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SiZer (SIgnificant ZERo crossing of the derivatives) is a scale-space visualization tool for statis-
tical inferences. In this paper we introduce a graphical device, which is based on SiZer, for the
test of the equality of the mean of two time series. The estimation of the quantile in a confi-
dence interval is theoretically justified by advanced distribution theory. The extension of the
proposed method to the comparison of more than two time series is also done using residual
analysis. A broad numerical study is conducted to demonstrate the sample performance of
the proposed tool. In addition, asymptotic properties of SiZer for the comparison of two time
series are investigated.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

SiZer (SIgnificant ZERo crossing of the derivatives) was developed by Chaudhuri and Marron (1999), as an exploratory data
analysis tool that is a more advanced version of a basic statistical graphic. SiZer can take data and test it against an assumed
model or an estimated model and error structure. As a color coded tool, it can identify not only local extrema, such as peaks
and valleys occur, but also where they are precisely located. These extrema are denoted as significant features by SiZer via color
changes on either side of the zero crossing of the derivative when it is determined that there are significantly increasing or
decreasing portions of the SiZer map. These significant features are denoted to represent real trends in the data and not merely
sampling noise artifacts. SiZer speeds up one's ability to determine where features are `really present' in a data set, and it enables
inexperienced statistical analysts to make inferences in gray areas where significance might be questionable.

SiZer takes a nonparametric approach at smoothing curves that can be viewed as a progression of information through x
values; y values, which can include time and space; and a number of different bandwidths. It is this vast range of bandwidths
that makes SiZer especially unique. In a departure from classical nonparametric curve estimation, which focuses on finding the
optimal bandwidth at which to view an image, SiZer takes a scale-space approach and analyzes the data at numerous levels of
resolution. Looking at our kernel estimated smooths at these multiple bandwidths allows us to sift out all of the information
that is available at different levels of resolution and perform statistical inference at various stages of scrutiny. These multiple
bandwidths also move us from the classical approach of finding significant features amidst noisy data of the `true underlying
curve' to finding them in the `curve at that given level of resolution'.

There are some recent literature on SiZer for nonparametric inference. Hannig and Marron (2006) proposed a newmethod to
reduce spurious pixels in the SiZer map and thus improve inference by replacing the quantile for the confidence interval that was
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previously based on the idea of independent blocks to a quantile which involved the use of advanced distribution theory. Park and
Kang (2008) proposed a SiZer tool which is capable of comparing multiple curves based on their differences of smooths when the
observed data are independent. Park et al. (2004) proposed a dependent SiZer that does not make the assumption of independent
errors. It can detect which features in the SiZer map should not be declared significant because they are in fact attributable to
the presence of dependence in the data set and not a particular trend. This dependent SiZer extends the methodology into time
series data and uses an assumed autocovariance function when performing goodness of fit tests. The importance of a goodness
of fit test is that it allows us to see how our data differ from the assumed model. But, it is often difficult in non-simulated data to
assume the exact autocovariance structure that should be used as the `true' model. This led Rondonotti et al. (2007) to extend the
SiZer for time series and develop a method that was more flexible and able to consider the type of dependence structure present
in the data in order to detect significant features by not assuming but instead estimating the autocovariance function. Park et al.
(2009) developed an additional improved version of SiZer for time series by incorporating the extreme value theory previously
proposed by Hannig and Marron (2006) in order to get a quantile that reduces the number of undesirable spurious pixels. They
also proposed a new autocovariance estimator using a differenced time series and it does not rely on pilot bandwidths and
residuals from an estimate as in Rondonotti et al. (2007). Recently, Bayesian versions of SiZer have been proposed, which include
Godtliebsen and]igård (2005), Erästö and Holmström (2005), and]igård et al. (2006). The inference is based on finite difference
quotients or derivatives, which depends on the selected prior model for the underlying curve.

The problem of testing the equality of nonparametric regression curves with independent errors has been widely studied in
the literature. Those include Härdle and Marron (1990), Hall and Hart (1990), Delgado (1993), Kulasekera (1995), Bowman and
Young (1996), Kulasekera and Wang (1995), Neumeyer and Dette (2003), Munk and Dette (1998), Dette and Neumeyer (2001),
and Pardo-Fernández et al. (2007). Koul and Stute (1998) and Li (2006) studied fitting a regression function in the presence of long
memory. In this paper, we consider the problem of testing equality of time series data by nonparametric regression approach,
which aims to develop a SiZer tool.

This is an extension of the works regarding the existing SiZer for time series (Rondonotti et al., 2007; Park et al., 2009) since
they are applicable to only one time series. Moreover, this is also an advancement of Park and Kang (2008) since they considered
only the independent case. This proposed tool gives insightful information about the differences between the curves by combining
statistical inference with visualization. The method presented here not only keeps the advantages of the original SiZer tools, but
also extends their usefulness to a broader range of scientific problems.

This paper is organized as follows. Section 2 describes a SiZer for the comparison of two time series. Section 3 describes a SiZer
for the comparison of more than two time series. Section 4 investigates the finite sample performances of the proposed method
via several simulated examples. Applications to real data are illustrated in Section 5. In Section 6, asymptotic properties of SiZer
for the comparison of two time series are investigated. The quantile for constructing confidence intervals in Section 2 is derived
in the Appendix.

2. Comparison of two time series

We start with comparing two time series based on the difference of two kernel estimates. For this reason, in this paper, SiZer
stands for SIgnificance of ZERo crossing of the differences.

A statistical challenge in this problem is testing whether there is any statistically significant differences between these time
series. Suppose that we have 2n observations from the following regression models:

Yij = fi(j) + �i�ij, j = 1, . . . ,n, i = 1, 2, (2.1)

where the �ij's are dependent random errors with mean 0, variance 1, and Cov(�ij, �ik) = �i(|j − k|) for all i = 1, 2, j, k = 1, . . . ,n, fi is
the unknown regression function of the ith sample and �2

i is the variance function of the ith sample (i= 1, 2). We assume that �1j
and �2j are independent of each other.

Our main concern is to develop a graphical device for testing the following hypothesis of the equality of mean regression
functions

H0 : f1 = f2

when the errors are weakly correlated.
SiZer takes an approach that applies the local linear fitting method, see, e.g., Fan and Gijbels (1996), for obtaining a family of

kernel estimates in a regression setting. Precisely, at a particular point x0, f̂i,h(x0) (i = 1, 2) are obtained by fitting lines

�i0 + �i1(x0 − j)

to the (j,Yij), with kernel weighted least squares. Then, f̂i,h(x0) = �̂i0 (i = 1, 2) where b̂i = (�̂i0, �̂i1)
′ minimizes

n∑
j=1

{Yij − (�i0 + �i1(x0 − j))}2Kh(x0 − j), (2.2)
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where Kh(·) = K(·/h)/h. K is a kernel function, usually a symmetric probability density function. In this paper, we use a Gaussian
kernel. Since the solution of (2.2) provides estimates of a regression function for different bandwidths, we can construct the
family of smooths parameterized by h and the confidence intervals of the difference of two time series.

In SiZer analysis, the hypotheses we are testing are

H0 : f1,h(x0) = f2,h(x0) vs. H1 : f1,h(x0)� f2,h(x0) (2.3)

for a fixed time point x0. Here, fi,h(x) ≡ Ef̂i,h(x) is the scale-space version of fi(x), i = 1, 2.

SiZer visually displays the significance of differences between two regression functions in families of smooths {f̂i,h(x), i = 1, 2}
over both location x and scale h, using a color map. It is based on confidence intervals for f̂1,h(x) − f̂2,h(x), which will be defined
soon, and uses multiple comparison level adjustment. Each pixel shows a color that gives the result of a hypothesis test in (2.3) at
the point indexed by the horizontal location x, and by the bandwidth corresponding to the row h. At each (x,h), if the confidence
interval is above (below) 0, meaning that the curves are significantly different, i.e., f1,h(x)>f2,h(x) (f1,h(x)<f2,h(x)), then that
particular map location is colored blue (red, respectively). On the other hand, if the confidence interval contains 0, meaning that
the curves are not significantly different, then that map location is given purple. Finally, if there are not enough data points to
carry out the test, then no decision can be made and the location is colored gray. (Note: We use the black and white (B&W)
version of SiZer map in the printed hardcopy of this paper. Blue, red, purple, and gray colors in the color map correspond to black,
white, intermediate gray, and darker gray, respectively, in the black and white map.) To determine the gray (darker gray in B&W
version) areas, as in Chaudhuri and Marron (1999), we define the estimated effective sample size (ESS), for each (x,h) as

ESS(x,h) =
∑n

j=1Kh(x − j)

Kh(0)
.

If ESS(x,h)<5, then the corresponding pixel is colored gray (darker gray in B&W version).
Confidence intervals for f1,h(x) − f2,h(x) are of the form

f̂1,h(x) − f̂2,h(x) ± q · ŜD(f̂1,h(x) − f̂2,h(x)), (2.4)

where q is an appropriate quantile, and the standard deviation is estimated as discussed soon. For the approximation of the quan-
tile, Chaudhuri and Marron (1999) suggested several methods including pointwise Gaussian quantiles, number of independent
blocks, and bootstrap. Recently, Hannig and Marron (2006) improved the multiple comparison tests using advanced distribution
theory. A similar calculation can be done for the comparison of two time series. As a result, the quantile for significance level � is
defined as

q = �−1
((

1 − �
2

)1/(�g))
,

where � is the standard normal distribution function and g is the number of bins. The `cluster index' � is given by

� = 2�

(√
I log g

	̃
h

)
− 1,

where

I =
∫
(�1(sh/	) + �2(sh/	)) e−s2/4 2 − s2

8
ds∫

(�1(sh/	) + �2(sh/	)) e−s2/4 ds
.

Here, 	̃ denotes the distance between the pixels of the SiZer map, and �1 and �2 are the autocovariance functions of the first and
the second time series, respectively. We use this quantile in our implementation and the brief derivation of the cluster index � is
provided in the Appendix.

For the estimation of the standard deviation, note that f̂i,h(t) obtained from (2.2) can be written as

f̂i,h(x) = 1
n

n∑
j=1

wn(h, x, j)Yij,

where

wn(h, x, j) = {ŝ2(x;h) − ŝ1(x;h)(x − j)}Kh(x − j)

ŝ2(x;h)ŝ0(x;h) − ŝ1(x;h)
2

and

ŝr(x;h) = 1
n

n∑
j=1

(x − j)rKh(x − j).
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Then, by independence

Var(f̂1,h(x) − f̂2,h(x)) = Var(f̂1,h(x)) + Var(f̂2,h(x)),

and

Var(f̂i,h(x)) = �2
i

n2

n∑
j=1

(wn(h, x, j))
2 + 2

n2
∑
j<k

wn(h, x, j)wn(h, x, k)�i(k − j). (2.5)

In order to construct the confidence interval in (2.4) we need to estimate the autocovariance function �i in (2.5). Park et al.
(2009) proposed a new estimator of this �i using a differenced time series in one sample case. Let ei be the ith differenced time
series (i = 1, 2), i.e., ei = Ayi where A = (ajk) is the difference matrix, e.g.,

A =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
0 0 −1 1 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · −1 1

⎞⎟⎟⎟⎟⎟⎠
if the first difference is used. A simple calculation shows for all j, k

Cov(eij, eik) =
n∑

l=1

aj,lak,l�i(0) +
n−1∑
l=1

(aj,lak,l+1 + aj,l+1ak,l)�i(1) + · · · + (aj,1ak,n + aj,nak,1)�i(n − 1).

From this we can set a regression setting

eijeik =
n∑

l=1

aj,lak,l�i(0) +
n−1∑
l=1

(aj,lak,l+1 + aj,l+1ak,l)�i(1) + · · · + (aj,1ak,n + aj,nak,1)�i(n − 1) + 
jk.

We assume that the regression function was smooth enough so that E(
jk) ≈ 0. Estimating �i by the least squares method, i.e., by
minimizing

∑
j,k

⎛⎝eijeik −
n∑

l=1

aj,lak,l�i(0) −
n−1∑
l=1

(aj,lak,l+1 + aj,l+1ak,l)�i(1) − · · · − (aj,1ak,n + aj,nak,1)�i(n − 1)

⎞⎠2

(2.6)

fails because the least squares problem in (2.6) does not lead to a unique solution.
Park et al. (2009) proposed to regularize the problem (2.6). First, since �i(0)� |�i(j)| for each i and j, we consider only such

solutions. Additionally, we regularize the least squares problemby introducing the penalty �
∑n−1

l=1 l�i(l)
2. Theweight l ismotivated

by the belief that the covariance �i(l) should be decaying as l increases.
This leads to the following constrained ridge regression:

arg min
�i∈Ri

⎧⎪⎨⎪⎩
∑
j,k

⎛⎝eijeik −
n∑

l=1

aj,lak,l�i(0) −
n−1∑
l=1

(aj,lak,l+1 + aj,l+1ak,l)�i(1) − · · · − (aj,1ak,n + aj,nak,1)�i(n − 1)

⎞⎠2

+ �
n−1∑
l=1

l�i(l)
2

⎫⎪⎬⎪⎭ ,

where Ri = {�i : �i(0)� |�i(j)|, j = 1, . . . ,n − 1}. We have investigated several choices of � and found that � = 1 works well as long
as the time series is weakly to moderately dependent.

3. SiZer for the comparison of multiple time series

This section is devoted to testing the equality of k(>2) time series. The model (2.1) becomes

Yij = fi(j) + �i�ij, i = 1, . . . , k, j = 1, . . . ,n.

We consider testing the following scale-space version of the hypotheses

H0 : f1,h(x0) = f2,h(x0) = · · · = fk,h(x0) vs. H1 : not H0. (3.1)

However, the extension of the approach in Section 2 is not a straightforward application for this testing problem. Therefore,
we propose to compare two sets of residual time series under the null and alternative hypotheses, respectively. To accomplish
this, first we obtain two residual sets by fitting local linear estimates under the null and alternative hypotheses in (3.1), and
then compare their time series by the tool developed in Section 2. One set of residuals will reflect the difference between each
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individual data set and its estimated function at a specific bandwidth. The second set of residuals will compare the individual data
sets to a common overall estimated function by pooling k sets of time series. Under the null hypothesis, the residuals obtained
by fitting an individual mean function for each data set should behavior similarly to the residuals computed by fitting a common
estimator function. In this way, we convert the comparison of multiple time series into the comparison of two time series. A
similar idea was used in Park and Kang (2008) for the independent case.

For obtaining the residuals, one could use a pilot bandwidth hp, which is different from the bandwidth h used in constructing
a SiZer map. For simplicity, however, we take hp = h in our analysis.

Let f̂h(·) be the local linear estimator of the common scale-spaced regression function fh(·) under H0, which has the following
form:

f̂h(x) = 1
kn

k∑
i=1

n∑
j=1

wn(h, x, j)Yij,

wherewn(h, x, j)'s are the local linear weights. Let Yij− f̂i,h(j) be the estimate of the error �ij from the ith population and let Yij− f̂h(j)

be the estimate of the same quantity under the null hypothesis in (3.1). The idea is that ifH0 is true, Yij − f̂i,h(j) and Yij − f̂h(j) would
be quite similar time series, thus their difference in a SiZer map would reflect the color purple (intermediate gray in B&W map).
Hence, we can check the equality of k time series by comparing these two sets of residual time series with the tool proposed
in Section 2. We will take a closer look at this method's performance in simulations and real data analyses that will soon be
presented.

4. Simulation

The first part of this section illustrates the simulated examples when the dependence structure is previously known and the
second part deals cases when the dependence structure is unknown for two time series. A simulation study for three time series
is done in the third part.
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Fig. 1. Comparison of two time series with MA(1) and AR(1) errors. Autocovariance functions are given in advance: (a) zero mean vs. zero mean, (b) sine vs. zero
mean, and (c) sine plus linear vs. sine.
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Fig. 2. Comparison of two time series with MA(1) and MA(5) errors. Autocovariance functions are given in advance: (a) zero mean vs. zero mean, (b) sine vs. zero
mean, and (c) sine plus linear vs. sine.

4.1. Two time series: when the dependence structure is known

This section shows the performance of SiZer when the autocovariance function is given in advance. This is an extension of
Park et al. (2004) for two time series, and it is particularly useful when the dependence structure is known from previous studies.

In our simulation we consider various combinations of error structures and mean regression functions, but we report only
a few of them to save space. Three simulated examples are provided and each example has the sample size n = 100. The first
example has the same constant mean 0:

(i) Yij = �ij, j = 1, . . . ,n, i = 1, 2.

For the second example, one time series has a sine curve as regression function and the other has mean 0:

(ii) Y1j = 4 sin(6�j/n) + �1j and Y2j = �2j.

The third example studies two different regression functions and has the following regression models:

(iii) Y1j = 4 sin(6�j/n) + 3j/n + �1j and Y2j = 4 sin(6�j/n) + �2j.

We consider two combinations of error structures, MA(1) vs. AR(1), andMA(1) vs. MA(5), for weakly correlated data and strongly
correlated one, respectively. The correct SiZer plots would show no significant difference for the first example, a sine trend for
the second, and a linear trend for the third.

Fig. 1 displays SiZer plots with MA(1) and AR(1) for the three examples. In the top two panels, the dots are actual data points
and the thin curves display the family of smooths, i.e., f̂i,h(x) for i=1, 2. The SiZer maps in the third panels report the equality test
of the two time series by investigating the confidence intervals in (2.4) at each (x,h). The horizontal locations in the SiZer map
are the same x values as in the top panels, and the vertical locations in the SiZer plot correspond to the logarithm of bandwidths
of the family of smooths shown as thin curves in the top panels. Each pixel in the SiZer map shows a color that gives the result of
a hypothesis test for the significance of the differences between the thin curves in family plot 1 minus family plot 2, at the point
indexed by the horizontal location, and at the bandwidth corresponding to that row. The SiZer map in Fig. 1(a) shows only purple
(intermediate gray in B&Wmap), meaning no significant difference, as expected.We see also thatwhen the two regression curves
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Fig. 3. Comparison of two time series with MA(1) and AR(1). Autocovariance functions are estimated from the time series: (a) zero mean vs. zero mean, (b) sine
vs. zero mean, and (c) sine plus linear vs. sine.

are different, the SiZer maps correctly capture the differences. The SiZer map in Fig. 1(b) shows positive (blue, black in B&Wmap)
and negative (red, white in B&W map) differences along the sine curve, but also has some spurious pixels present. The map in
Fig. 1(c) flags a rough linear trend as significant. From these three simulations, we show that SiZer for the comparison of two
time series performs well in its ability to detect significant trends through assumed dependence structure for weakly correlated
data.

Fig. 2 displays SiZer plots with MA(1) and MA(5) for the three examples. The results are similar to Fig. 1, with (a) being
correctly marked completely purple (intermediate gray in B&W map) and (b) has the sine trend marked even more cleanly here
with no spurious pixels. Fig. 2(c) once again detects a general linear trend, with a couple of spurious pixels near the center of the
picture. Thus, SiZer performs reasonably well for cases in which either of the time series has a weak or a stronger correlation, but
it does need some improvement in clearly delineating the linear trend as the significant signal.

4.2. Two time series: when the dependence structure is unknown

In real world, we can hardly assume the true autocovariance structure in advance. Therefore, we examine the performance
of our approach with the estimated autocovariance functions in Section 2 by repeating the simulation study in Section 4.1.
Comparing the results with those in Section 4.1 enables us to assess the performance of our autocovariance function estimator.

Fig. 3 displays SiZer plots with MA(1) and AR(1) for the three examples. As one can see from the plots, similar to Fig. 1, SiZer
flags no trend for Fig. 3(a) and thus the entire map is purple (intermediate gray in B&W map). In Fig. 3(b) the SiZer map also
catches all of the important trends given in a sine curve although it is not quite as clearly evenly partitioned as is desired, with
some spurious pixels in the upper left hand corner. In Fig. 3(c), it is very similar to Fig. 1 which has the true autocovariance
function, and it does detect a strong difference in the upper portion of the map that is attributed to the linear trend.

Fig. 4 displays SiZer plots with MA(1) andMA(5) for the same three trend examples. Here again we canmake almost the same
conclusions as those plots in Fig. 2. In Fig. 4(a), it is correctly colored purple (intermediate gray in B&W map) for the presence of
no trend and in Fig. 4(b), we can see that the SiZer map captures all of the changes in the sine trend and our only misdiagnoses
are in the top right hand corner where we can see some spurious pixels. Fig. 4(c) also shows again that the positive linear trend
from the first plot is identified by the SiZer map. Here with these two figures we have seen that SiZer succeeds in capturing the
important differences in two correlated time series while estimating the autocovariance function. In addition, it also does a very
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Fig. 4. Comparison of two time series with MA(1) and MA(5). Autocovariance functions are estimated from the time series: (a) zero mean vs. zero mean, (b) sine
vs. zero mean, and (c) sine plus linear vs. sine.

fair job of highlighting the differences in trend whether both time series have weak correlation or if one of the two time series
has a stronger correlation.

4.3. Multiple time series

In this section, we simulate two examples to compare three different time series. In each example, the three time series are
generated fromN(0, 1),MA(1), and AR(1), respectively, with the length n=100. In the first example, themean regression functions
are all zero. So, each graph should demonstrate that there is no signal and if the time series can all accurately be accounted for,
the behavior of residuals under each of the three estimation functions should be the same as that of the commonly estimated
function. These two mean functions of residuals should therefore have leave a difference of nothing and the lack of trend would
leave us with three SiZer maps of no significant trend.

In Fig. 5, we see that the first column of graphs shows the generated time series and their family of smooths plots. The second
column shows the SiZer maps comparing two sets of residual time series. In other words, for i = 1, 2, 3, the ith row of the second
column corresponds to the SiZer map comparing Yij − f̂i,h(j) and Yij − f̂h(j). All purple (intermediate gray in B&W map) colors
indicate that the mean functions of the residual time series are indeed similar according to SiZer analysis.

In the second example, the error structures remain the same as in the first, but we add the sine curve f1(x) = sin(6�x) to the
first sample. The last two samples remain with no signal, only the correlated error structure.

We can see that Fig. 6 shows some significant features in the SiZer maps, which implies the differences of the mean functions.
The first one shows more significant trends since it is different from the others, and the trend clearly suggests the presence of
the sine curve that was inserted into the first sample.

5. Real data analysis

This section is devoted to illustrate our procedure applied to real data.

Example 1. This first example involves the yields of the 3-month, 6-month, and 12-month Treasury bills. The data set was taken
from July 1959 to August 2001. In order to decrease the sample size, we have taken the average of every two consecutive months
and used that as our data, causing no change in trend. The original data can be seen as examples in sources such as Fan and Yao
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Fig. 5. SiZer plots for comparing three time series with the same zero mean.

(2003). We can see the almost identical structure in the family plots of all three time periods. In Fig. 7(a)–(c) we see that the
almost identical correlation of the rates is detected by the SiZer maps, all of which are purple (intermediate gray in B&W map),
indicating no significant difference between any pair of the time periods.

Example 2. This example displays the long-term rates for US, Canada, and Japan from January 1980 to December 2000. Before
plotting, the global mean has been taken out for each country so that all of the data is centered in order to compare the relative
trends of interest rates between the countries. A few comments will be made relative to the article by Christiansen and Pigott
(1997) to point out the similarities in their assessed trends to the ones detected by SiZer. We see in Fig. 8(a) that the long-term
interest rates for the US and Canada moved quite closely together from approximately 1993 to 1995, despite different business
cycle positions at those times. This is indicated by the purple (intermediate gray in B&Wmap)marking of no significance between
the red (white in B&W map) and final blue (black in B&W map) highlighted portions. We also can confirm in the SiZer map the
events of the fall of the Canadian rates to just below the US rates for the first time in over a decade around 1996 indicated by the
final blue (black in B&Wmap) difference section in the map.

In Fig. 8(b), we can see that in the period from 1982 to mid 1984 the US rates rose as the Japanese rates were falling, believed
by the authors to be caused in part by the effects of US fiscal expansion in raising the demand for domestic savings relative to
its supply. This is indicated by the blue (black in B&Wmap) highlighted pixels to the left of the graph indicating this early 1980s
time period. In Fig. 8(a) and (b) we can see significant divergences in the interest rates in the late 1980s as US rates begin to fall
back, rates in Canada and Japan are increasing. In both plots, the larger values of Canada and Japan cause a significant negative
difference, denoted red (white in B&W map) in the middle of both plots. We can see this short-term similarity between Canada
and Japan in Fig. 8(c), however, the graph is clearly dominated by the more rapid descent of the Canadian rates through the
overall decrease of both countries.

It would also be interesting to compare three yields of three countries at the same time, as in Examples 1 and 2, respectively.
To save space we only report the result of Example 2 for multiple comparison. We can see that in Fig. 9, there are differences that
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Fig. 6. SiZer plots for comparing three time series with the different mean functions.

occur within each SiZer map, denoting that there are significant differences present. We have seen in Fig. 8 that there existed
pairwise differences between all of the countries. The presence of these differences are also correctly detected whenwe compare
each set of residuals from each country's individual estimated function to the residuals from the overall estimation.

Remark. Another approachusingANOVA type statistics canbedeveloped for the comparisonofmultiple curves. The test statistics
for comparing the curves at x can be roughly written as

(Constant) ×
∑k

i=1(f̂i,h(x) − f̂h(x))
2∑k

i=1
∑n

j=1(Yij − f̂i,h(j))
2Kh(x − j)

,

where f̂i,h is a local linear fit using ith sample and f̂h using the combined sample under the null hypothesis. This statisticmimics the
ratio of variations from themodel and the error in ANOVA. To conduct a test, one needs to find the approximate distribution of this
statistic and its degrees of freedom. Also, an appropriate multiple adjustment needs to be designed for SiZer. If some differences
are found among the curves, multiple pairwise comparisons can be performed as done in ANOVA analysis. We propose this
approach as our future work.

6. Asymptotic results

In this section we study statistical convergence of the difference between the empirical and the theoretical scale-space
surfaces, which provides theoretical justification of SiZer for the comparison of two time series in scale space. Chaudhuri and
Marron (2000) addressed this issue based on one independent sample and Park et al. (2009) extended it to single correlated data.
Here, we extend it to the case of comparing two correlated samples.
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Fig. 7. Comparison of the yields of the 3-month, 6-month, and 12-month Treasury bills measured as the bi-monthly average from July 1959 to August 2001: (a)
M3 vs. M6, (b) M3 vs. M12, and (c) M6 vs. M12.
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Fig. 9. Multiple comparison of the trends for long-term target interest rates for US, Canada, and Japan from January 1980 to December 2000.

The first theoremprovides theweak convergence of the empirical scale-space surfaces and their differences to their theoretical
counterpart. The second theorem states the behavior of the difference between the empirical and the theoretical scale-space
surfaces under the supremum norm and the uniform convergence of the empirical version to the theoretical one.

Let I and H be compact subintervals of [0,∞) and (0,∞), respectively. Let

ĝh(x) = 1
n

n∑
j=1

Zjwn(h, x, j),

where Zj = Y1j − Y2j. The following set of assumptions are needed for the following theorems:

(A.1) The errors (�i1, �i2, . . .) in (2.1) are stationary, 
-mixing with the mixing function 
(j) satisfying
∑∞

j=1
(j)1/2<∞. (See for
example Doukhan, 1994 for definition of 
-mixing.)

(A.2) The errors have a bounded moment E{|�ij|2+�}<∞ for some �>0.
(A.3) For integer n�0, as n → ∞

1
n

⎡⎣ n∑
j=1

n∑
k=1

(�1(|j − k|) + �2(|j − k|))wn(h1, x1, j)wn(h2, x2, k)

⎤⎦
converges to a covariance function cov(h1, x1,h2, x2) for all (h1, x1) and (h2, x2) ∈ H × I.

(A.4) n−(1+�/2){max1� j�n|wn(h, x, j)|�}{∑n
j=1wn(h, x, j)}2 → 0 for all (h, x) ∈ H × I.

(A.5) wn(h, x, j)wn(h, x, k) will be uniformly dominated by a positive finite number M.
(A.6) {

�wn(h, x, j)

�x

}{
�wn(h, x, k)

�x

}
,

{
�wn(h, x, j)

�h

}{
�wn(h, x, k)

�h

}
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and {
�wn(h, x, j)

�x

}{
�wn(h, x, k)

�h

}

will be uniformly dominated by a positive finite number M∗.

Theorem 1. Suppose that assumptions (A.1)–(A.5) are satisfied. Define

Un(h, x) = n1/2[ĝh(x) − E{ĝh(x)}], (h, x) ∈ H × I.

As n → ∞, Un(h, x) converges to a Gaussian process on H × I with zero mean and covariance function cov(h1, x1,h2, x2).

Proof. It is enough to show that all the finite dimensional distribution of the process convergesweakly to the normal distribution
and the process satisfies the tightness condition.

Fix (h1, x1), (h2, x2), . . . , (hl, xl) ∈ H × I and (t1, . . . , tl) ∈ (−∞,∞). Define

Qn = n1/2
l∑

j=1

tj[ĝhj (xj) − E{ĝhj (xj)}]

= n−1/2
n∑

p=1

(�1p − �2p)
l∑

j=1

tjwn(hj, xj,p).

Then E(Qn) = 0 and

Var(Qn) = 1
n

l∑
j=1

l∑
k=1

tjtk

⎡⎣ n∑
p=1

n∑
q=1

(�1(|p − q|) + �2(|p − q|))wn(hj, xj,p)wn(hk, xk, q)

⎤⎦
→

l∑
j=1

l∑
k=1

tjtkcov(hj, xj,hk, xk) (6.1)

as n → ∞ by assumption (A.3).

Assumptions (A.2) and (A.4) imply that Lyapunov's and hence Lindeberg's condition holds for the terms in Qn. This and
assumption (A.1) verify the conditions of the main theorem in Utev (1990) allowing us to conclude that Qn converges in
distribution to a normal random variable with variance given by (6.1). By Cramer–Wold device, the limiting distribution of
Un(hj, xj) (j=1, . . . , l) is themultivariate normal distributionwith zeromean and cov(hj, xj,hk, xk) as the (j, k)th entry of the limiting
variance–covariance matrix.

We now proceed to the issue of tightness. Fix h1<h2 in H and x1<x2 in I. Then, by Bickel and Wichura (1971) the second
moment of increment of Un is defined by

E{Un(h2, x2) − Un(h2, x1) − Un(h1, x2) + Un(h1, x1)}2 = 1
n

n∑
j=1

n∑
k=1

(�1(|k − j|) + �2(|k − j|))DjDk, (6.2)

where

Dj = wn(h2, x2, j) − wn(h2, x1, j) − wn(h1, x2, j) + wn(h1, x1, j).

Then, by the assumption (A.5), (6.2) is bounded by

C1(x2 − x1)
2(h2 − h1)

2 1
n

n∑
j=1

n∑
k=1

(�1(|j − k|) + �2(|j − k|)),

which is again bounded by C2(x2 − x1)
2(h2 − h1)

2, since conditions (A.1) and (A.2) imply that supnn
−1∑n

j=1
∑n

k=1(�1(|j − k|) +
�2(|j − k|))<∞, cf., Doukhan (1994, p. 45). Then the tightness property of the sequence of processes

n1/2[ĝh(x) − E{ĝh(x)}]

on H × I is implied by Theorem 3 in Bickel and Wichura (1971). Together with the finite dimensional convergence property, this
implies that the theorem holds. �
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Theorem 2. Suppose that assumptions (A.1)–(A.6) are satisfied. As n → ∞

sup
x∈I,h∈H

n1/2|ĝh(x) − E{ĝh(x)}|

converges weakly to a random variable that has the same distribution as that of supx∈I,h∈H |G(h, x)|,where G(h, x) is a Gaussian process
with zero mean and covariance function cov(h1, x1,h2, x2) so that

P{G(h, x) is continuous for all (h, x) ∈ H × I} = 1

and consequently P{supx∈I,h∈H |G(h, x)|<∞} = 1.

Proof. Let us denote D∗
j by

D∗
j = wn(h2, x2, j) − wn(h1, x1, j).

Then,

E{Un(h2, x2) − Un(h1, x1)}2 = 1
n

n∑
j=1

n∑
k=1

(�1(|j − k|) + �2(|j − k|))D∗
j D

∗
k �C3{(h2 − h1)

2 + (x2 − x1)
2}.

Then the rest of the proof can be done the same way in Chaudhuri and Marron (2000) by defining the pseudo-metric d by
d{(h2, x2), (h1, x1)} = [E{G(h2, x2) − G(h1, x1)}2]1/2. �
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Appendix A.

SiZer uses the local linear smoother defined by (2.2). To color the pixels SiZer checks whether the difference of the estimates
of the two regression functions

�̂i0 = c−1
i

⎡⎣ n∑
j=1

Kh(x − j)Yij

⎤⎦⎡⎣ n∑
j=1

(x − j)2Kh(x − j)

⎤⎦ − c−1
i

⎡⎣ n∑
j=1

(x − j)Kh(x − j)

⎤⎦⎡⎣ n∑
j=1

(x − j)Kh(x − j)Yij

⎤⎦ , (A.1)

ci =
⎡⎣ n∑

j=1

Kh(x − j)

⎤⎦⎡⎣ n∑
j=1

(x − j)2Kh(x − j)

⎤⎦ −
⎡⎣ n∑

j=1

(x − j)Kh(x − j)

⎤⎦2

for i = 1, 2, is significantly different from 0:

Tk ≈
n∑

q=1

wh
kp−q(Y1,q − Y2,q).

The form of the wh
kp−q is given in the first term of (A.1). Note that wh

kp−q is proportional to Kh/	(kp − q) and thus the weights wh
q

are proportional to the Gaussian kernel with standard deviation h/	.
Let �1 be the autocovariance function of the first time series and �2 be the autocovariance function of the second. The full joint

distribution of T1, . . . , Tg also depends on the correlation between them. This correlation is approximated by

�j−i = corr(Ti, Tj)

=
∑

q
∑

rw
h
ip−qw

h
jp−r(�1(q − r) + �2(q − r))∑

q
∑

rw
h
qw

h
r (�1(q − r) + �2(q − r))

≈
∫
Kh/	(ip − x)Kh/	(jp − y)(�1(x − y) + �2(x − y))dxdy∫

Kh/	(x)Kh/	(y)(�1(x − y) + �2(x − y))dxdy

=
∫
(�1(s) + �2(s))

∫
Kh/	(ip − s − y)Kh/	(jp − y)dyds∫

(�1(s) + �2(s))
∫
Kh/	(s + y)Kh/	(y)dyds

=
∫
(�1(s) + �2(s)) e

−(ip−jp−s)2	2/(4h2) ds∫
(�1(s) + �2(s)) e−s2	2/(4h2) ds

=
∫
(�1(s) + �2(s)) e

−[(i−j)	̃−s	]2/(4h2) ds∫
(�1(s) + �2(s))e−s2	2/(4h2) ds

.
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We then calculate that

�j,g =
∫
(�1(s) + �2(s)) e

−(Cj/
√

log g−s)2/4 ds∫
(�1(s) + �2(s))e−s2/4 ds

.

Finally, since �i(s) is an even function, we get by expanding into a series that

lim
g→∞ log g(1 − �k,g) = k2

C2 ∫ (�1(s) + �2(s)) e−s2/4 2 − s2

8
ds∫

(�1(s) + �2(s)) e−s2/4 ds
.

Therefore just as in Hannig and Marron (2006) we conclude that in the case of SiZer[
max

i=1,. . .,g
Ti � x

]
≈ �(x)�g ,

where the cluster index

� = 2�

(√
I log g

	̃
h

)
− 1

and

I =
∫
(�1(sh/	) + �2(sh/	)) e−s2/4 2 − s2

8
ds∫

(�1(sh/	) + �2(sh/	)) e−s2/4 ds
.
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