,P̂)k)
≤ bk2(log k)c as k → ∞ a.s.

for some positive constants b and c which depend on ω.

Proof. Because of the symmetry of splitting and merging, this is identical to
the proof of Proposition 5b.

Appendix F: Proof of Theorem 1

Proof of Theorem 1. Due to the Cameron Martin theorem, Theorem 18.22 of
Kallenberg (2002), under the assumptions of Conditions 3 and 4, the distribu-
tion of Hi(t) + σGi(t) and the distribution of σGi(t) are mutually absolutely
continuous. Because we are only interested in events of probability one, such as
almost sure convergence, we can without loss of generality assume thatHi(t) = 0
for all targets.

Let (Ũ ,Ṽ,P̃)k be an arbitrary incorrect solution sequence. The solution
(Ũ ,Ṽ ,P̃)k has incorrect tracks, and/or incorrectly labeled events. Realize, how-
ever that the tracks of any incorrect solution are made up of correct track
segments which are only joined together incorrectly. We can define T to be the
minimal set of correct track segments that makes up (Ũ ,Ṽ ,P̃)k. Since there is a
finite number of possible track segments for each k, this minimal set exists for
all k.

Let the difference between solutions described in Propositions 1a, 1b, . . .
6b be referred to as difference 1a, difference 1b, . . . , difference 6b. We can
apply differences 1a, 1b, 2, and 3 sequentially to break (U ,V ,P)k into the track
segments in T . The diagrams in Figure 8 illustrate this process. We can then
connect these track segments together using differences 4, 5a, 5b, 6a, and 6b
sequentially to form the tracks of (Ũ ,Ṽ ,P̃)k; See the last transition in Figure 8.
Furthermore, we can do this by applying any of the differences 5a, 5b, 6a, and
6b that we may need before applying any difference 4’s. So all of the difference
1a, 1b, 2, 3, 5a, 5b, 6a are applied to solutions with tracks that are correct track
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Fig 8. Break (U ,V,P)k into track segments and connect them to get (Ũ ,Ṽ,P̃)k.

segments and hence fit into the conditions of their respective propositions. In
actuality, there can be no difference 4’s eventually by Proposition 4 anyway.

So there is a sequence of solutions that starts with (U ,V ,P)k and passes
through several incorrect solutions to arrive at (Ũ ,Ṽ ,P̃)k. Each element of this
sequence has one and only one of the differences described above from the pre-
vious element. We shall write this sequence as

(U ,V ,P)k, (U
1,V1,P1)k, (U

2,V2,P2)k, . . . , (U
l,V l,P l)k, (Ũ ,Ṽ ,P̃)k.

We can write the likelihood ratio of any incorrect solution (Ũ ,Ṽ ,P̃)k to that of
the correct solution (U ,V ,P)k as

[(U ,V ,P)k | Zk]((Ũ ,Ṽ ,P̃)k)

[(U ,V ,P)k | Zk]((U ,V ,P)k)

=
[(U ,V ,P)k | Zk]((U

1,V1,P1)k)

[(U ,V ,P)k | Zk]((U ,V ,P)k)
·
[(U ,V ,P)k | Zk]((U

2,V2,P2)k)

[(U ,V ,P)k | Zk]((U
1,V1,P1)k)

· · ·
[(U ,V,P)k | Zk]((Ũ ,Ṽ,P̃)k)

[(U ,V ,P)k | Zk]((U
l,V l,P l)k)

. (A43)

Let Θ be the set of all tracking solution sequences satisfying Condition 8
eventually. That is they have no more than M tracks and they restrict the
distance between consecutive observations in a track to be less than (c log k−1).
We claim that the correct sequence of solutions (U ,V ,P)k is in this set.

Obviously (U ,V ,P)k has no more than M tracks. And for the difference be-
tween consecutive observations, in any of the tracks we have
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sup
0≤t1≤t2≤T

t2−t1≤ck−1

(

(X(t2)−X(t1))
2 + (Y (t2)− Y (t1))

2
)1/2

≤ σ ∨ η sup
0≤t1≤t2≤T

t2−t1≤ck−1

(

(X(t2)−X(t1))
2 + (Y (t2)− Y (t1))

2

σ2 ∨ η2

)1/2

≤ σ ∨ η sup
0≤t1≤t2≤T

t2−t1≤ck−1

(

(X(t2)−X(t1))
2

σ2
+

(Y (t2)− Y (t1))
2

η2

)1/2

= σ ∨ η sup
0≤t1≤t2≤T

t2−t1≤ck−1

‖B(t2)−B(t1)‖

≤ (2c1k
−1 log(c−1

1 k))1/2 eventually as k → ∞

by Lemma 2. Hence all of the consecutive differences in the correct solution
will eventually be smaller than c log k−1. Also note that by Proposition 4, there
can be no sequence (Ũ ,Ṽ ,P̃)k ∈ Θ that has any difference 4’s from the correct
solution.

Let Θ′ = Θ\{(U ,V ,P)k}. We need to show that the supremum over (Ũ ,Ṽ ,P̃)k ∈
Θ′ of the ratio in (A43) converges to 0 as k → ∞. By Propositions 1a, 1b, 2,
3, 5a, and 6a, any of the ratios in (A43) that have differences 1a, 1b, 2, 3, 5a,
and 6a, are ≤ O(k−2(log k)c). However, if any of the terms in (A43) have differ-
ences 5b or 6b, they can be as big as ck2(log k)c. If there are two many of these
differences then the ratio may not converge to 0. We will then have to consider
how these differences could be applied to obtain (Ũ ,Ṽ,P̃)k. We will first consider
how there can be one difference 5b or 5a in an interval [tkj′ , t

k
j′+1), then consider

multiple differences.
Suppose exactly one difference 5b was applied to (U i,Vi,P i)k during the in-

terval [tkj′ , t
k
j′+1) to obtain (U i+1,V i+1,Pi+1)k. For difference 5b, we must merge

together two deaths and a birth, of which no two of these three events can corre-
spond to distinct actual events in (U ,V,P)k. Otherwise this would be difference
5a. The three events must also be in the same interval [tkj′ , t

k
j′+1), otherwise in

a manner similar to that of Proposition 5a, the ratio

[(U ,V,P)k | Z]((U i+1,Vi+1,P i+1)k)

[(U ,V,P)k | Z]((U i,Vi,P i)k)
= 0

eventually.
So before we can apply difference 5b, we must first use differences 1a, 1b,

2, or 3, to create at least two of the three events (two deaths and a birth) in
(U i,V i,P i)k. Notice that we cannot use differences 2 and 3 together to create
these events since then two of the three events would correspond to distinct
events in (U ,V ,P)k.

So there are exactly five ways difference 5b can be applied.

1. We could use a correctly labeled death in (U i,V i,Pi)k. We would then still
need a birth and a death. This would require using at least one difference
1a in the interval [tkj′ , t

k
j′+1) previously in our sequence of solutions to get
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to (U i,Vi,P i)k. It is difference 1a not difference 1b since the interval that
contains the correctly labeled death is fixed. The overall contribution then
of difference 5b to the ratio in (A43) is no more than

R1aR5b ≤ O(k−3(log k)c) · bk2(log k)c = O(k−1(log k)2c).

2. We could use a correctly labeled birth in (U i,V i,Pi)k. We would then
still need two deaths. This would require using at least two applications
of difference 1a in the interval [tkj′ , t

k
j′+1) previously in our sequence of

solutions.
3. We could use difference 2 to get two deaths and a birth previous to

(U i,V i,Pi)k, but only two of these three events can be used in the dif-
ference 5b, otherwise we would be reconstructing a correct merger. So we
would still need to apply difference 1a previous to (U i,V i,P i)k at least
once to get another birth or death.

4. We could use difference 3 to get a deaths and two births previous to
(U i,V i,Pi)k, but we would still need at least one more death to apply
difference 5b. Hence we would need to apply difference 1a previous to
(U i,V i,Pi)k at least once to get the other death.

5. Lastly, we could apply difference 5b in an arbitrary time interval, but this
would require us to create two deaths and a birth in the interval [tkj′ , t

k
j′+1)

previous to (U i,V i,Pi)k. This would require at least two applications of
difference 1b since now the interval is arbitrary.

Notice for cases 2-5 that there must be at least two applications of differences
1a, 1b, 2, or 3. The largest resulting ratio from any of these is O(k−2+ε) for an
arbitrarily small ε. Hence the overall contribution of difference 5b to the ratio
of (A43) for cases 2-5 is no more than O(k−2+2ε).

Therefore if there is one difference 5b applied in any interval then the overall
contribution of that difference to the ratio in (A43) for any of the five cases is
no more than O(k−1(log k)2c).

Now Suppose exactly one difference 6b was applied to (U i,V i,P i)k during the
interval [tkj′ , t

k
j′+1) to obtain (U i+1,V i+1,P i+1)k. Because of the symmetry of the

problem the logic is identical to the five cases above and the overall contribution
of that difference to the ratio of (A43) is no more than O(k−1(log k)2c).

We now consider N∗ differences 5b and/or 6b applied in a single interval
[tkj′ , t

k
j′+1), where N

∗ > 1. Again let (U i,Vi,P i)k be the element of the solution
sequence just before we apply the N∗ differences 5b and/or 6b. Note that ap-
plying differences 5b and/or 6b N∗ times requires at least N∗ deaths and at
least N∗ births in (U i,V i,P i)k during the interval [tkj′ , t

k
j′+1). Note that this N∗

combinations of differences 5b and/or 6b can only use one of an actual death, an
actual birth, an actual merger with difference 2, or an actual split with differ-
ence 3 since eventually only one of these events will be in the interval [tkj′ , t

k
j′+1).

There are again the same five cases to consider:

1. We could use a correctly labeled death in (U i,Vi,P i)k. We would then
still need at least N∗ more births and this would require N∗ applications
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of difference 1a in the interval [tkj′ , t
k
j′+1) previously in our sequence of

solutions. So the contribution of the N∗ differences 5b and/or 6b to the
ratio of (A43) is no more than

(R1a)
N∗

(R5b)
N∗

= O(k−N∗

(log k)2N
∗c).

2. We could use a correctly labeled birth in (U i,V i,P i)k. We would then still
need at least N∗ deaths. This would require using at least N∗ applications
of difference 1a previously. So the contribution of differences 5b and/or 6b
to the ratio is again no more than

(R1a)
N∗

(R5b)
N∗

= O(k−N∗

(log k)2N
∗c).

3. We could use difference 2 to get two deaths and a birth previous to
(U i,Vi,P i)k, but we would still need N∗ − 1 more births which would
require N∗ − 1 applications of difference 1a previously. This makes the
contribution of differences 5b and/or 6b to the ratio no more than

R2 · (R1a)
N∗−1(R5b)

N∗

= O(k−(N∗−1)(log k)2N
∗c).

4. We could use difference 3 to get a death and two births previous to
(U i,Vi,P i)k, but we would still need at least N∗ − 1 more deaths. Hence
we would need to apply difference 1a at least N∗ − 1 times previous to
(U i,Vi,P i)k get the other deaths. This makes the contribution to the ratio
no more than

R3 · (R1a)
N∗−1(R5b)

N∗

= O(k−(N∗−1)(log k)2N
∗c).

5. Lastly, we could apply the differences 5b and/or 6b in an arbitrary time
interval. Let N5 and N6 be the number of applications of difference 5b
and difference 6b respectively so that N5 +N6 = N∗. Let Nb and Nd be
the minimum number of births and deaths needed respectively. Notice that
Nb = N5+2N6 and Nd = 2N5+N6. The minimum number of applications
of difference 1b that we would need is

min
N5,N6

N5+N6=N∗

{Nb ∨Nd} = min
N5,N6

N5+N6=N∗

{(N5 + 2N6) ∨ (2N5 +N6)} .

This minimum is achieved when N5 =
⌈

N∗

2

⌉

and N6 =
⌊

N∗

2

⌋

or vise versa.

In either case this makes

min
N5,N6

N5+N6=N∗

{Nb ∨Nd} = 2

⌈

N∗

2

⌉

+

⌊

N∗

2

⌋

≥ N∗ +

⌈

N∗

4

⌉

∀N∗ ≥ 1.

This means we need at least ⌈(5/4)N∗⌉ applications of difference 1b pre-
vious to (U i,V i,P i)k, which means the contribution of the N∗ differences
5b and/or 6b to the ratio is no more than

(R1b)
(5/4)N∗

(R5b)
N∗

≤ Ck−(1/2+ǫ)N∗

(log k)N
∗c = O

(

k−(1/2+ε)N∗
)
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for an arbitrarily small ǫ and ε > ǫ. This along with the case of N∗ = 1
tells us that for any number of differences 5b and/or 6b applied in any
one interval then the overall contribution of that difference to the ratio of
(A43) is no more than O(k−1+ε) which happens when N∗ = 2.

So if we apply any number of differences 5b or 6b to the correct solution
(U ,V ,P)k to obtain an incorrect solution (Ũ ,Ṽ ,P̃)k we have

sup
(Ũ ,Ṽ,P̃)k∈Θ

[(U ,V ,P)k | Z]((Ũ ,Ṽ ,P̃)k)

[(U ,V ,P)k | Z]((U ,V ,P)k)
≤ O(k−1+ε). (A44)

Of course if we don’t apply any differences 5b or 6b then we had to apply at
least one of the differences 1a, 1b, 2, 3, 5a, or 6a. This would make the ratio

sup
(Ũ ,Ṽ,P̃)k∈Θ

[(U ,V ,P)k | Z]((Ũ ,Ṽ ,P̃)k)

[(U ,V ,P)k | Z]((U ,V ,P)k)
≤ O(k−2+ε).

Hence in general we have (A44). This means for a given ω there exists a K(ω)
s.t. for all k > K(ω),

sup
(Ũ,Ṽ,P̃)k∈Θ

[(U ,V,P)k | Zk]((Ũ ,Ṽ,P̃)k)

[(U ,V,P)k | Zk]((U ,V,P)k)
< 1.

Hence, our estimate (Û ,V̂ ,P̂)k = (U ,V ,P)k for all k > K.
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