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Generalized Fiducial Inference
for Ultrahigh-Dimensional Regression

Randy C. S. LAI, Jan HANNIG, and Thomas C. M. LEE

In recent years, the ultrahigh-dimensional linear regression problem has attracted enormous attention from the research community. Under
the sparsity assumption, most of the published work is devoted to the selection and estimation of the predictor variables with nonzero
coefficients. This article studies a different but fundamentally important aspect of this problem: uncertainty quantification for parameter
estimates and model choices. To be more specific, this article proposes methods for deriving a probability density function on the set of all
possible models, and also for constructing confidence intervals for the corresponding parameters. These proposed methods are developed
using the generalized fiducial methodology, which is a variant of Fisher’s controversial fiducial idea. Theoretical properties of the proposed
methods are studied, and in particular it is shown that statistical inference based on the proposed methods will have correct asymptotic
frequentist property. In terms of empirical performance, the proposed methods are tested by simulation experiments and an application to
a real dataset. Finally, this work can also be seen as an interesting and successful application of Fisher’s fiducial idea to an important and
contemporary problem. To the best of the authors’ knowledge, this is the first time that the fiducial idea is being applied to a so-called “large
p small n” problem. A connection to objective Bayesian model selection is also discussed.

KEY WORDS: Confidence intervals; Large p small n; Minimum description length principle; Uncertainty quantification; Variability
estimation.

1. INTRODUCTION

The ultrahigh-dimensional linear regression problem has at-
tracted enormous attentions in recent years. A typical descrip-
tion of the problem begins with the usual linear model

Yi = xT
i β + εi, or equivalently Y = Xβ + ε,

where Y = (Y1, . . . , Yn)T is a vector of n responses, X =
(x1, . . . , xn)T is a design matrix of size n × p with iid vari-
ables x1, . . . , xn, β = (β1, . . . , βp)T is a vector of p parame-
ters, and ε = (ε1, . . . , εn)T is a vector of n iid random errors with
zero mean and unknown variance σ 2. It is assumed that ε and
x1, . . . , xn are independent, and that p is larger than n and grows
at an exponential rate as n increases. It is this last assumption
that makes the ultrahigh-dimensional regression problem differ-
ent from the classical multiple regression problem, for which
p < n.

When p � n, it is customary to assume that the number
of nonzero coefficient predictors in the true model is small,
that is, the true model is sparse. The problem is then to iden-
tify which βj ’s are nonzero, and to estimate their values. To
solve this variable selection problem, one common strategy is
to first apply a so-called screening procedure to remove a large
number of insignificant predictors, and then apply a penalized
method such as the least absolute shrinkage and selection op-
erator (LASSO) method of Tibshirani (1996) or the smoothly
clipped absolute deviation (SCAD) method of Fan and Li (2001)
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to the surviving predictors to select the final set of variables.
For screening procedures, one of the earliest is the sure in-
dependence screening (SIS) procedure of Fan and Lv (2008).
Since then various screening procedures have been proposed:
Wang (2009) developed a consistent screening procedure that
combines forward regression and the extended Bayesian infor-
mation criterion (BIC) of Chen and Chen (2008), Bühlmann,
Kalisch, and Maathuis (2010) proposed a screening procedure
that is based on conditional partial corrections, and Cho and
Fryzlewicz (2011) constructed a screening procedure that uses
information from both marginal correlation and tilted correla-
tion. Also, other screening procedures are developed for more
complicated settings, including generalized linear models and
nonparametric additive modeling, for example, Meier, Van De
Geer, and Bühlmann (2009), Ravikumar et al. (2009), Fan and
Lv (2011), and Fan, Feng, and Song (2011). For an overview of
variable selection for high-dimensional problems, see Fan and
Lv (2010).

While much efforts have been spent on model selection and
parameter estimation for the ultrahigh-dimensional regression
problem, virtually no published work is devoted to quantify
the uncertainty in the chosen models and their parameter esti-
mates. A notable exception is the pioneering work of Fan, Guo,
and Hao (2012), where a cross-validation-based method is pro-
posed to estimate the error variance σ 2. Given such an estimate
and a final model, confidence intervals for βj ’s can be con-
structed using classical linear model theory. However, this ap-
proach does not account for the additional variability contributed
by the need of selecting a final model.

The goal of this article is to investigate the use of Fisher’s
fiducial idea (Fisher 1930) in the ultrahigh-dimensional re-
gression problem. In particular, a new procedure is developed
for constructing confidence intervals for all the parameters
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(including σ ) in the final selected model. This procedure au-
tomatically accounts for the variability introduced by model
selection. To the best of our knowledge, this is the first time that
Fisher’s fiducial idea is being applied to the so-called “large p
small n” problem.

Fisher (1930) introduced fiducial inference to define a statis-
tically meaningful distribution on the parameter space in cases
when one cannot use a Bayes’ theorem due to the lack of prior
information. While never formally defined, fiducial inference
has a long and storied history. We refer an interested reader to
Hannig (2009) and Salome (1998) where a wealth of references
can be found.

Ideas related to fiducial inference have experienced an excit-
ing resurgence in the last decade. Some of these modern ideas
are Dempster–Shafer calculus and its generalizations (Demp-
ster 2008; Martin, Zhang, and Liu 2010; Zhang and Liu 2011;
Martin and Liu 2013), confidence distributions (Singh, Xie, and
Strawderman 2005; Xie, Singh, and Strawderman 2011; Xie and
Singh 2013), generalized inference (Weerahandi 1993, 1995),
and reference priors in objective Bayesian inference (Berger,
Bernardo, and Sun 2009). There has also been a wealth of suc-
cessful applications of these methods to practical problems.
For selected examples, see McNally, Iyer, and Mathew (2003),
Wang and Iyer (2005), Lidong, Hannig, and Iyer (2008), Edlef-
sen, Liu, and Dempster (2009), Hannig and Lee (2009), and
Cisewski and Hannig (2012).

The particular variant of Fisher’s fiducial idea that this ar-
ticle considers is the so-called generalized fiducial inference.
Some early ideas were developed by Hannig, Iyer, and Patter-
son (2006), and later Hannig (2009) used these ideas to for-
mally define a generalized fiducial distribution. A brief descrip-
tion of generalized fiducial inference is given below. The word
“fiducial” often brings up disagreements about foundations of
statistics. To keep the article focused, we choose not to discuss
philosophical issues in detail. We only remark that our outlook
is purely frequentist; we view generalized fiducial inference as a
tool for proposing statistical procedures that then are evaluated
on their own merits. Due to the particular structure of our model,
this article also brings a contribution to the objective Bayesian
model selection discussion. We discuss this issue in detail at the
end of Appendix A.

The rest of this article is organized as follows. Section 2 pro-
vides some background material on generalized fiducial infer-
ence, and applies the methodology to the ultrahigh-dimensional
regression problem. The theoretical properties of the proposed
solution are examined in Section 3, while its empirical prop-
erties are illustrated in Section 4. Finally, concluding remarks
are offered in Section 5 and technical details are delayed to the
Appendices.

2. METHODOLOGY

Generalized fiducial inference begins with expressing the re-
lationship between the data Y and the parameters θ as

Y = G(U, θ ), (1)

where G(·, ·) is sometimes known as the structural equation,
and U is the random component of the relation whose distribu-
tion is completely known, for example, a vector of iid U(0,1)’s.

Recall that in the definition of the celebrated maximum like-
lihood estimator, Fisher “switched” the roles of Y and θ : the
random Y is treated as fixed in the likelihood function, while
the deterministic θ is treated as variable. Through (1), general-
ized fiducial inference uses this “switching principle” to define
a valid probability distribution on θ .

This switching principle proceeds as follows. For the moment
suppose for any given realization y of y, the inverse

θ = G̃
−1

( y, u) (2)

always exists for any realization u of U . Since the distribution of
U is assumed known, one can always generate a random sample
ũ1, ũ2, . . ., and via (2) a random sample of θ can be obtained
by θ̃1 = G̃

−1
( y, ũ1), θ̃2 = G̃

−1
( y, ũ2), . . . This is called a fidu-

cial sample of θ , which can be used to calculate estimates and
construct confidence intervals for θ in a similar fashion as with
a bootstrap sample, the CD-random variable described in Xie
and Singh (2013). This process is also similar to obtaining cred-
ible sets from a Bayesian posterior sample. Through the above
switching and the inverse operations, one can see that a den-
sity function r(θ) for θ is implicitly defined. We term r(θ) the
generalized fiducial density for θ , and the corresponding distri-
bution the generalized fiducial distribution for θ . An illustrative
example of applying this idea to simple linear regression can
be found in Hannig and Lee (2009), and a formal mathematical
definition of generalized fiducial inference is described in detail
in Hannig (2009). The latter work also provides strategies to
ensure the existence of the inverse (2).

Observe that for the ultrahigh-dimensional regression prob-
lem that this article considers, θ can be decomposed into three
components: θ = {M,σ,βM}, where M denotes a candidate
model and can be seen as a sequence of p binary variables in-
dicating which predictors have nonzero coefficients, σ is the
noise standard deviation, and βM is the parameter values of the
nonzero coefficients predictors. In the next section, we derive
the generalized fiducial density r(M) for M, and then we will
demonstrate how to generate a fiducial sample {M̃, σ̃ , β̃} using
r(M).

2.1 Generalized Fiducial Density
for Ultrahigh-Dimensional Regression

While the above formal definition of generalized fiducial in-
ference is conceptually simple and very general, it may not be
easily applicable in some practical situations. When the model
dimension is known, Hannig (2013) derived a workable for-
mula for r(θ) for many practical situations. Assume that the
parameter θ ∈ � ⊂ Rm is m-dimensional and that the inverse
G−1( y, θ ) = u to (1) exists. This assumption is satisfied for
many natural structural equations, provided that y and u have
the same dimension and G is smooth. Note that this inverse is
different from the inverse G̃

−1
in (2). Then under some differ-

entiability assumptions, Hannig (2013) showed that the gener-
alized fiducial distribution is absolutely continuous with density

r(θ) = f ( y, θ )J ( y, θ )∫
�

f ( y, θ ′)J ( y, θ ′) dθ ′ , (3)
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where

J ( y, θ ) =
∑

i = (i1, . . . , im)

1 ≤ i1 < · · · < im ≤ n

∣∣∣∣∣det

[{
d

d y
G−1( y, θ )

}−1

× d

d
(
θ , y�

i

)G−1( y, θ )

]∣∣∣∣∣ . (4)

In the above, f ( y, θ ) is the likelihood and the sum goes over all
m-tuples of indices i = (1 ≤ i1 < · · · < im ≤ n) ⊂ {1, . . . , n}.
Also, for each i , we denoted the list of unused indices by
i� = {1, . . . , n} \ i , the collection of variables indexed by i by
yi = (yi1 , . . . , yim ), and its complement by y�

i = (yi : i ∈ i�).
The formula d

d(θ , y�
i )

G−1( y, θ ) stood for the Jacobian matrix

computed with respect to all parameters θ and the observa-
tions yi� . Similarly d

d y G−1( y, θ ) stood for the Jacobian matrix
computed with respect to the observations y.

Recall that the formula (3) was derived for situations where
the model dimension is known, and hence it cannot be directly
applied to the current problem. When model selection is re-
quired, Hannig and Lee (2009) proposed adding extra penalty
structural equations to (3). This is similar to adding a penalty
term to the likelihood function to account for model complexity.
In particular, their derivation shows that the fiducial probability
of each candidate model M is proportional to

r(M) ∝
∫

�

fM ( y, θ )JM ( y, θ ) dθ e−q(M), (5)

where fM ( y, θ ) is the likelihood, JM ( y, θ ) is the Jacobian (4),
and q(M) is the penalty associated with the model M. In the con-
text of wavelet regression, they recommended using the mini-
mum description length (MDL) principle (Rissanen 1989, 2007)
to derive the penalty q(M), which is shown to possess attractive
theoretical and empirical properties.

Given the success of Hannig and Lee (2009), we also at-
tempted to use the MDL principle to derive a penalty q(M)
for the current problem, which gives q(M) = 0.5|M| log n with
|M| being the number of nonzero parameters in M. However,
this form of q(M) fails here, as the classical MDL principle was
not designed to handle ultrahigh-dimensional problems. In what
follows, we denote the size of the full model by p and the num-
ber of nonzero coefficients of the true model by d. Typically,
p � n � d. We will also sometimes use m = |M| to denote
the dimension of a candidate model.

In Appendix A, we rederive the penalized fiducial distribution
in the present ultrahigh-dimensional setup. Denote the residual
sum of squares of M as RSSM , when the corresponding β is
estimated with maximum likelihood. It is shown in Appendix
A that the fiducial probability for model M of dimension m =
|M| < n is

r(M) ∝ �

(
n − |M|

2

)
(πRSSM )−

n−|M|−1
2 n− |M|+1

2

(
p

|M|
)−γ

. (6)

In particular, the penalty used is

q(M) = |M|
2

log n + loge1/γ

(
p

|M|
)

, (7)

where γ is a tuning parameter. The most natural choice is γ = 1
but we allow other choices. In all our numerical work, we use
γ = 1. We note that the second term of (7) is similar to the
extended BIC (EBIC) penalty of Chen and Chen (2008). In
sequel we write r(M) as rγ (M).

2.2 Practical Generation of Fiducial Sample

In this section, we propose a practical procedure for gen-
erating a fiducial sample {M̃, σ̃ , β̃} using (6). First note that
even for a moderate p, the total number of models 2p is huge
and hence any method that is exhaustive in nature is computa-
tionally not feasible. Moreover, the current generalized fiducial
paradigm can only assign meaningful probabilities to models of
dimension smaller than sample size. Bigger models can usually
fit the data perfectly, which means that the penalized fiducial
distribution will differ only due to the penalty term.

The proposed procedure therefore begins with constructing
a class of candidate models, denoted as M′. This M′ should
satisfy the following two properties: the number of models in
M′ is small and it contains the true model and models that
have nonnegligible values of rγ (M). To construct M′, we first
apply the SIS procedure of Fan and Lv (2008) to reduce the
number of predictors from p to p′, where p′ is of order O(n). To
further reduce the number of possible models (which is 2p′

), we
apply LASSO to those p′ predictors that survived SIS, and take
all those models that lie on the LASSO solution path as M′.
Note that the LASSO solution path can be quickly obtained
via the least angle regression method (Efron et al. 2004), and
that constructing M′ in this way will ensure the true model is
captured in M′ with high probability (Fan and Lv 2008).

Once M′ is obtained, for each M ∈ M′, calculate

Rγ (M) = �

(
n − |M|

2

)
(πRSSM )−

n−|M|−1
2 n− |M|+1

2

(
p

|M|
)−γ

,

and approximate the generalized fiducial probability (6) by

r̂γ (M) = Rγ (M)/
∑

M ′∈M′
Rγ (M ′), for M ∈ M′. (8)

Next for σ and βM . For any given M, it is straightforward to
show that the generalized fiducial distribution of σ conditional
on M is

RSSM/σ 2 ∼ χ2(n − |M|) (9)

and that of βM conditional on M and σ is

βM ∼ N
(
βML

M , σ 2
(
XT

M XM

)−1)
, (10)

where βML
M is the maximum likelihood estimate of βM for model

M, and XM is the design matrix for model M.
Thus to generate {M̃, σ̃ , β̃}, we first draw a model M̃ ∈ M′

from (8), then σ̃ from (9) given M̃ , and finally, β̃ from (10)
given {M̃, σ̃ }.
2.3 Point Estimates and Confidence Intervals

Applying the above procedure repeatedly, one can obtain
multiple copies of {M̃, σ̃ , β̃} that form a fiducial sample for
{M,σ,βM}. This fiducial sample can be used to form estimates
and confidence intervals for σ in a similar manner as with a
Bayesian posterior sample. For example, the average of all σ̃ ’s
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can be used as an estimate of σ , while the 2.5% smallest and
2.5% largest σ̃ values can be used, respectively, as the lower
and upper limits for a 95% confidence interval for σ .

Obtaining estimates and confidence intervals for β is, how-
ever, less straightforward. It is because for any βj , it is possible
that it is included in some but not all M̃’s. In other words, some
of the generated fiducial values for βj are zeros, some are not.

We use the following simple procedure to deal with this issue.
For each βj , we count the percentage of zero fiducial sample
values. If it is more than 50%, we declare that the value of
this particular βj is zero. Otherwise, we treat βj as a nonzero
parameter, and use all the nonzero fiducial sample values to
obtain estimates and confidence intervals for it, in the same way
as for σ . Although a similar idea has been used by Barbieri
and Berger (2004) to determine the significance of a parameter
in the Bayesian context, we note that constructing confidence
intervals for βj ’s in this manner may not lead to precise results.

3. THEORETICAL PROPERTIES

This section investigates the theoretical properties of the
above-proposed generalized fiducial-based method, under the
situation that p is diverging and the size of true model is either
fixed or diverging. For similar results in the classical situations
where p is fixed, see Hannig (2009, 2013).

First, some notations. Let M be any model, M0 be the true
model, and HM be the projection matrix of XM , that is, HM =
XM (XT

M XM )−1 XT
M . Define

	M = ||μ − HMμ||2,
where μ = E(Y ) = XM0βM0

. Throughout this section, we as-
sume the following identifiability condition holds:

lim
n→∞ min

{
	M

|M0| log p
: M0 �⊂ M, |M| ≤ k|M0|

}
= ∞(11)

for some fixed k > 1. This condition ensures that the true model
is identifiable and has been used, for example, by Luo and Chen
(2013). Condition (11) is closely related to the sparse Riesz
condition (Zhang and Huang 2008). The sparse Riesz condition
states that the eigenvalues of XT

MXM/n are bounded away from
0 and ∞ uniformly for all models, that is,

0 < c1 < λmin

(
1

n
XT

MXM

)

≤ λmax

(
1

n
XT

MXM

)
< c2 < ∞, for all M ∈ M, (12)

where c1, c2 are constants, λmin and λmin are the smallest and
largest eigenvalues, respectively, and M, the class of candidate
models, is defined in next paragraph. It can be shown that,
under the sparse Riesz condition (12) and the minimum signal
condition √

n

|M0| log p
min

{|βj |; j ∈ M0
} → ∞, (13)

the identifiability condition (11) holds. However, the converse
does not hold in general.

Let M be the collection of models such that M =
{M : |M| ≤ k|M0|} for some fixed k. The restriction |M| ≤
k|M0| is imposed because in practice we only consider models
with size comparable with the true model.

If p is large, the size of M could still be too large in practice.
In this situation, we could use a variable screening procedure to
reduce the size. This variable screening procedure should result
in a class of candidate models M′, which satisfies

P (M0 ∈ M′) → 1 and log(m′
j ) = o(j log n), (14)

where M′
j contains all models in M′ that are of size j, and

m′
j is the number of models in M′

j . The first condition in (14)
guarantees the model class contains the true model, at least
asymptotically. The second condition in (14) ensures that the
size of the model class is not too large. These two conditions
are satisfied by the practical algorithm presented in Section 2.2.

In Appendix B, the following theorem is established.

Theorem 3.1. Under (11), as n → ∞, p → ∞, |M0| log(p)
= o(n), log(|M0|)/ log(p) → δ, and log(n)/ log(p) → η, then
there exists γ > 1+δ

1−δ
− 3η

2(1−δ) such that

max
M �=M0,M∈M

rγ (M)/rγ (M0) = max
M �=M0,M∈M

Rγ (M)

/Rγ (M0)
P→ 0. (15)

Furthermore, if (14) holds, with the same γ ,

r̂γ (M) = Rγ (M0)/
∑

M∈M′
Rγ (M)

P→ 1. (16)

Equation (15) states that the true model has the highest gen-
eralized fiducial probability among all the models in M. How-
ever, it does not imply Equation (16) in general because the
class of candidate models can be very large. If we constrain
the class of models being considered in such a way that (14)
holds, then Equation (16) states that, with probability tending
to 1, the true model will be selected. If γ = 1, as in our simu-
lation study, Theorem 3.1 provides a relationship between the
rates of growth for d = |M0|, n, and p. From Theorem 3.1 and
Bernstein–von Mises theorem for generalized fiducial distribu-
tion (Hannig 2009; Sonderegger and Hannig 2014), one can
conclude the following important corollary.

Corollary 3.1. One sided and equal tailed confidence inter-
vals constructed using the generalized fiducial density (6) will
have correct asymptotic coverage. Consequently, the general-
ized fiducial distribution and derived point estimators are con-
sistent.

Remark 3.1. Theorem 3.1 and its corollary show that statisti-
cal inference based on (6) will have correct asymptotic frequen-
tist property under the assumptions of Theorem 3.1 and condi-
tions (14). Particularly, it is mentioned that conditions (14) are
satisfied by the practical algorithm presented in Section 2.2. The
rest of this remark discusses these conditions in more details and
comment on their impacts to the practical situations. To begin
with, recall there are two steps to construct the class of candidate
models. The first step is to apply the SIS procedure of Fan and
Lv (2008). This SIS procedure only selects predictors with high
marginal correlations with the response variable and reduces
the number of predictors to the order p′ = O(n). We used M to
denote the class of all possible models after applying SIS (and
there are 2p′

models in M). Under fairly weak assumptions, Fan
and Lv (2008) (Theorem 1) showed the probability that the true
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Table 1. Bias of the various estimates of σ 2

(n, p, d) = (n, p, d) = (n, p, d) =
(200, 2000, 3) (300, 8000, 5) (500, 50,000, 8)

b = 1/
√

d Proposed −0.180 (0.323) −0.166 (0.271) 0.230 (0.219)
ρ = 0 RCV 1.507 (0.488) −16.749 (0.330) −27.287 (0.221)

Oracle −0.018 (0.317) −0.115 (0.263) −0.031 (0.200)
b = 2/

√
d Proposed −0.511 (0.327) −0.455 (0.259) −0.089 (0.202)

ρ = 0 RCV −0.297 (0.465) −7.932 (0.353) −13.909 (0.255)
Oracle −0.383 (0.321) −0.474 (0.260) −0.151 (0.200)

b = 3/
√

d Proposed −0.457 (0.332) −0.112 (0.256) 0.103 (0.203)
ρ = 0 RCV −0.495 (0.451) −4.303 (0.362) −7.245 (0.286)

Oracle −0.316 (0.328) −0.283 (0.254) −0.021 (0.201)
b = 1/

√
d Proposed 0.352 (0.335) 0.271 (0.285) 1.046 (0.227)

ρ = 0.5 RCV 0.455 (0.467) −10.333 (0.334) −17.287 (0.247)
Oracle 0.367 (0.329) −0.548 (0.258) −0.406 (0.205)

b = 2/
√

d Proposed −0.505 (0.328) −0.092 (0.263) −0.302 (0.199)
ρ = 0.5 RCV −0.533 (0.442) −3.046 (0.357) −6.73 (0.257)

Oracle −0.103 (0.325) −0.160 (0.261) −0.483 (0.198)
b = 3/

√
d Proposed −1.585 (0.304) 0.135 (0.259) −0.080 (0.198)

ρ = 0.5 RCV −1.404 (0.430) −2.275 (0.342) −3.279 (0.274)
Oracle −1.251 (0.302) −0.188 (0.258) −0.355 (0.197)

NOTES: Numbers in parentheses are standard errors. All numbers are multiplied by 100.

model will be in M is

P (M0 ∈ M) = 1 − O[exp{−Cn1−2κ}/ log n], (17)

where C > 0 and κ is a constant depending on a minimum signal
condition similar to condition (13).

The second step is to apply LASSO on the p′ remained pre-
dictors onM and construct the model classM′ from the models
that lie on the LASSO solution path. From this, it is easily seen
that the second condition of (14) is satisfied and it remains to
verify the validity of the first condition. Theoretical properties
of LASSO have been well studied in the literature (e.g., Mein-
shausen and Buhlmann 2006; Zhao and Yu 2006; Huang, Ma,
and Zhang 2008; Zhang and Huang 2008). In Zhao and Yu
(2006), the authors defined the notion of irrepresentable con-
dition, an important requirement of the relevant and irrelevant
predictors for the consistency of LASSO. Under this condition
together with some other weak assumptions, the authors showed
that LASSO is model selection consistent. For our purpose, we
only need a weaker result of their Theorem 4, namely,

P (M0 ∈ M′|M0 ∈ M) ≥ 1 − o
(
e−nc)

, (18)

where c > 0 is again a constant depending on a minimum signal
condition similar to condition (13). And (18) is sufficient for
our purpose because we only require the true model lies in
the LASSO solution path but not necessarily to be selected by
LASSO procedure.

Combining the results of (17) and (18), it is sufficient to
conclude the validity of the first condition of (14). Moreover, the
probability that the true model would be in the set of candidate
models goes to 1 exponentially fast. It suggests that irrelevant
models (i.e., models that do not contain the true model) would
only affect the fiducial probability function in an exponentially
small size. This observation helps to fill the gap between the

asymptotic theory and the practical performance of our purposed
methodology.

Remark 3.2. One of the accepted techniques to address the
issue of inference after model selection is model averaging (e.g.,
Dong 2007). Our method could be viewed as a new proposal for
frequentist model averaging.

As a first step, our method uses SIS-LASSO screening to
select a set of candidate models. As shown above, this step will
not have a big impact on the inference. Indeed Shen, Huang,
and Ye (2004) stated:

It is worth noticing that inference after model selection may
be less problematic for certain model selection routines. For
instance, LASSO (Tibshirani 1996) and SCAD (Fan and Li
2001; Fan and Peng 2004) only need to take into account
modeling bias for an estimated tuning parameter, whose mod-
eling variability is expected to be less than that of selecting
variables via CV.

Since we do not select a single value of the tuning param-
eter, but instead are using model averaging over the models
associated with a range of tuning parameters, we argue that the
uncertainty due to model selection is considered. Our simulation
study results support this assertion.

Remark 3.3. When comparing to Leeb and Pötscher (2008),
our theoretical results are addressing a simpler problem of a
pointwise asymptotic. Investigation of uniform asymptotics, like
in Pötscher and Leeb (2009) who showed that the LASSO and
SCAD estimates are uniformly consistent at a rate different
from n1/2, for the fiducial model averaged confidence sets is an
interesting direction for future work.
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Table 2. Empirical coverage rates for various confidence intervals for σ 2

90% 95% 99%

b = 1/
√

3 Proposed 0.895 (0.338) 0.949 (0.405) 0.985 (0.537)
ρ = 0 Oracle 0.896 (0.336) 0.948 (0.402) 0.985 (0.534)
b = 2/

√
3 Proposed 0.892 (0.337) 0.937 (0.404) 0.987 (0.535)

ρ = 0 Oracle 0.892 (0.335) 0.941 (0.401) 0.988 (0.532)
b = 3/

√
3 Proposed 0.884 (0.338) 0.941 (0.404) 0.986 (0.536)

(n, p, d) = (200, 2000, 3) ρ = 0 Oracle 0.886 (0.335) 0.943 (0.401) 0.986 (0.533)
b = 1/

√
3 Proposed 0.895 (0.344) 0.945 (0.412) 0.988 (0.547)

ρ = 0.5 Oracle 0.896 (0.338) 0.946 (0.404) 0.988 (0.536)
b = 2/

√
3 Proposed 0.889 (0.339) 0.939 (0.405) 0.991 (0.538)

ρ = 0.5 Oracle 0.891 (0.336) 0.94 (0.402) 0.991 (0.534)
b = 3/

√
3 Proposed 0.906 (0.335) 0.955 (0.401) 0.993 (0.532)

ρ = 0.5 Oracle 0.908 (0.332) 0.957 (0.397) 0.992 (0.528)
b = 1/

√
5 Proposed 0.891 (0.277) 0.948 (0.331) 0.985 (0.438)

ρ = 0 Oracle 0.898 (0.273) 0.948 (0.326) 0.987 (0.432)
b = 2/

√
5 Proposed 0.909 (0.275) 0.951 (0.328) 0.987 (0.434)

ρ = 0 Oracle 0.904 (0.272) 0.95 (0.325) 0.985 (0.43)
b = 3/

√
5 Proposed 0.913 (0.274) 0.953 (0.328) 0.993 (0.433)

(n, p, d) = (300, 8000, 5) ρ = 0 Oracle 0.907 (0.273) 0.955 (0.326) 0.993 (0.431)
b = 1/

√
5 Proposed 0.887 (0.286) 0.936 (0.342) 0.984 (0.453)

ρ = 0.5 Oracle 0.898 (0.272) 0.948 (0.325) 0.992 (0.43)
b = 2/

√
5 Proposed 0.894 (0.275) 0.947 (0.328) 0.99 (0.434)

ρ = 0.5 Oracle 0.893 (0.273) 0.946 (0.326) 0.992 (0.432)
b = 3/

√
5 Proposed 0.906 (0.274) 0.954 (0.328) 0.99 (0.433)

ρ = 0.5 Oracle 0.906 (0.273) 0.952 (0.326) 0.99 (0.432)
b = 1/

√
8 Proposed 0.88 (0.215) 0.939 (0.257) 0.989 (0.339)

ρ = 0 Oracle 0.909 (0.211) 0.952 (0.252) 0.99 (0.332)
b = 2/

√
8 Proposed 0.898 (0.212) 0.942 (0.253) 0.991 (0.333)

ρ = 0 Oracle 0.899 (0.211) 0.942 (0.251) 0.991 (0.332)
b = 3/

√
8 Proposed 0.901 (0.212) 0.952 (0.253) 0.991 (0.333)

ρ = 0 Oracle 0.9 (0.211) 0.953 (0.252) 0.992 (0.332)
(n, p, d) = (500, 50000, 8) b = 1/

√
8 Proposed 0.865 (0.224) 0.935 (0.267) 0.985 (0.352)

ρ = 0.5 Oracle 0.9 (0.21) 0.94 (0.251) 0.99 (0.331)
b = 2/

√
8 Proposed 0.895 (0.211) 0.95 (0.252) 0.993 (0.332)

ρ = 0.5 Oracle 0.895 (0.21) 0.949 (0.251) 0.992 (0.331)
b = 3/

√
8 Proposed 0.905 (0.211) 0.947 (0.251) 0.989 (0.331)

ρ = 0.5 Oracle 0.903 (0.21) 0.945 (0.251) 0.99 (0.331)

NOTE: Numbers in parentheses are averaged widths of the confidence intervals.

4. FINITE SAMPLE PROPERTIES

4.1 Simulations

A simulation study was conducted to evaluate the practical
performance of the proposed procedure. The following model
from Fan, Guo, and Hao (2012) was used to generate the noisy
data

Y = b(X1 + · · · + Xd ) + ε,

where ε is iid standard normal error, d is the number of pre-
dictors with nonzero coefficients, and the value b controls the
signal-to-noise ratio. All the covariates are standard normal
variables with correlation cor(Xi,Xj ) = ρ|i−j |. Three combi-
nations of (n, p, d) were used: (200, 2000, 3), (300, 8000, 5),
and (500, 50,000, 8). For each of these three combinations, three
choices of b and two choices of ρ were used: b = 1/

√
d, 2/

√
d,

and 3/
√

d, and ρ = 0 and 0.5. Therefore, a total of 3 × 3 × 2 =
18 experimental configurations were considered. The number of

repetitions for each experimental configuration was 1000. For
ρ = 0, the cases b = 1/

√
d, 2/

√
d, and 3/

√
d correspond to the

cases when the signal-to-noise ratios are 1, 2, and 3, respectively.
For each generated dataset, we applied the proposed gener-

alized fiducial procedure described in Section 2.2 to obtain a
fiducial sample of size 10,000 for {M,σ,β}, and from this we
computed the generalized fiducial estimate for σ 2. We also ob-
tained two other estimates for σ 2: the first one from the refitted
cross-validation (RCV) method of Fan, Guo, and Hao (2012),
while the second one is the classical maximum likelihood esti-
mate for σ 2 obtained from the true model. Of course, the last
estimate cannot be obtained in practice, but it is computed here
for benchmark comparisons. In consequence, it is termed as
the oracle estimate. Also, for RCV, the particular version we
compared with is RCV-LASSO.

The bias of these three estimates for σ 2 is summarized in
Table 1. From this table, one can see that the bias of the fiducial
estimates is usually not much larger than the bias from the
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Table 3. Empirical coverage rates for the confidence intervals for β1

90% 95% 99%

b = 1/
√

3 Proposed 0.888 (0.236) 0.946 (0.283) 0.987 (0.377)
ρ = 0 RCV 0.869 (0.250) 0.915 (0.298) 0.956 (0.392)

Oracle 0.897 (0.235) 0.946 (0.279) 0.988 (0.367)
b = 2/

√
3 Proposed 0.884 (0.235) 0.948 (0.282) 0.991 (0.376)

ρ = 0 RCV 0.887 (0.238) 0.945 (0.284) 0.988 (0.373)
Oracle 0.889 (0.234) 0.946 (0.279) 0.990 (0.367)

b = 3/
√

3 Proposed 0.892 (0.236) 0.947 (0.282) 0.987 (0.376)
ρ = 0 RCV 0.896 (0.238) 0.95 (0.284) 0.99 (0.373)

(n, p, d) = (200, 2000, 3) Oracle 0.897 (0.234) 0.952 (0.279) 0.987 (0.367)
b = 1/

√
3 Proposed 0.886 (0.282) 0.936 (0.338) 0.985 (0.454)

ρ = 0.5 RCV 0.814 (0.289) 0.849 (0.345) 0.902 (0.453)
Oracle 0.894 (0.271) 0.943 (0.323) 0.988 (0.424)

b = 2/
√

3 Proposed 0.898 (0.271) 0.944 (0.325) 0.987 (0.433)
ρ = 0.5 RCV 0.903 (0.274) 0.945 (0.326) 0.988 (0.429)

Oracle 0.894 (0.270) 0.949 (0.322) 0.986 (0.423)
b = 3/

√
3 Proposed 0.901 (0.269) 0.948 (0.322) 0.989 (0.429)

ρ = 0.5 RCV 0.899 (0.271) 0.953 (0.323) 0.988 (0.424)
Oracle 0.897 (0.269) 0.955 (0.321) 0.99 (0.422)

b = 1/
√

5 Proposed 0.810 (0.191) 0.896 (0.229) 0.976 (0.303)
ρ = 0 RCV 0.903 (0.204) 0.935 (0.243) 0.956 (0.320)

Oracle 0.900 (0.192) 0.948 (0.229) 0.992 (0.301)
b = 2/

√
5 Proposed 0.871 (0.189) 0.936 (0.226) 0.984 (0.300)

ρ = 0 RCV 0.897 (0.201) 0.936 (0.239) 0.981 (0.315)
Oracle 0.907 (0.191) 0.959 (0.228) 0.989 (0.300)

b = 3/
√

5 Proposed 0.888 (0.19) 0.934 (0.227) 0.984 (0.301)
ρ = 0 RCV 0.900 (0.197) 0.945 (0.235) 0.979 (0.309)

(n, p, d) = (300, 8000, 5) Oracle 0.879 (0.192) 0.941 (0.228) 0.991 (0.300)
b = 1/

√
5 Proposed 0.812 (0.269) 0.887 (0.322) 0.963 (0.427)

ρ = 0.5 RCV 0.871 (0.236) 0.915 (0.281) 0.960 (0.369)
Oracle 0.912 (0.221) 0.954 (0.264) 0.992 (0.346)

b = 2/
√

5 Proposed 0.895 (0.250) 0.949 (0.299) 0.989 (0.396)
ρ = 0.5 RCV 0.864 (0.224) 0.922 (0.266) 0.975 (0.350)

Oracle 0.891 (0.222) 0.950 (0.264) 0.991 (0.347)
b = 3/

√
5 Proposed 0.908 (0.250) 0.950 (0.299) 0.990 (0.397)

ρ = 0.5 RCV 0.852 (0.220) 0.917 (0.262) 0.975 (0.344)
Oracle 0.904 (0.222) 0.949 (0.264) 0.983 (0.347)

b = 1/
√

8 Proposed 0.781 (0.148) 0.875 (0.177) 0.978 (0.233)
ρ = 0 RCV 0.813 (0.151) 0.857 (0.180) 0.884 (0.237)

Oracle 0.910 (0.149) 0.954 (0.177) 0.993 (0.233)
b = 2/

√
8 Proposed 0.853 (0.147) 0.919 (0.176) 0.980 (0.232)

ρ = 0 RCV 0.804 (0.156) 0.878 (0.186) 0.965 (0.244)
Oracle 0.902 (0.148) 0.947 (0.177) 0.988 (0.232)

b = 3/
√

8 Proposed 0.873 (0.147) 0.925 (0.176) 0.986 (0.232)
ρ = 0 RCV 0.841 (0.155) 0.911 (0.184) 0.981 (0.242)

(n, p, d) = (500, 50,000, 8) Oracle 0.897 (0.149) 0.944 (0.177) 0.988 (0.233)
b = 1/

√
8 Proposed 0.820 (0.206) 0.885 (0.246) 0.950 (0.324)

ρ = 0.5 RCV 0.895 (0.179) 0.935 (0.213) 0.965 (0.280)
Oracle 0.925 (0.172) 0.965 (0.204) 0.995 (0.269)

b = 2/
√

8 Proposed 0.897 (0.193) 0.949 (0.230) 0.988 (0.304)
ρ = 0.5 RCV 0.861 (0.169) 0.922 (0.202) 0.976 (0.265)

Oracle 0.893 (0.171) 0.944 (0.204) 0.989 (0.268)
b = 3/

√
8 Proposed 0.888 (0.193) 0.945 (0.230) 0.989 (0.304)

ρ = 0.5 RCV 0.840 (0.168) 0.909 (0.201) 0.968 (0.264)
Oracle 0.899 (0.171) 0.942 (0.204) 0.987 (0.268)

NOTE: The numbers in the parentheses are the averaged widths of the corresponding confidence intervals.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 N

or
th

 C
ar

ol
in

a 
- 

C
ha

pe
l H

ill
] 

at
 1

0:
59

 0
7 

Ju
ly

 2
01

5 



Lai, Hannig, and Lee: Generalized Fiducial Inference for Ultrahigh-Dimensional Regression 767

Table 4. Empirical coverage rates for the confidence intervals for E(Yi |xi)

90% 95% 99%

b = 1/
√

3 Proposed 0.899 (0.421) 0.948 (0.511) 0.988 (0.696)
ρ = 0 RCV 0.966 (1.160) 0.981 (1.382) 0.993 (1.817)

Oracle 0.896 (0.343) 0.947 (0.409) 0.989 (0.538)
b = 2/

√
3 Proposed 0.903 (0.424) 0.953 (0.516) 0.990 (0.704)

ρ = 0 RCV 0.857 (0.603) 0.910 (0.718) 0.966 (0.944)
Oracle 0.888 (0.342) 0.944 (0.408) 0.988 (0.536)

b = 3/
√

3 Proposed 0.911 (0.428) 0.956 (0.519) 0.991 (0.709)
ρ = 0 RCV 0.931 (0.605) 0.965 (0.720) 0.992 (0.947)

(n, p, d) = (200, 2000, 3) Oracle 0.897 (0.343) 0.947 (0.409) 0.987 (0.537)
b = 1/

√
3 Proposed 0.903 (0.452) 0.948 (0.549) 0.987 (0.748)

ρ = 0.5 RCV 0.925 (1.281) 0.943 (1.526) 0.964 (2.005)
Oracle 0.892 (0.344) 0.944 (0.410) 0.987 (0.538)

b = 2/
√

3 Proposed 0.910 (0.444) 0.955 (0.538) 0.990 (0.733)
ρ = 0.5 RCV 0.855 (0.583) 0.907 (0.695) 0.963 (0.914)

Oracle 0.896 (0.343) 0.948 (0.408) 0.988 (0.536)
b = 3/

√
3 Proposed 0.913 (0.438) 0.959 (0.532) 0.993 (0.725)

ρ = 0.5 RCV 0.925 (0.492) 0.961 (0.587) 0.993 (0.771)
Oracle 0.899 (0.342) 0.947 (0.408) 0.989 (0.536)

b = 1/
√

5 Proposed 0.888 (0.444) 0.938 (0.536) 0.981 (0.725)
ρ = 0 RCV 0.951 (1.864) 0.973 (2.221) 0.99 (2.919)

Oracle 0.898 (0.388) 0.950 (0.462) 0.990 (0.607)
b = 2/

√
5 Proposed 0.909 (0.439) 0.956 (0.531) 0.992 (0.724)

ρ = 0 RCV 0.949 (1.291) 0.977 (1.538) 0.995 (2.022)
Oracle 0.900 (0.386) 0.949 (0.46) 0.990 (0.605)

b = 3/
√

5 Proposed 0.909 (0.429) 0.957 (0.519) 0.992 (0.708)
ρ = 0 RCV 0.942 (0.915) 0.973 (1.090) 0.995 (1.432)

(n, p, d) = (300, 8000, 5) Oracle 0.897 (0.387) 0.948 (0.461) 0.990 (0.606)
b = 1/

√
5 Proposed 0.871 (0.496) 0.925 (0.602) 0.975 (0.820)

ρ = 0.5 RCV 0.953 (1.641) 0.978 (1.956) 0.996 (2.570)
Oracle 0.898 (0.387) 0.947 (0.461) 0.988 (0.606)

b = 2/
√

5 Proposed 0.914 (0.437) 0.962 (0.531) 0.994 (0.728)
ρ = 0.5 RCV 0.947 (0.741) 0.977 (0.883) 0.996 (1.160)

Oracle 0.901 (0.387) 0.954 (0.461) 0.991 (0.606)
b = 3/

√
5 Proposed 0.914 (0.422) 0.960 (0.512) 0.993 (0.701)

ρ = 0.5 RCV 0.914 (0.431) 0.958 (0.514) 0.992 (0.676)
Oracle 0.900 (0.388) 0.951 (0.462) 0.991 (0.607)

b = 1/
√

8 Proposed 0.841 (0.445) 0.896 (0.534) 0.951 (0.711)
ρ = 0 RCV 0.934 (1.889) 0.960 (2.251) 0.983 (2.958)

Oracle 0.902 (0.409) 0.953 (0.488) 0.991 (0.641)
b = 2/

√
8 Proposed 0.907 (0.435) 0.955 (0.522) 0.991 (0.697)

ρ = 0 RCV 0.951 (1.573) 0.980 (1.874) 0.997 (2.463)
Oracle 0.903 (0.409) 0.951 (0.487) 0.990 (0.640)

b = 3/
√

8 Proposed 0.900 (0.429) 0.951 (0.515) 0.990 (0.687)
ρ = 0 RCV 0.957 (1.187) 0.983 (1.415) 0.998 (1.860)

(n, p, d) = (500, 50,000, 8) Oracle 0.898 (0.409) 0.949 (0.488) 0.989 (0.641)
b = 1/

√
8 Proposed 0.829 (0.501) 0.892 (0.601) 0.958 (0.803)

ρ = 0.5 RCV 0.945 (1.713) 0.978 (2.041) 0.996 (2.682)
Oracle 0.905 (0.408) 0.951 (0.486) 0.992 (0.639)

b = 2/
√

8 Proposed 0.907 (0.430) 0.956 (0.517) 0.993 (0.693)
ρ = 0.5 RCV 0.951 (0.708) 0.979 (0.844) 0.997 (1.109)

Oracle 0.900 (0.408) 0.951 (0.487) 0.992 (0.640)
b = 3/

√
8 Proposed 0.903 (0.421) 0.953 (0.505) 0.991 (0.675)

ρ = 0.5 RCV 0.900 (0.417) 0.949 (0.497) 0.990 (0.653)
Oracle 0.898 (0.409) 0.949 (0.487) 0.990 (0.640)

NOTE: The numbers in the parentheses are the averaged widths of the corresponding confidence intervals.
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oracle estimates. The RCV estimates sometimes have very large
bias.

We also obtained two sets of 90%, 95%, and 99% confidence
intervals for σ 2 from each simulated dataset. The first set was
computed using the proposed generalized fiducial method, and
the second was calculated by applying classical theory to the true
model. Again, the last method cannot be used in practice, and is
used for benchmark comparisons, that is, the oracle method. The
empirical coverage rates of these confidence intervals are sum-
marized in Table 2. It can be seen that the generalized fiducial
confidence intervals are nearly as good as the oracle confidence
intervals.

Finally, for each simulated dataset we applied three methods
to compute the confidence intervals for the regression coef-
ficients βj ’s and the mean function E(Yi |xi) evaluated at 50
randomly selected design points xi’s. The three methods are the
proposed generalized fiducial method, the RCV method of Fan,
Guo, and Hao (2012), and the oracle method that uses the true
model. As before the empirical coverage rates of these confi-
dence intervals are calculated and they are reported in Tables
3 and 4. Note that only the confidence intervals for β1 are re-
ported, as the confidence intervals for other βj ’s have similar
coverage rates. Overall one can see that the generalized fiducial
method gave quite reliable results, except for a few experimental
settings where the confidence intervals were over-liberal.

In an attempt to produce a single summary statistic for com-
paring the empirical coverage rates of the confidence inter-
vals produced by different methods, the following calculation
has been done. For all the 90% generalized fiducial confi-
dence intervals for β1, we counted the number of times that
their empirical coverage rates are within the range (1 − α) ±
1.96

√
α(1 − α)/Nsim, where α = 0.10 and Nsim = 1000 is the

number of repetitions performed for each experimental setting.
Similar calculations were then performed for the 95% and 99%
(i.e., α = 0.05 and α = 0.01) confidence intervals. We observed
that for the proposed generalized fiducial method, out of the 54
empirical coverage rates, 33 of them are within their correspond-
ing target ranges. We have also done the same calculations for
the RCV and the oracle methods, and the numbers of their empir-
ical coverage rates that are inside their target ranges are, respec-
tively, 17 and 50. Finally, we repeated the same calculations for
the empirical coverage rates for E(Yi |xi), and the correspond-
ing numbers for the proposed, RCV, and oracle methods are,
respectively, 44, 23, and 54. Of course, these numbers are not
perfect for judging the relative merits of the different methods,
but they seem to suggest that the proposed generalized fiducial
method provides improvement over the RCV method.

4.2 Real Data Example: Housing Price Appreciation

This section analyzes a dataset that contains 119 months of
housing price appreciation (HPA) of the national house price
index (HPI) for 381 core-based statistical areas (CBSAs) in the
united states. Here, HPA is defined as the percentage of monthly
change in log-HPI for each of the 381 CBSAs. The goal of the
analysis is to predict future HPA values for these CBSAs using
existing data. This dataset was recorded from 1996 to 2005, and
has been studied, for example, by Fan, Guo, and Hao (2012).

Of course, house prices depend on geographical locations
and various macroeconomic factors. As argued by Fan, Guo,
and Hao (2012), effects from macroeconomic factors can be
well summarized by the national HPA. Let Xt,j be the HPA of
the jth CBSA in month t, and Xt,N be the national HPA of month
t. Then for any k = 1, . . . , 381, a reasonable model for a 1 year
ahead HPA prediction for the kth CBSA is

Xt,k =
381∑
j=1

β
(k)
j Xt−1,j + β

(k)
N Xt−1,N + εt−1,

where β
(k)
j ’s and β

(k)
N are model parameters and εt−1 is an in-

dependent random error. Given the national HPA Xt−1,N, it is
reasonable to assume that areas that are far away would have
minimal influence on the local house prices, therefore one can
assume the β

(k)
j ’s are sparse. Note that for any given k, we have

“p > n,” as p = 382 and n = 119.
For illustrative purposes, we apply the proposed generalized

fiducial procedure to the above model for one of the CBSAs:
San Francisco–San Mateo–Redwood. Two fitted models with
nonnegligible fiducial probabilities are returned: with probabil-
ity 0.335 the housing appreciation of this area depends on itself
and it is nearby CBSA San Jose–San Francisco–Oakland, while
with probability about 0.663, it depends only on the CBSA San
Jose–San Francisco–Oakland.

We also obtained estimate for the noise standard deviation σ ,
which can be interpreted as a measure of prediction accuracy
when forecasting the housing appreciation. Our point estimate
for σ is 0.56 with a 95% confidence as (0.48, 0.65). Our point
estimate agrees with those reported in Fan, Guo, and Hao (2012),
although no confidence intervals are reported there.

5. CONCLUSION

In this article, we studied the issue of uncertainty quantifi-
cation in the ultrahigh-dimensional regression problem. We ap-
plied the generalized fiducial inference methodology to develop
an inferential procedure for this problem. Our theoretical re-
sults show that estimates obtained by this procedure are consis-
tent, while confidence intervals constructed by this procedure
are asymptotically correct in the frequentist sense. Numerical
results from simulation experiments confirm with these theo-
retical findings. To the best of our knowledge, there are very
few published articles that are devoted to quantify uncertain-
ties in the ultrahigh-dimensional regression problem, and hence
the current article is one of the first to provide a systematic
treatment to this problem. It also opens the possibility for using
fiducial and related methods for conducting statistical inference
for other “large p small n” problems, such as classification and
covariance matrix estimation.

APPENDIX A: DERIVATION OF (6)

This appendix derives the generalized fiducial density (6). We first de-
rive a simplified version of the Jacobian (4). Then we derive the fiducial
density in our the ultrahigh-dimensional model obtaining penalty (7).
At the end of this appendix, we discuss relationship of our solution
with the objective Bayesian model selection.
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A.1 Derivation of a Simpler General Jacobian Formula

First observe that the term J ( y, θ ) in (4) can be further simplified.
The product of Jacobian matrices in each of the summands of (4)
simplifies to a matrix containing the m-columns of the n × d matrix
{ d

d y G−1( y, θ )}−1 d
dθ

G−1( y, θ ) and the n − m columns of the identity
matrix with columns i1, . . . , im removed. Thus, we have

J ( y, θ ) =
∑

i = (i1, . . . , im)
1 ≤ i1 < · · · < im ≤ n

∣∣∣∣∣det

[{
d

d y
G−1( y, θ )

}−1

× d
dθ

G−1( y, θ )

]
i

∣∣∣∣ ,
where for any n × m matrix A, the sub-matrix (A)i is the d × d matrix
containing the rows i1, . . . , im of A. Finally, using the implicit function
theorem we obtain our final expression

J ( y, θ) =
∑

i = (i1, . . . , im)
1 ≤ i1 < · · · < im ≤ n

∣∣∣∣∣det

[
d

dθ
G(u, θ)

∣∣∣∣
u=G−1( y,θ)

]
i

∣∣∣∣∣ . (A.1)

A.2 Rederivation of Penalized Fiducial Distribution

The most natural naive data-generating equation for this model is

y = G(M,βM, σ 2, Z) = XMβM + σ Z,

where y is the observations, M is the model considered (collection of
parameters that can be nonzero), XM is the design matrix for model M,
βM ∈ R|M| and σ > 0 are parameters, and Z is a vector of iid standard
normal random variables.

Hannig (2013) proposed to define a generalized fiducial distribution
using discretization. The proposal can be expressed as a weak limit, as
ε → 0, of the conditional distributions

arg min
M,βM,σ 2

‖ y − G(M,βM, σ 2, Z)‖∞ | { min
M,βM,σ 2

‖ y

− G(M,βM, σ 2, Z)‖∞ < ε},

where ‖ · ‖∞ is the l∞ norm.
Let the collection of models M′ under consideration satisfies that

for any two models M1 �= M2 ∈ M′, we have

P

(⋂
i=1,2

{ min
βMi

,σ 2
‖ y − G(Mi, βMi

, σ 2, Z)‖∞ < ε}
)

= o

(
max
i=1,2

P ( min
βMi

,σ 2
‖ y − G(Mi, βMi

, σ 2, Z)‖∞ < ε)

)
, ε → 0.

Then the marginal fiducial distribution for each model M ∈ M′ is
the limit, as ε → 0, of the conditional probabilities

r(M) = lim
ε→0

P (minβM,σ 2 ‖ y − G(M, βM, σ 2, Z)‖∞ < ε)∑
M ′∈M′ P (minβM′ ,σ 2 ‖ y − G(M ′,βM ′ , σ 2, Z)‖∞ < ε)

. (A.2)

Fix a model of size m = |M| < n − 1. Expression (A.1) can be
simplified as

JM ( y, θ ) = σ−2
∑

i = (i0, . . . , im+1)
1 ≤ i0 < · · · < im+1 ≤ n

∣∣det ( y, XM )i

∣∣ .

Consequently, following the calculations in the proof of Theorem 3.1
of Hannig (2013) we have

P ( min
βM,σ 2

‖ y − G(M,βM, σ 2, Z)‖∞ < ε)

= εn−m−1
∑

i = (i0, . . . , im+1)
1 ≤ i0 < · · · < im+1 ≤ n

∣∣det ( y, XM )i

∣∣� (n − m

2

)

× (πRSSM )−
n−m

2 | det
(
XT

M XM

) |− 1
2 + o(εn−m−1), (A.3)

where RSSM denotes the residual sum of squares of model M when the
parameters are estimated using maximum likelihood.

Equation (A.3) illuminates two major shortcomings of the naive
data-generating equation. First, all models that do not have the full
dimension have fiducial probability zero. Second, the formula for Ja-
cobian requires to compute a sum of

(
n

m+1

)
terms, which is very com-

putationally expensive.
Hannig and Lee (2009) proposed to solve the first issue by including

additional data-generating equations. However, their proposal is not
directly applicable to the ultrahigh-dimensional situation and needs to
be modified. Our data-generating equation will be selected to solve
both issues at the same time.

We propose to use the following modified data-generating equation
Ḡ(M,βM, σ 2, Z, B, P). The data part is

vM = [(
XT

M XM

)−1/2
XT

M y; (RSSM )1/2;
{

i − XM

(
XT

M XM

)−1
XT

M

}
y

/RSSM

]
,

where y = XMβM + σ Z. The additional data-generating equations are

bm = Bm, pk = Pk, k = 1, . . . , m,

where m = |M| is the dimension of M, Bm is a Bernoulli(1 − rm)
random variable that will be used to penalize for the number of models
that have the same size m; and Pk are iid continuous random variables
with fP (0) = q independent of Bm that will be used to penalize for
the size of models. Notice that the number of additional equation is
the same as the number of unknown parameters in the model. Since
we never actually observe the outcomes of the extra data-generating
equation, we will select their values as bm = pk = 0.

For this data-generating equation, the Jacobian (A.1) simplifies to

J̄M ( y, θ ) = σ−2
∣∣ det(X ′

M XM )
∣∣ 1

2 RSS
1
2
M. (A.4)

Consequently,

P ( min
βM,σ 2

‖(vM, bm, p) − Ḡ(M,βM, σ 2, Z, Bm, P)‖∞ < ε)

= εn−1�

(
n − m

2

)
(πRSSM )−

n−m−1
2 rmqm + o(εn−1). (A.5)

Following recommendation of Hannig and Lee (2009), we select
q = n−1/2. Additionally, we select rm = (

p

m

)−γ
. The second choice is

to penalize for the fact that there are a large number of models that all
have the same size. The most natural choice is γ = 1 for which rm is
the probability of randomly selecting a model M from all models of
size m. However, to match the EBIC penalty of Chen and Chen (2008),
we allow for other choices of γ .

Equation (6) now follows from (A.2) and (A.5) provided the fol-
lowing identifiability condition holds. For any size m, the residual
vectors i − XM (XT

M XM )−1 XT
M} y/RSSM are distinct for all the mod-

els M ∈ M′ of size m. This assumption is implied eventually almost
surely by the identifiability assumption (11).

A.3 Comparison to Objective Bayesian Model Selection

By inspecting the form of the generalized fiducial density (3),
we see that the Jacobian term J ( y, θ ) plays a role analogous to a
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“data-dependent” prior. Additionally, the Jacobian J̄M ( y, θ ) displayed
in (A.4) has the form CM ( y)σ−2, where CM ( y) is a specific constant
depending only on the observed data. Therefore, this particular Jaco-
bian can be viewed as an improper Bayesian prior π (βM, σ 2) ∝ σ−2.

As discussed in Berger and Pericchi (2001), one of the issues with the
use of improper priors in Bayesian model selection is that a selection
of a constant CB in the prior CBσ−2 is arbitrary. This is not a problem
when a posterior with respect to one model is considered because the
arbitrary constant cancels. However, it becomes a problem in model
selection as the arbitrary constants CB influence the result making the
use of improper prior for model selection difficult. Thus, a contribution
of fiducial inference could be viewed as suggesting the choice of a

particular constant | det(X ′
M XM )| 1

2 RSS
1
2
M for each of the model.

APPENDIX B: PROOF OF THEOREM 3.1

B.1 Lemmas

First, we present three lemmas, where detailed proofs can be found
in Luo and Chen (2013). Lemma B.1 is proved by applying Stirling’s
formula. Lemma B.2 is proved by integration by parts and Lemma B.3
is proved by applying Lemma B.2.

Lemma B.1. If log j/ log p → δ as p → ∞, then

log

(
p

j

)
= j log p(1 − δ)(1 + o(1)).

Lemma B.2. Let χ 2
j be a chi-square random variable with degrees

of freedom j. If c → ∞ and J/c → 0, then

P
(
χ 2

j > c
) = 1

�(j/2)
(c/2)k/2−1e−c/2(1 + o(1)),

uniformly over j ≤ J .

Lemma B.3. Let χ 2
j be a chi-square random variable with degrees

of freedom j. Let cj = 2j {log p + log(j log p)}. If p → ∞, then for
any J ≤ p,

J∑
j=1

(
p

j

)
P
(
χ 2

j > cj

) → 0.

B.2 Proof of Theorem 3.1

This appendix presents the proof of Theorem 3.1. Some of the
arguments are similar to those in Luo and Chen (2013).

Denote M as the collection of models for which (11) holds, that
is, M = {M : |M| ≤ k|M0|} for some fixed k. We first prove that

maxM rγ (M)/rγ (M0)
P→ 0. WLOG, assume that σ 2 = 1. Let m = |M|

and m0 = |M0| whenever there is no ambiguity. Notice that m0 = o(n)
and m = o(n). Rewrite

Rγ (M)/Rγ (M0) = exp {−T1 − T2}
where

T1 = n − m − 1

2
log

(
RSSM

RSSM0

)
,

T2 = m − m0

2
log n + m − m0

2
log(πRSSM0 )

+ log

{
�

(
n − m0

2

)
/�

(
n − m

2

)}

−γ log

(
p

m0

)
+ γ log

(
p

m

)
.

We are going to show that the followings hold uniformly for all M:⎧⎪⎨
⎪⎩

T1 = 	M (1 + op(1))

2
if M0 �⊂ M,

T2 ≥ −3

2
m0 log n − γm0 log p if M0 �⊂ M,

(B.1)

⎧⎪⎨
⎪⎩

T1 ≥ −(m − m0)(1 + δ) log p(1 + op(1)) if M0 ⊂ M,

T2 = 3

2
(m − m0) log n(1 + op(1))

+γ (1 − δ)(m − m0) log p(1 + o(1)) if M0 ⊂ M.

(B.2)

Case 1: M0 �⊂ M .
Let Mj = {M : |M| = j, M ∈ M}.
First note that RSSM0 = (n − m0)

(
1 + op(1)

) = n
(
1 + op(1)

)
,

RSSM − RSSM0 = 	(M) + 2μT (I − HM ) ε

+εT HMε − εT HM0ε (B.3)

and εT HM0ε = m0(1 + op(1)).
Consider the second term in (B.3) and denote ZM =

μT (I − HM ) ε/
√

	M , we have

μT (I − HM ) ε =
√

	MZM

and ZM ∼ N (0, 1). Let cj = 2j {log p + log(j log p)}. For simplicity,
denote c|M| by cm. Then, by Lemma B.3,

P

(
max
M

|ZM/
√

cm| > 1

)
≤

km0∑
j=1

∑
Mj

P
(
Z2

M > cj

)

=
km0∑
j=1

(
p

j

)
P
(
χ 2

1 > cj

)

≤
km0∑
j=1

(
p

j

)
P
(
χ 2

j > cj

) → 0.

Therefore, |μT (I − HM ) ε| ≤ √
	M |ZM | ≤ √

	M

√
cm(1 + op(1))

uniformly over M. Since cm = O(m0 log p), and by the identifiability
condition (11), m0 log p = o(	M ) uniformly over M s.t. M0 �⊂ M ,

|μT (I − HM ) ε| = op(	M ).

Now consider the third term in (B.3), by Lemma B.3 again,

P

(
max
M

εT HMε/cm > 1

)
≤

km0∑
j=1

∑
Mj

P
(
εT HMε > cj

)

=
km0∑
j=1

(
p

j

)
P
(
χ 2

j > cj

) → 0.

So εT HMε ≤ cm(1 + op(1)) and

εT HMε = op(	M )

uniformly over M s.t. M0 �⊂ M .
Therefore,

RSSM − RSSM0 = 	(M)(1 + op(1)),

and

log

(
RSSM

RSSM0

)
= log

(
1 + RSSM − RSSM0

RSSM0

)

= log

{
1 + 	(M)

n
(1 + op(1))

}

uniformly for all M ∈ M s.t. M0 �⊂ M . Therefore,

T1 = n(1 + o(1))

2
log

{
1 + 	(M)

n
(1 + op(1))

}
= 	(M)(1 + op(1))

2
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uniformly for all M ∈ M s.t. M0 �⊂ M .
Moreover,

m − m0

2
log(πRSSM0 ) + log

{
�

(
n − m0

2

)
/�

(
n − m

2

)}

= m − m0

2
log n(1 + op(1)) + m − m0

2
log n(1 + o(1))

= (m − m0) log n(1 + op(1)).

Finally,

T2 = 3

2
(m − m0) log n(1 + op(1)) − γ log

(
p

m0

)
+ γ log

(
p

m

)

≥ −3

2
m0 log n(1 + op(1)) − γm0 log p.

Case 2: M0 ⊂ M .
Let M∗ = {M ∈ M, M0 ⊂ M, M �= M0} and M∗

j = {M, |M| =
j, M0 ⊂ M}.

First notice that RSSM0 − RSSM = χ 2
m−m0

(M), where χ 2
m−m0

(M) is
a chi-square random variable depending on M with degrees of freedom
m − m0.

Recall cj = 2j {log p + log(j log p)}, by Lemma B.3 again,

P

(
max

1≤j≤km0−m0
max
M∈M∗

j

χ 2
j (M)/cj ≥ 1

)

≤
km0−m0∑

j=1

P

(
max
M∈M∗

j

χ 2
j (M) ≥ cj

)

=
km0−m0∑

j=1

(
p − m0

j

)
P
(
χ 2

j (M) ≥ cj

)

≤
km0−m0∑

j=1

(
p

j

)
P
(
χ 2

j (M) ≥ cj

) → 0.

It implies that

χ 2
m−m0

(M) ≤ cm−m0 (1 + op(1)).

Note that cm−m0 = o(n) uniformly, therefore

n − m − 1

2
log

(
RSSM

RSSM0

)

= −n − m − 1

2
log

(
1 + χ 2

m−m0
(M)

RSSM0 − χ 2
m−m0

(M)

)

≥ −n − m − 1

2

(
χ 2

m−m0
(M)

RSSM0 − χ 2
m−m0

(M)

)

≥ − cm−m0

2
(1 + op(1)) ≥ −(m − m0)

×
[

1 + log{(km0 − m0) log p}
log p

]
log p(1 + op(1))

≥ −(m − m0)(1 + δ) log p(1 + op(1))

uniformly over M∗.
Therefore, we show that

T1 ≥ −(m − m0)(1 + δ) log p(1 + op(1))

uniformly over M∗.
By Lemma B.1, for m0 < m < km0, log

(
p

m

) = (1 − δ)m log p(1 +
o(1)) uniformly over M∗.

Therefore,

T2 = 3

2
(m − m0) log n(1 + op(1))

+γ (1 − δ)(m − m0) log p(1 + o(1))

uniformly over M∗. Finally,

max
M �=M0,M∈M

Rγ (M)/Rγ (M0) = max

{
max
M0 �⊂M

exp (−T1 − T2) ,

max
M0⊂M

exp (−T1 − T2)

}
.

By (B.1),

maxM0 �⊂M exp (−T1 − T2)
P→ 0 since

min
M0 �⊂M

T1 + T2 → ∞

and by (B.2), maxM0⊂M exp (−T1 − T2) → 0 if γ > 1+δ

1−δ
− 3η

2(1−δ) . It
proves that

max
M �=M0,M∈M

Rγ (M)/Rγ (M0)
P→ 0.

Moreover, if (14) holds and denote m′
j as the number of models in M′

j ,

∑
M �=M0,M∈M′

Rγ (M)/Rγ (M0) ≤
km0∑
j=1

∑
M′

j

Rγ (M)/Rγ (M0)

≤
km0∑
j=1

max
M �=M0,M∈M′

j

m′
jRγ (M)

/Rγ (M0)
P→ 0.

Equivalently,

Rγ (M0)/
∑

M∈M′
Rγ (M)

P→ 1.

[Received April 2013. Revised March 2014.]
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