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1 Introduction

The origin of Generalized Fiducial Inference can be traced back to R. A.
Fisher (Fisher, 1930, 1933, 1935) who introduced the concept of a fiducial
distribution for a parameter, and proposed the use of this fiducial distribu-
tion, in place of the Bayesian posterior distribution, for interval estimation of
this parameter. In the case of a one-parameter family of distributions, Fisher
gave the following definition for a fiducial density r(θ) of the parameter based
on a single observation x for the case where the cdf F (x, θ) is a monotonic
decreasing function of θ:

r(θ) = −∂F (x, θ)

∂θ
. (1)

∗The authors’ research was supported in part by the National Science Foundation under
Grant No. 0707037.
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In simple situations, especially in one parameter families of distributions,
Fisher’s fiducial intervals turned out to coincide with classical confidence
intervals. For multiparameter families of distributions, the fiducial approach
led to confidence sets whose frequentist coverage probabilities were close to
the claimed confidence levels but they were not exact in the frequentist sense.
Fisher’s proposal led to major discussions among the prominent statisticians
of the 1930’s, 40’s and 50’s (e.g., Dempster, 1966, 1968; Fraser, 1961a,b, 1966,
1968; Jeffreys, 1940; Lindley, 1958; Stevens, 1950). Many of these discussions
focused on the nonexactness of the confidence sets and also nonuniqueness
of fiducial distributions. The latter part of the 20th century has seen only
a handful of publications Barnard (1995); Dawid and Stone (1982); Dawid
et al. (1973); Salome (1998); Wilkinson (1977) as the fiducial approach fell
into disfavor and became a topic of historical interest only.

Recently, the work of Tsui and Weerahandi (1989, 1991) and Weerahandi
(1993, 1994, 1995) on generalized confidence intervals and the work of Chiang
(2001) on the surrogate variable method for obtaining confidence intervals
for variance components, led to the realization that there was a connection
between these new procedures and fiducial inference. This realization evolved
through a series of works (Hannig, 2009b; Hannig et al., 2006b; Iyer and
Patterson, 2002; Iyer et al., 2004; Patterson et al., 2004). The strengths and
limitations of the fiducial approach is becoming to be better understood,
see, especially, Hannig (2009b). In particular, the asymptotic exactness of
fiducial confidence sets, under fairly general conditions, was established in
Hannig et al. (2006b); Hannig (2009a,b).

Subsequently Hannig et al. (2003); Iyer et al. (2004); McNally et al.
(2003); Wang and Iyer (2005, 2006a,b) applied this fiducial approach to
derive confidence procedures in many important practical problems. Han-
nig (2009b) extended the initial ideas and proposed a Generalized Fiducial
Inference procedure that could be applied to arbitrary classes of models,
both parametric and nonparametric, both continuous and discrete. These
applications include Bioequivalence (Hannig et al., 2006a), Variance Com-
ponents (E et al., 2008), Problems of Metrology (Hannig et al., 2007, 2003;
Wang and Iyer, 2005, 2006a,b), Interlaboratory Experiments and Interna-
tional Key Comparison Experiments (Iyer et al., 2004), Maximum Mean of
a Multivariate Normal Distribution (Wandler and Hannig, 2009), Mixture of
a Normal and Cauchy (Glagovskiy, 2006), Wavelet Regression (Hannig and
Lee, 2009), Logistic Regression and LD50 (E et al., 2009). Recently, other
authors have also contributed to research on fiducial methods and related
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topics (e.g., Berger and Sun, 2008; Wang, 2000; Xu and Li, 2006).

2 Generalized Fiducial Distribution

The idea underlying Generalized Fiducial Inference comes from an extended
application of Fisher’s fiducial argument, which is briefly described as fol-
lows. Generalized Fiducial Inference begins with expressing the relationship
between the data, X, and the parameters, θ, as

X = G(θ,U), (2)

where G(·, ·) is termed structural equation, and U is the random component
of the structural equation whose distribution is completely known. The data
X are assumed to be created by generating a random variable U and plugging
it into the structural equation (2).

For simplicity, this subsection only considers the case where the structural
relation (2) can be inverted and the inverse G−1(·, ·) always exists. Thus, for
any observed x and for any arbitrary u, θ is obtained as θ = G−1(x,u).
Fisher’s Fiducial Argument leads one to define the fiducial distribution for
θ as the distribution of G−1(x,U?) where U? is an independent copy of U.
Equivalently, a sample from the fiducial distribution of θ can be obtained
by generating U?

i , i = 1, . . . , N and using θi = G−1(x,U?
i ). Estimates and

confidence intervals for θ can be obtained based on this sample.
Hannig (2009b) has generalized this to situations where G is not invert-

ible. The resulting fiducial distribution is called a Generalized Fiducial Dis-
tribution. To explain the idea we begin with Equation (2) but do not assume
that G is invertible with respect to θ. The inverse G−1(·, ·) may not exist
for one of the following two reasons: for any particular u, either there is no
θ satisfying (2), or there is more than one θ satisfying (2).

For the first situation, Hannig (2009b) suggests removing the offending
values of u from the sample space and then re-normalizing the probabilities.
Such an approach has also been used by Fraser (1968) in his work on struc-
tural inference. Specifically, we generate u conditional on the event that the
inverse G−1(·, ·) exists. The rationale for this choice is that we know our
data x were generated with some θ0 and u0, which implies there is at least
one solution θ0 satisfying (2) when the “true” u0 is considered. Therefore,
we restrict our attention to only those values of u for which G−1(·, ·) exists.
However, this set has probability zero in many practical situations leading
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to non-uniqueness due to the Borel paradox (Casella and Berger, 2002, Sec-
tion 4.9.3). The Borel paradox is the fact that when conditioning on an event
of probability zero, one can obtain any answer.

The second situation can be dealt either by selecting one of the solutions
or by the use of the mechanics underlying Dempster-Shafer calculus Demp-
ster (2008). In any case, Hannig (2009a) proves that this non-uniqueness
disappears asymptotically under very general assumptions.

Hannig (2009b) proposes the following formal definition of the generalized
fiducial recipe. Let X ∈ Rn be a random vector with a distribution indexed
by a parameter θ ∈ Θ. Recall that the data generating mechanism for X is
expressed by (2) where G is a jointly measurable function and U is a random
variable or vector with a completely known distribution independent of any
parameters. We define for any measurable set A ∈ Rn a set-valued function

Q(A,u) = {θ : G(θ,u) ∈ A}. (3)

The function Q(A,u) is the generalized inverse of the function G. Assume
Q(A,u) is a measurable function of u.

Suppose that a data set was generated using (2) and it has been observed
that the sample value x ∈ A. Clearly the values of θ and u used to generate
the observed data will satisfy G(θ,u) ∈ A. This leads to the following
definition of a generalized fiducial distribution for θ:

Q(A,U?) | {Q(A,U?) 6= ∅}, (4)

where U? is an independent copy of U.
The object defined in (4) is a random set of parameters (such as an interval

or a polygon) with distribution conditioned on the set being nonempty. It
is well-defined provided that P (Q(A,U?) 6= ∅) > 0. Otherwise additional
care needs to be taken to interpret this distribution (c.f., Hannig, 2009b).
In applications, one can define a distribution on the parameter space by
selecting one point out of Q(A,U?).

3 Examples

The following examples provide simple illustrations of the definition of a
generalized fiducial distribution.
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Example 1. Suppose U = (U1, U2) where Ui are i.i.d. N(0, 1) and X =
(X1, X2) = G(µ,U) = (µ + U1, µ + U2) for some µ ∈ R. So Xi are iid
N(µ, 1). Given a realization x = (x1, x2) of X, the set-valued function Q
maps u = (u1, u2) ∈ R2 to a subset of R and is given by

Q(x,u) =

{
{x1 − e1} if x1 − x2 = u1 − u2,

∅ if x1 − x2 6= u1 − u2.

By definition, a generalized fiducial distribution for µ is the distribution of
x1 − U?

1 conditional on U?
1 − U?

2 = x1 − x2 where U? = (U?
1 , U

?
2 ) is an

independent copy of U. Hence a generalized fiducial distribution for µ is
N(x̄, 1/2) where x̄ = (x1 + x2)/2.

Example 2. Suppose U = (U1, . . . , Un) is a vector of i.i.d. uniform (0, 1)
random variables Ui. Let p ∈ [0, 1]. Let X = (X1, . . . , Xn) be defined
by Xi = I(Ui < p). So Xi are iid Bernoulli random variables with success
probability p. Suppose x = (x1, . . . , xn) is a realization of X. Let s =

∑n
i=1 xi

be the observed number of 1’s. The mapping Q : [0, 1]n → [0, 1] is given by

Q(x,u) =


[0, u1:n] if s = 0,

(u1:n, 1] if s = n,

(us:n, us+1:n] if s = 1, . . . , n− 1 and
∑n

i=1 I(xi = 1)I(ui ≤ us:n) = s,

∅ otherwise.

Here ur:n denotes the rth order statistic among u1, . . . , un. So a generalized
fiducial distribution for p is given by the distribution of Q(x,U?) conditional
on the event Q(x,U?) 6= ∅. By the exchangeability of U?

1 , . . . , U
?
n it follows

that the stated conditional distribution of Q(x,U?) is the same as the distri-
bution of [0, U?

1:n] when s = 0, (U?
s:n, U

?
s+1:n] for 0 < s < n, and (U?

n:n, 1] for
s = n.

Next, we present a general recipe that is useful in many practical situa-
tions.

Example 3. Let us assume that the observations X1, . . . , Xn are i.i.d. uni-
variate with distribution function F (x, ξ) and density f(x, ξ), where ξ is a
p-dimensional parameter. Denote the generalized inverse of the distribution
function by F−1(ξ, u) and use the structural equation

Xi = F−1(ξ, Ui) for i = 1, . . . , n. (5)
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If all the partial derivatives of F (x, ξ) with respect to ξ are continuous and
the Jacobian

det

(
d

dξ

(
F (xi1 , ξ), . . . , F (xip , ξ)

))
6= 0

for all distinct x1, . . . , xp, then Hannig (2009a,b) shows that the generalized
fiducial distribution (4) is

r(ξ) =
fX(x, ξ)J(x, ξ)∫

Ξ
fX(x, ξ′)J(x, ξ′) dξ′

, (6)

where fX(x, ξ) is the likelihood function and

J(x, ξ) =
∑

i=(i1,...,ip)

∣∣∣∣∣∣
det
(

d
dξ

(
F (xi1 , ξ), . . . , F (xip , ξ)

))
f(xi1 , ξ) · · · f(xi,p, ξ)

∣∣∣∣∣∣ . (7)

This provides a from of generalized fiducial distribution that is usable in many
practical applications, see many of the papers mentioned in introduction.
Moreover, if n = p = 1 (6) and (7) simplify to the Fisher’s original definition
(1).

Equation (6) is visually similar to Bayes posterior. However, the role of
the prior is taken by the function J(x, ξ). Thus unless J(x, ξ) = k(x)l(ξ)
where k and l are measurable functions, the generalized fiducial distribution
is not a posterior distribution with respect to any prior. A classical example
of such a situation is in Grundy (1956).

The quantity
(
n
p

)−1
J(x, ξ) is a U-statistics and therefore it often converges

a.s. to

πξ0(ξ) = Eξ0

∣∣∣∣∣∣
det
(

d
dξ

(F (X1, ξ), . . . , F (Xp, ξ))
)

f(X1, ξ) · · · f(Xp, ξ)

∣∣∣∣∣∣ .
At first glance πξ0(ξ) could be viewed as an interesting non-subjective prior.
Unfortunately, this prior is not usable in practice, because the expectation
in the definition of πξ0(ξ) is taken with respect to the true parameter ξ0

which is unknown. However, since
(
n
p

)−1
J(x, ξ) is an estimator of πξ0(ξ),

the generalized fiducial distribution (6) could be interpreted as an empirical
Bayes posterior.
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