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Multiscale Exploratory Analysis of Regression
Quantiles Using Quantile SiZer

Cheolwoo PARK, Thomas C. M. LEE, and Jan HANNIG

The SiZer methodology proposed by Chaudhuri and Marron (1999) is a valuable
tool for conducting exploratory data analysis. Since its inception different versions of
SiZer have been proposed in the literature. Most of these SiZer variants are targeting
the mean structure of the data, and are incapable of providing any information about
the quantile composition of the data. To fill this need, this article proposes a quantile
version of SiZer for the regression setting. By inspecting the SiZer maps produced
by this new SiZer, real quantile structures hidden in a dataset can be more effectively
revealed, while at the same time spurious features can be filtered out. The utility of this
quantile SiZer is illustrated via applications to both real data and simulated examples.
This article has supplementary material online.

Key Words: Effective sample size; Multiple slope testing; Nonparametric quantile re-
gression; Robust variance estimation; Running regression quantile; SiZer.

1. INTRODUCTION

Given a sequence of realizations of the random variables (X,Y ), quantile regression
aims to estimate the conditional αth quantile of the response Y given the covariate X. By
changing the value of 0 < α < 1, quantile regression can be applied to explore the differ-
ent behaviors of the conditional distribution fY |X of Y given X at its center, lower, and
upper tails. Therefore quantile regression is capable of providing more information about
fY |X than the usual regression which only targets the conditional expectation E(Y |X).
Many useful nonparametric methods for conducting quantile regression analysis have been
proposed in the literature. For example, Lejeune and Sarda (1988) proposed the use of
moving parabolic fitting, Bhattacharya and Gangopadhyay (1990), Truong (1989), and
Yu (1999) investigated kernel-type methods, and Chaudhuri and Loh (2002) considered
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498 C. PARK, T. C. M. LEE, AND J. HANNIG

the use of regression trees. In addition, local polynomial regression has been studied by
Chaudhuri (1991a, 1991b) and Su and Ullah (2008), while spline methods were consid-
ered by Koenker and Bassett (1978), Hendricks and Koenker (1992), Koenker, Ng, and
Portnoy (1994), Takeuchi et al. (2006), and Yuan (2006). Typically these methods produce
a nonparametric estimate of the quantile of the conditional distribution of Y given X in the
form of a smooth curve. Such a nonparametric quantile curve can then be plotted for visual
inspection, say for checking for the existence of any local maximum. However, although
this curve can suggest the existence or even the locations of possible local maxima, it does
not carry the necessary information to help judge whether the local maxima are statistically
significant features, or are just spurious structures caused by sampling errors.

In the nonparametric regression context, the SiZer methodology of Chaudhuri and Mar-
ron (1999, 2000) is a powerful multiscale tool for handling this issue. Given a set of noisy
data, its primary goal is to help the data analyst to distinguish between the structures that
are “really there” and those that are due to sampling noise, through the construction of a
so-called SiZer map. In short, a SiZer map is a two-dimensional (2D) image that summa-
rizes the locations of all the statistically significant slopes, where these slopes are estimated
by smoothing the data with different bandwidths. The idea is that, say if at location x, all
estimated slopes (with different bandwidths) to its left are significantly increasing while
all estimated slopes to its right are significantly decreasing, then it is extremely likely that
there is a “true bump” in the data peaked at x. For a more detailed description and a thor-
ough survey of the SiZer methodology, see Section 2.

To date all SiZer related methods proposed in the literature target the “mean structure”
of the data. The main contribution of this article is the proposal of a new SiZer that targets
the “quantile structure” of the data. This new SiZer is termed quantile SiZer, and as com-
pared to the original SiZer of Chaudhuri and Marron (1999), major modifications made
by it include the use of a local linear quantile smoother and a robust estimator for the
noise variance function. With these modifications the proposed quantile SiZer is capable
of producing new quantile SiZer maps that target different quantiles of the distribution.
By inspecting an array of such SiZer maps, real structures hidden in both the mean and
variance of the data can be more easily detected, while at the same time spurious features
can be filtered out in an effective manner. For example, by observing the quantile SiZer
maps for both the 0.1th and 0.9th quantiles, information about the “spread” of the data can
be identified.

The proposed quantile SiZer also eliminates the need for the choice of a “best” smooth-
ing parameter which is required in most of the aforementioned nonparametric conditional
quantile estimation methods. Unlike nonparametric conditional mean estimation, fast and
reliable automatic methods for smoothing parameter selection for nonparametric quantile
regression are still largely missing. Hence, a single reliable nonparametric estimate of a
conditional quantile curve cannot be easily obtained. The SiZer’s philosophy of using mul-
tiple bandwidths rather than one, therefore, is particularly appealing.

The rest of the article is organized as follows. It starts with Section 2 in which a brief
review of the conventional SiZer of Chaudhuri and Marron (1999) is provided. Then the
proposed quantile SiZer is presented in Section 3. In Section 4 the utility of the proposed
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REGRESSION QUANTILES USING QUANTILE SIZER 499

quantile SiZer is illustrated with several simulated and real datasets. Concluding remarks
are offered in Section 5, while technical and computational details are provided as Supple-
mental Materials.

2. BACKGROUND

2.1 CONVENTIONAL SIZER

As mentioned before, the conventional SiZer is a multiscale methodology for helping
the data analyst to detect real structures hidden in the data (X1, Y1), . . . , (Xn,Yn). Suppose
for the moment these data satisfy the usual constant noise variance model:

Yi = m(Xi) + ei, ei ∼ iid N(0, σ 2).

The SiZer methodology begins with nonparametrically estimating the conditional mean
m(X) and slope m′(X) of the data at different scales (or resolutions). Chaudhuri and Mar-
ron (1999) achieved this by applying local linear regression to the data with different band-
widths. Then statistical hypothesis tests are applied to all the estimated slopes (with differ-
ent values of X and bandwidths), to test if they are statistically significant. Results of such
tests are summarized in a SiZer map, providing a visual device for user inspection.

To understand how the test results are encoded in a SiZer map, consider Figure 1. The
bottom panel is a simulated noisy dataset generated from the regression function displayed
as the thick solid line. Also displayed as thin solid lines are a set of estimated regres-
sion functions obtained by local linear regression with different bandwidths. The top panel
displays the conventional SiZer map that corresponds to this dataset. The horizontal axis
of the map gives the x-coordinates of the data, while the vertical axis corresponds to the
bandwidths used to compute the thin smoothed curves. These bandwidths are displayed on
the log scale, with the smallest bandwidth at the bottom. The gray-level of each pixel in
the SiZer map indicates the result of a hypothesis test for testing the significance of the
estimated slope computed with the bandwidth and at the location indexed by respectively
the vertical and horizontal axes. Altogether there are four gray-levels: darkest and lightest
indicate respectively the estimated slope is significantly increasing and decreasing, second
lightest indicates the slope is not significant, while second darkest shows that there are not
enough data for conducting reliable statistical inference.

The top portion of the SiZer map in Figure 1 is completely darkest, indicating that the
underlying regression function has an overall increasing trend. In the middle part of the
SiZer map, the gray-level switches from lightest to darkest to lightest and to darkest again.
This suggests that the underlying function, when observed at a medium resolution level,
first decreases, then increases, then decreases, and finally increases again. Also, those loca-
tions in the SiZer map at which the gray-level changes correspond to the inflection points
of the regression function. Once the user is familiar with the SiZer map gray-level labeling
scheme, a lot of useful information about the mean structure of the regression function
can be extracted. As mentioned earlier, the proposed quantile SiZer aims to produce SiZer
maps that are capable of revealing important information about the quantile structure.
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500 C. PARK, T. C. M. LEE, AND J. HANNIG

Figure 1. Top: Conventional SiZer map of Chaudhuri and Marron (1999) that corresponds to the
dataset displayed in the bottom panel. Bottom: Noisy data generated by the regression function
m(x) = 1 − 48x + 218x2 − 315x3 + 145x4 (thick line), together with a family of local linear fits (thin lines).

2.2 OTHER SIZERS

It has been a decade since the above conventional SiZer was made. During this period

different versions and improvements of SiZer have been developed. On the theoretical side

an important contribution is the work of Hannig and Marron (2006), in which a new in-

ference method for reducing spurious pixels in the SiZer map was developed. This new

inference method has been successfully adopted by other SiZer tools, such as the robust

SiZer of Hannig and Lee (2006). In the regression setting, this robust version can be used

for identifying outliers, and it is also capable of producing SiZer maps with different de-

grees of robustness.

Park, Marron, and Rondonotti (2004) considered dependent observations. Since then

other SiZer tools that target time series data have been proposed, including those of

Rondonotti, Marron, and Park (2007), Olsen, Sorbye, and Godtliebsen (2008), and Park,

Hannig, and Kang (2009). For multivariate problems, Godtliebsen, Marron, and Chaud-

huri (2002) and Ganguli and Wand (2004) considered, respectively, bivariate density esti-

mation and bivariate smoothing, while Ganguli and Wand (2007) and Gonzalez-Manteiga,

Martinez-Miranda, and Raya-Miranda (2008) studied generalized additive models. In addi-

tion, various Bayesian versions of SiZer have also been proposed, by, for example, Erästö

and Holmström (2005), Godtliebsen and Oigard (2005), Oigard, Rue, and Godtliebsen
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REGRESSION QUANTILES USING QUANTILE SIZER 501

(2006), and Erästö and Holmström (2007); the last two articles also considered time series
data.

There are also other SiZer tools that were developed for other more specialized tasks.
For example, hazard rate estimation was studied by Marron and de Una-Alvarez (2004),
change point and jump detection was considered by Kim and Marron (2006) and Olsen,
Chaudhuri, and Godtliebsen (2008), and curve comparison was investigated by Park and
Kang (2008). Moreover, the multiscale visualization idea behind SiZer has gained popu-
larity in network traffic modeling; for example, see the work of Rolls, Michailidis, and
Hernández-Campos (2005) and Park et al. (2005). Lastly, other contributions to the SiZer
family include the smoothing spline SiZer of Marron and Zhang (2005) and the wavelet
SiZer of Park et al. (2007).

The aforementioned work represents a large library of SiZers and related tools devel-
oped for multiscale analysis of different estimation problems. However, these tools mostly
focus on the “mean” structures of the data. Therefore the proposal of the quantile SiZer of
the current article fills an important gap in the SiZer methodology.

3. METHODOLOGY

3.1 NONPARAMETRIC QUANTILE REGRESSION

First we follow Chaudhuri and Marron (1999) and consider nonparametric smoothing
using local linear regression. Suppose observed is a set of observations {Xi,Yi}ni=1 satis-
fying

Yi = m(Xi) + σ(Xi)εi, (3.1)

where m is the regression function and the εi ’s are zero-mean independent noise with
common variance 1. It is known as the location-scale model in quantile regression (e.g.,
Koenker 2005). Its limitations and the possibility of generalizing it to other more general
models are discussed in Section 5.

Let h be a bandwidth, K be a kernel function, and write Kh(x) = K(x/h)/h. Through-
out this article a Gaussian kernel is used. The local linear regression estimates for m(x)

and m′(x) at location x are given respectively by m̂h(x) = âh and m̂′
h(x) = b̂h, where

(âh, b̂h) = arg min
a,b

n∑
i=1

[
Yi − {a + b(Xi − x)}]2

Kh(x − Xi). (3.2)

Notice that both âh and b̂h are functions of x, but for simplicity, this dependence is sup-
pressed in their notation. Expressions for the asymptotic variances for m̂h(x) and m̂′

h(x)

can be found, for example, in the books by Wand and Jones (1995) and Fan and Gijbels
(1996). These expressions are required for the construction of a conventional SiZer map.

To construct a quantile SiZer map, we need a corresponding nonparametric running
regression quantile estimator (e.g., Koenker 2005). A natural estimator can be obtained by
modifying the L2 loss function in (3.2) as follows. Denote our estimates for the conditional
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502 C. PARK, T. C. M. LEE, AND J. HANNIG

αth quantile of Y given X and its derivative as β̂h,α(x) and β̂ ′
h,α(x), respectively. These

estimates are defined as β̂h,α(x) = âh,α and β̂ ′
h,α(x) = b̂h,α , where now

(âh,α, b̂h,α) = arg min
a,b

n∑
i=1

ρα

[
Yi − {a + b(Xi − x)}]Kh(x − Xi) (3.3)

with ρα(x) as the so-called check loss function

ρα(x) =
{

xα, if x ≥ 0
x(α − 1), if x < 0.

Similarly to âh and b̂h, the dependence of âh,α and b̂h,α on x is suppressed in the notation.
The estimator defined in (3.3) has been studied, for example, by Chaudhuri (1991a,

1991b) and Yu and Jones (1998). In all our numerical work, the estimates β̂h,α(x) and
β̂ ′

h,α(x) are computed using the fast method proposed by Oh, Lee, and Nychka (2010). For
completeness, this method is outlined in the Supplemental Materials.

3.2 ASYMPTOTIC VARIANCES FOR RUNNING REGRESSION QUANTILE ESTI-
MATES

A quantile SiZer map is a graphical device summarizing if β̂ ′
h,α(x) is statistically sig-

nificant for different values of h and x. Thus to construct such a map, estimates for quanti-
ties like the variance of β̂ ′

h,α(x) are required. This subsection provides convenient expres-
sions for approximating these quantities. The following notation will be useful: ei:p is a
p-dimensional column vector having 1 in the ith entry and zero elsewhere,

W = diag{Kh(Xi − x)} and X =
(

1 · · · 1
X1 − x · · · Xn − x

)T

. (3.4)

In the Supplemental Materials the following approximations for the asymptotic expec-
tation and variance of β̂h,α(x) are derived:

E{β̂h,α(x)} ≈ m(x) + σ(x)�−1(α),

(3.5)
var{β̂h,α(x)} ≈ σ 2(x)eT

1:2(XT WX)−1(XT W2X)(XT WX)−1e1:2r(α),

where the quantity r(α) is defined in (3.7) below. Similarly the corresponding expressions
for β̂ ′

h,α(x) are

E{β̂ ′
h,α(x)} ≈ m′(x) + σ ′(x)�−1(α),

(3.6)
var{β̂ ′

h,α(x)} ≈ σ 2(x)eT
2:2(XT WX)−1(XT W2X)(XT WX)−1e2:2r(α).

Note that these variance expressions (for β̂h,α(x) and β̂ ′
h,α(x)) only differ from the cor-

responding usual local linear variance expressions (for m̂h(x) and m̂′
h(x)) by the quantity

r(α), which is derived to be

r(α) = α(1 − α)φ(�−1(α))−2, (3.7)

where φ(x) and �(x) are the density and the distribution function of the standard normal
distribution, respectively. A plot of r(α) is given in Figure 2. Notice that the minimum
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REGRESSION QUANTILES USING QUANTILE SIZER 503

Figure 2. Plot of r(α) for 0.01 ≤ α ≤ 0.99.

value of r(α) is 1.571 (occurs when α = 0.5), which agrees with the general fact that
standard errors for “quantile-based estimation” are larger than those for “mean-based esti-
mation.” Therefore, when comparing to the conventional “mean” SiZer, the quantile SiZer
will detect less significant features if the same level of significance is used.

Since the only unknown in (3.5) and (3.6) is σ 2(x), the practical estimation of
var{β̂h,α(x)} and var{β̂ ′

h,α(x)} can be achieved by replacing σ 2(x) with an appropriate
robust estimate σ̂ 2(x). Such an estimate can be obtained in several ways. In this article, we
first calculate the scaled differenced series

ei =
√

π

2
(Yi − Yi−1), i = 2, . . . , n,

and then apply local linear smoothing to the absolute values of these scaled differences,
using the same bandwidth as we calculate the quantile estimate (3.3). We have investigated
other options such as applying local median smoothing or using standardized residuals, but
local linear smoothing on these scaled differences gave the most satisfactory results.

3.3 EFFECTIVE SAMPLE SIZE AND MULTIPLE SLOPE TESTING

For the construction of a SiZer map, every estimated slope β̂ ′
h,α(x) is classified into

one of the following four groups: significantly increasing, significantly decreasing, not
significant, and not enough data.

If an estimated slope is classified to the last group of not enough data, it means that the
slope was estimated with too few data points and reliable hypothesis testing conclusion
cannot be obtained.

This last group involves the concept of effective sample size (ESS) defined by Chaudhuri
and Marron (1999). There are different definitions of ESS and we define ESS as in the ar-
ticle by Hannig and Lee (2006). Denote wi(x) as the weight that the observation (Xi, Yi)

contributes to the local linear regression estimate m̂h(x) (3.2) for m at location x. That is,
m̂h(x) = ∑n

i=1 wi(x)Yi and
∑

wi(x) = 1. An exact expression for wi(x) can be found,
for example, in equation (5.4) of Wand and Jones (1995). Then our ESS is defined as
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504 C. PARK, T. C. M. LEE, AND J. HANNIG

the number of elements in S, where S is the smallest subset of [1, . . . , n] such that∑
i∈S |wi(x)| > 0.90. Loosely, this ESS gives the smallest number of data points that con-

stitutes 90% of the total weights. In this article an estimated slope is classified to be not
enough data if its ESS is less than or equal to 5.

Now assume that the ESS of a β̂ ′
h,α(x) is large enough, and let v̂′

h,α(x) be an estimate of

var{β̂ ′
h,α(x)}, that is, expression (3.6) with σ 2(x) replaced by σ̂ 2(x). In the proposed quan-

tile SiZer the estimated slope β̂ ′
h,α(x) is declared to be significant if |β̂ ′

h,α(x)/v̂′
h,α(x)| >

CR , where CR is the critical value. Since a large number of such statistical tests are to be
conducted, multiple testing adjustment is required. We use the following row-wise adjust-
ment method proposed by Hannig and Marron (2006) to choose CR . The method developed
by them is based on asymptotic considerations that are also valid in the present situation.

Let g be the number of pixels in a row in the SiZer map, 
 be the distance between
two successive neighboring locations at which the statistical tests are to be performed, and
α = 0.05 be the overall significance level of the tests. Hannig and Marron (2006) suggested
the following value for CR :

CR = �−1
[(

1 − α

2

)1/{θ(
)g}]
,

where

θ(
) = 2�

{



√
3 log(g)

2h

}
− 1.

In the article by Hannig and Marron (2006) the quantity θ(
) is defined as the clustering
index that measures the level of dependency between pixels. This adjusts the SiZer map
to have a correct family-wise error rate in each row of each picture. One could also ad-
just family-wise error rate of a whole picture or even a sequence of plots. However, our
experience suggests that doing so would lead to a significant loss of power.

To sum up, if the ESS of an estimated slope is less than or equal to 5, the correspond-
ing pixel in the SiZer map will have the second darkest gray-level. If the ESS is bigger
than 5, then the corresponding pixel gray-level will be darkest if the standardized slope
β̂ ′

h,α(x)/v̂′
h,α(x) is bigger than CR , lightest if it is less than −CR , and second lightest oth-

erwise.

4. PRACTICAL PERFORMANCE

In this section the utility of the quantile SiZer methodology is illustrated with simulated
data, as well as three real datasets.

4.1 SIMULATED DATA

We tested our quantile SiZer with two mean functions and three noise variance func-
tions. The two mean functions are

m1(x) = 0 and m2(x) = 1 − 48x + 218x2 − 315x3 + 145x4,
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REGRESSION QUANTILES USING QUANTILE SIZER 505

all with domain [0,1]. The first mean function is a zero constant function and it will be
useful for testing if the quantile SiZer is capable of picking up quantile structures that
are due to nonconstant noise variance. The second function, which is the same as the true
function used in Figure 1, contains a good mix of different degrees of curvatures. It was first
used by Ruppert, Sheather, and Wand (1995) for evaluating bandwidth selection methods
in the context of local linear regression, and by Hannig and Lee (2006) for testing SiZer
map construction. The three variance functions are

σ1(x) = 1, σ2(x) = 2.5 − 2x, and σ3(x) = −4x2 + 4x + 0.5.

The first one is constant throughout the whole domain, the second decreases linearly, while
the last one is quadratic.

From each of the six combinations of mean function and variance function, an artificial
dataset of size n = 512 was first simulated, where the design points x were generated from
unif [0,1]. Then the quantile SiZer was applied to construct SiZer maps that correspond to
α = 0.1,0.25,0.5,0.75, and 0.9. For space consideration, only SiZer maps for α = 0.9 are
displayed in this article; these SiZer maps are displayed in Figures 3 and 4, while the re-
maining SiZer maps can be found on the website http://aaron.stat.uga.edu/~cpark/Sizer/
QS/ . From these plots, one could see that the quantile SiZer is capable of capturing the
important real features of both the mean and variance functions, and simultaneously sup-
pressing spurious features that are due to sampling errors. For example, in the left column
of Figure 3 the data are purely noise and the quantile SiZer does not detect any spurious
feature. In the middle and right columns of Figure 3, the general trends of the variance
functions σ2(x) (decreasing) and σ3(x) (increasing and then decreasing) are detected at
the coarse levels (i.e., large bandwidths), with no false positive shown. Note that such fea-
tures can be captured by neither the original SiZer nor the quantile SiZer with α = 0.5, as
there is no trend in the mean structure. Lastly, in Figure 4 real features resulting from the
superpositions of test function m2(x) with the variance functions σ1(x), σ2(x), and σ3(x)

Figure 3. Quantile SiZer maps with α = 0.9 (top row) of artificial data (dots in bottom row) generated from
mean function m1(x) and variance functions σ1(x), σ2(x), and σ3(x). In each panel of the bottom row, the three
lines are running regression quantile estimates (3.3) computed with three different bandwidths.
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Figure 4. Similar to Figure 3 but for mean function m2(x).

are correctly identified. For example, for x < 0.5, there are more features revealed in the
left quantile SiZer map than the middle quantile SiZer map, while for x > 0.5, the reverse
is true. It is because the variance function σ1(x) of the left dataset is constant, while the
variance function σ2(x) of the middle dataset is decreasing.

We have repeated this experiment a number of times with other simulated datasets. Sim-
ilar SiZer maps were obtained so the results presented in Figures 3 and 4 are representative.

4.2 REAL DATASETS

We have also constructed different quantile SiZer map for three real datasets. The
first one is the “cars” dataset analyzed, for example, by Hawkins (1994) and Ng (1996).
This dataset has 392 observations on the response, fuel consumption (measured in
miles/gallon), and the covariate, power output (measured in HP). This dataset is plotted
in Figure 5, together with a fitted nonparametric running median curve. The fitted curve
seems to suggest that there is a strong increasing trend toward the right end of the data.

Figure 5. The “Cars” dataset with running median estimate.
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Figure 6. Quantile SiZer maps for the “Cars” dataset.

However, as argued by both Hawkins (1994) and Ng (1996), the relationship between the
response and covariate should be monotonically decreasing. This implies that this increas-
ing trend is a spurious feature. The quantile SiZer was applied to this dataset, and the SiZer
maps for α = 0.1,0.5, and 0.9 are displayed in Figure 6. All of these SiZer maps suggested
an overall decreasing trend in the data.

The second dataset that we consider is the “U.S. Girls” dataset studied, for example,
by Yu, Lu, and Stander (2003). This dataset contains the weights (kg) and ages for a sam-
ple of 4011 US girls. The data are plotted in the bottom panel of Figure 7, together with
a few nonparametric running regression quantile estimates obtained with different band-
widths but the same α = 0.97. Notice that, due to a potential outlier around age 17 and
weight 150 kg, some running regression quantiles exhibit a decreasing trend for age greater
than 17. Such a decreasing trend seems to be a spurious feature, as in reality there is no rea-
son to expect that a girl’s weight would start to decrease after age 17. We have constructed
a quantile SiZer map for α = 0.97; see the top panel of Figure 7. This SiZer map does not
support the existence of this decreasing trend.

In the third real data example we demonstrate that the quantile SiZer is capable of de-
tecting real quantile features while the ordinary SiZer fails to do so. Here we are interested
in detecting, if any, significant changes in the volatility in the Standard and Poors 500 Index
(S&P 500) from January 4, 1989, to October 19, 2001, at daily frequency. The log returns
of this data series are displayed in the top-left panel of Figure 8. This same data series
was also analyzed by Davis, Lee, and Rodriguez-Yam (2008), where three change points
located at time indices 197, 726, and 2229 were found. However, visual inspection seems
to suggest that the first detected change point at t = 197 is a false positive. This observa-
tion is also supported by Andreou and Ghysels (2002) and hence here we take t = 726 and
t = 2229 as the only statistically significant change points.

The ordinary SiZer was applied to this dataset and no significant structure was found;
see the top-right panel of Figure 8. A possible explanation for this is that the mean is effec-
tively zero across time and hence no features are detected by the ordinary SiZer. Displayed
in the bottom row of Figure 8 are two quantile SiZer maps that correspond to α = 0.1
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Figure 7. Bottom panel: The “U.S. Girls” dataset with running regression quantile estimates with α = 0.97. The
horizontal axis is age (year) and the vertical axis is weight (kg). Top panel: Corresponding quantile SiZer map.

and 0.9. These two SiZer maps strongly suggest there are changes in the volatility near
t = 726 and t = 2229.

5. CONCLUDING REMARKS

In this article a quantile version of SiZer is proposed. This new SiZer is capable of pro-
ducing SiZer maps aiming at exploring different quantile structures. Through applications
to simulated examples and real datasets, it is shown that with these SiZer maps, quantile
structures hidden in a dataset can be effectively revealed without paying the price of show-
ing spurious features. It has also been shown that the quantile SiZer can detect quantile
features that the ordinary SiZer fails to.

Throughout the whole article the tests in the proposed quantile SiZer are derived under
the null distribution of constant mean and variance in the location-scale model (3.1). In
principle one could develop other quantile SiZers for more general models, such as when
the distribution of the noise ε depends on Xi and/or follows a non-Gaussian distribution.
These generalizations, however, bring in new computational challenges. For example, the
fast algorithm described in the Supplemental Materials cannot be used to calculate β̂h,α(x)

and β̂ ′
h,α(x), and their variances would probably need to be estimated with computationally

intensive procedures such as the bootstrap. In order to investigate the performance of the
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Figure 8. Top-left: The log returns of the S&P 500 series data. The two vertical lines indicate the change points
at t = 726 and t = 2229 detected by Davis, Lee, and Rodriguez-Yam (2008). Top-right panel: Ordinary SiZer
map. Bottom row: Quantile SiZer maps for α = 0.1 and 0.9.

proposed quantile SiZer when the location-scale assumption is violated, the following ex-
periment was conducted. Artificial datasets were generated from the settings in Section 4.1,
but with the following model:

Yi = m2(Xi) + σj (Xi)EXi
, j = 1,2,3, (5.1)

where EXi
follows a Laplace distribution with mean Xi , and EXi

and EXj
are independent

if i 	= j . The variance of EXi
was chosen in such a way that the resulting signal-to-noise

ratios are comparable to those in Section 4.1. The generated datasets, together with the
corresponding α = 0.9 quantile SiZer maps, are displayed in Figure 9. Although the noise
assumption is wrong, the proposed quantile SiZer did produce SiZer maps that reflect well
the true structures of the data.

Another interesting point suggested by a referee is an alternative way of defining a
quantile SiZer map. Instead of fixing α and having the bandwidth vary in the vertical axis,
one could produce a SiZer map with α changing in the vertical axis for a fixed bandwidth.
In this way information from different values for α (for the same fixed bandwidth) can be
grasped at the same time. Figure 10 provides such an example. The data were generated
from m1(x) and σ3(x). This SiZer map correctly suggests that there is no significant feature
near the mean of m1(x), while the quadratic trend of σ3(x) is apparent.
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Figure 9. Similar to Figure 4 but for the data generated from the Laplace distribution.

SUPPLEMENTAL MATERIALS

Appendix: We provide fast computation of β̂h,α(x) and β̂ ′
h,α(x). We also derive asymp-

totic expectations and variances for β̂h,α(x) and β̂ ′
h,α(x). (appendix.pdf)

Matlab programs and datasets: We provide Matlab programs and datasets for quantile

SiZer. (qsizerpg.zip)

Figure 10. An alternative quantile SiZer map with h = 0.13.
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