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1. Introduction

In practice, it is frequently assumed that a data set can be described
by a multivariate normal distribution. Many common statistical procedures
rely on the data being multinormal, something which is often not adequately
checked before use of the procedures (Cox and Wermuth, 1994; Farrell et al.,
2007; Looney, 1995). Often, this assumption is false for either the whole
data set or parts of it. Another classical problem is the testing of whether
k multivariate data sets originate from the same distribution. For each of
the two problems, a scale-space inspired methodology, testing all scales and
locations simultaneously, is presented. The two presented algorithms are
very similar, the main di�erence being which one-dimensional test is used.
For both algorithms, a weighted summation is performed across the dimen-
sions/locations. The notion of scale is connected to the number of dimensions
being summed across, while the di�erent dimensions typically are temporal
or spatial samples.

The presented algorithms have two aspects that make them useful in many
situations. As will be shown, the algorithms avoid the need to estimate the
covariance matrix, leading to algorithms that can handle the High Dimension
Low Sample Size (HDLSS) situation. Furthermore, the algorithms allow an
evaluation of the data set for all scales and all locations simultaneously. By
this approach, it may, for the multinormality testing, be detected if only
some parts of the data set are originating from a multinormal distribution.
For the k-sample case, the scale-space approach can detect if one or more of
the k samples di�er on di�erent scales and/or locations. By not estimating
the covariance matrix, the tests potentially loose some power compared to
tests that incorporate the information from the estimated covariance matrix.
This loss of power is acceptable on the grounds of being able to handle
the HDLSS situation. As a result of the summation, the algorithms will
include a large number of one-dimensional tests. For the results presented,
the Anderson-Darling (AD) test is used for both the multinormality testing
and the k-sample problem, see Section 2.5. The choice of this test is a result
of its excellent power against all alternatives and existence of very good
approximations for the asymptotic distribution and formulas adjusting for
the �nite sample sizes (Marsaglia and Marsaglia, 2004; Pettitt, 1976; Sinclair
and Spurr, 1988).

A simple arti�cial example is presented to illustrate the main ideas of the
paper. The arti�cial data set has a distribution that is multivariate normal
for some of the dimensions and a mixture of two di�erent normal distributions
for the rest of the dimensions. Figure 1 shows 40 signals of length 50, i.e.
the data matrix has size [n, p] = [40, 50]. There are two di�erent underlying
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true signals. In the �rst population, 20 signals are sampled from a zero mean
multinormal distribution with covariance element (i, j) equal to 0.5 · φ|i−j|

with φ = 0.5 (i.e. the signal is an autoregressive process of order 1). The
remaining 20 signals have the same covariance structure, while the expected
value equals −2.15 for index 6 to 12 and −3.5 for index 20. For indices
26, . . . , 40, the expected value increases linearly from 0.1 to 2.5, while the
rest of the dimensions have expectation equal to zero.
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Figure 1: All 40 arti�cial signals of length 50

The output (called a signi�cance map) from the proposed multinormality
test of the data in Figure 1, is shown in Figure 2. On the horizontal axis are
the 50 dimensions, while di�erent window widths are given on the vertical
axis. These di�erent window widths represent the scale part of the presented
algorithms. To be speci�c, a window width of 7 means that to produce
the pixel in the signi�cance map corresponding to window width/scale 7
and location 9, a weighted summation is performed across columns 6 to
12. The summation compresses this [40, 7] part of the data matrix into a
one-dimensional vector of length 40, which is then tested for normality. By
going through all scale/location pairs, the signi�cance map is produced. Red
pixels mark rejections of the null hypothesis, i.e. indicating that the part
of the data matrix which has been summed across cannot be considered as
a sample from a multinormal distribution. The output is presented with
the well-known Bonferroni approach for handling multiple testing (Hochberg
and Tamhane, 1987). Later outputs will also present the result from the
not so conservative False Discovery Rate (FDR) approach (Benjamini and
Hochberg, 1995), see Section 2.3. For a distribution to be multinormal, all
marginals must be normally distributed. This is a necessary, but not su�cient
condition for multinormality. Scale 1 corresponds to testing the marginal
distribution of each dimension. Note that the negative peak at dimension
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20 is found on small scales, while the mixture density from dimension 6 to
12 and the increasing trend from dimensions 25 to 40 are found on larger
scales. Therefore, this example shows that both short and long scales may
be of importance in the same data set.
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Figure 2: Signi�cance map of the test for multinormality of a arti�cial data set. Red
indicates rejection of the null hypothesis (multinormality) for that window width/location.
For a given scale, the horizontal distance between the two gray lines equals the width of
the summation window of that scale.

Section 2 presents the concept of scale-space, the statistical models being
investigated and the details of the two presented algorithms. Some inves-
tigations into the power of the tests are also presented. In Section 3 the
algorithms are applied to some real data sets, comparisons with other algo-
rithms are done, and a feature selection scheme is presented and tested on
real data. Section 4 contains a discussion of the results.

2. Methodology

Recall that an important motivation for applying a scale-space approach
is the fact that di�erent phenomena can be visible/detectable on di�erent
scales and/or locations of the data set. In classical nonparametric smoothing
schemes, some sort of bandwidth parameter has to be chosen (Wand and
Jones, 1995). By selecting one bandwidth only, features detectable on other
bandwidths will not be found. However, using a scale-space approach, one
can look at all bandwidths simultaneously. Scale-space ideas have proven
useful in many areas and have been applied to feature detection in curves
and images (Chaudhuri and Marron, 1999; Godtliebsen et al., 2004), density
estimation (Godtliebsen et al., 2002), curve �tting (Chaudhuri and Marron,
2000), Bayesian time series analysis (Øigård et al., 2006) and spectral feature
detection (Sørbye et al., 2009).
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2.1. Model Assumptions

For the multinormality testing case, let X1,X2, . . . ,Xn be a set of p-
dimensional vectors. The null hypothesis assumes that these vectors originate
from a non-speci�ed p-dimensional multinormal distribution N (µ,Σ), i.e.

H0 : Xi ∼ N (µ,Σ) ∀ i,

where the mean vector µ and the covariance matrix Σ are unknown. For
the presented algorithm, the parameters of this assumed multinormal distri-
bution do not have to be calculated. Note that by avoiding the need for an
estimate of the covariance matrix, the algorithm could be applied to data
sets with any combination of sample size and sample dimension, as long as
the number of samples is high enough for the one-dimensional normality test
to be applicable.

The algorithm works with any covariance structure and there are no re-
quirements for smoothness of expected values of neighboring dimensions. As
will be presented later, the algorithm performs a weighted summation across
neighboring dimensions. A motivation behind this summation is that neigh-
boring dimensions frequently have some sort of logical connection to each
other, as for example in a time series. When the data set consists of a
multidimensional time series, the di�erent dimensions are equivalent to the
di�erent sampling times. If the dimensions are shifted around, the algorithm
could produce di�erent results. Therefore, interpretations of the results are
easier when the di�erent dimensions have a natural ordering, as for example
with spatial or temporal data.

For the k-sample case, each of the k samples consist of a given number
(which can be di�erent for each k) of p-dimensional vectors with unknown cu-
mulative distribution functions (CDF), given by F1, F2, · · · , Fk, respectively.
The null hypothesis is then stated as

H0 : F1(x) = F2(x) = · · · = Fk(x), ∀ x ∈ Rp. (1)

Since this methodology only tests whether or not the CDFs all are the same,
the CDFs can take any form or belong to any class of distributions. Again,
the interpretations of the results are easiest when working with data having
a natural ordering.

2.2. Concept of Scale and Summation Across Dimensions

One of the main ideas of this manuscript is testing simultaneously for
many di�erent scales and locations. The scale values are the number of
di�erent dimensions being summed across. At the �nest resolution, the scale
is 1, corresponding to a test of the marginal distributions. At scale 3, the
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result of the summation for location/dimension d is a weighted summation of
the sample values with index d− 1, d and d+1. For other scales, completely
analogous summations are performed. Note that by this summation, small
di�erences within the data can be detected, even though this di�erence might
not be detected for lower scales. The set of default scales is chosen to be {1 3 5
7 9 11 15 21 29 39 51 65 81 99 . . . smax}, where the di�erence in neighboring
scales increases by two for each scale up to a maximum scale smax ≤ p.
Alternatively, the user can choose to use scales up to some upper scale only.
The number of scales used is designated ns.

For each of the di�erent scales s, a weighted summation across di�erent
dimensions/locations is performed, producing Ls,d, where d is the location
index ranging from 1 to p and Ls,d is a vector of length n. The resulting Ls,d's
form a matrix L with size [ns, p, n]. For the summation weights a discrete
Epanechikov (Wand and Jones, 1995) window function is used. For a given
pair of s and d, the Epanechikov summation window is a column vector given
by

ws,d(i) = K ·

[
1−

(
i− d

ds/2e

)2
]

+

, i = 1, . . . , p,

where K is some normalizing constant, d·e is the ceiling function, and the
plus-function is de�ned as [f(x)]+ = max[0, f(x)] for some functional value
f(x). The Ls,d vector is generated through

Ls,d = X ·ws,d,

where the data matrix X has size [n, p], with the n samples of length p along
each row, and · indicates normal matrix multiplication. The resulting vector
Ls,d is thereby a weighted summation across the s dimensions centered on the
d'th dimension. Figure 3 shows how the algorithm generates the L matrix
and how it is used to generate the output matrix, that is the signi�cance
map R, with di�erent scales along the vertical axis and location along the
horizontal axis.

As an example one can calculate the vector elements of the L matrix
corresponding to the scale/location pairs (1, 1), (2, 2) and (3, 4) of the data
matrix

X =


0 0 0 1 1
0 1 1 3 2
1 1 0 1 1
2 1 1 0 0

 .
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Figure 3: Work�ow chart. The data matrix X has dimensions [n, p] = [4, 5]. The sum-
mation matrix L has dimensions [ns, p, n] and each Ls,d is a vector of length n. The
signi�cance matrix R has dimensions [ns, p]. The red box, which only spans one dimen-
sion, indicates that for the lowest scale, no summation is performed across the dimensions.
For the green and blue boxes, summation is performed across dimensions 1�3 and 2�5,
respectively. Note that two signi�cance maps are produced, one each for the Bonfer-
roni/FDR approaches, with ones in R marking rejections of the null hypothesis for the
corresponding scales and locations. When plotting the signi�cance maps, the vertical axis
is inverted.
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The Epanechikov weights for the given scale/location pairs are w1,1 =
[1, 0, 0, 0, 0]T , w2,2 = 1/10 · [3, 4, 3, 0, 0]T , and w3,4 = 1/30 · [0, 5, 8, 9, 8]T ,
where T indicates the transpose. The resulting vector elements are

L1,1 = [0, 0, 1, 2]T , L2,2 =
1

10
· [0, 7, 7, 13]T , L3,4 =

1

30
· [17, 56, 22, 13]T .

2.3. Normality Testing

From the matrix L, the actual one-dimensional normality test statistics
are calculated. For each of the (s, d) pairs, the p-value of the AD test statis-
tics of the vector Ls,d is stored. To address the problem of multiple testing,
the algorithm outputs two signi�cance maps, one based on the Bonferroni
approach and one based on FDR. The p-dimensional vector of p-values of
each scale is fed into FDR, generating the FDR-based signi�cance map scale
by scale. For the Bonferroni approach, the critical value is obtained from the
nominal signi�cance level α divided by the number of dimensions p, produc-
ing on average at least one false alarm every 1/α scale. This follows the usual
SiZer recommendation of adjusting the signi�cance for each scale separately.
The alternative, adjusting the output map for all the time scales simultane-
ously, is known from the SiZer literature to be overly conservative (Chaudhuri
and Marron, 1999). The nominal signi�cance level can be chosen by the user,
with a default value of α = 0.05.

When using the multiple testing corrections, it is assumed that the tests
are independent. This is of course not the case, both since the data might con-
tain dependencies and since for scales larger than 1, the summations across
dimensions will generate dependencies in the weighted sums. When the null
hypothesis is true, these dependent tests will typically give a somewhat lower
rejection ratio than what is expected from the nominal signi�cance level for
scales larger than 1.

2.4. The k-Sample Problem

For the k-sample problem, the k data matrices Xi, i = 1, · · · , k are
all put through the summation procedure of Figure 3, producing Li, i =
1, · · · , k. For each scale/location pair (s, d), the k corresponding vectors (of
size ni, i = 1, · · · , k) from the Li matrices are fed into the k-sample AD
test (Pettitt, 1976; Scholz and Stephens, 1987). The distributions of the
sums along the dimensions will in general be di�erent from the marginal
distributions. Nevertheless, if the k data sets do have the same multivariate
distribution, for a given scale/location pair (s, d), the distributions of the k
di�erent summation vectors will be the same. The p-values of the tests are
stored and used in the generation of the FDR-based signi�cance map, while
the Bonferroni approach �nds the critical value as for the multinormality
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testing. If the null hypothesis is rejected, the (s, d)-element of the output
matrix is marked as a signi�cant element, indicating that at least one of the
empirical distributions are signi�cantly di�erent from the others.

2.5. Anderson-Darling Testing

The two algorithms presented use three di�erent AD tests. The AD
goodness-of-�t test is used in the case of checking for multinormality (An-
derson and Darling, 1952, 1954; Lewis, 1961). For the two-sample/k-sample
case, the versions of the AD test suggested by Pettitt (1976) and Scholz and
Stephens (1987), respectively, are used.

The AD goodness-of-�t test checks the simple null hypothesis that a sam-
ple is from a distribution with a known continuous CDF, F (x). Let x1 ≤ x2 ≤
· · · ≤ xn be the ordered sample of size n, and let ui = F (xi), i = 1, . . . , n.
The AD test statistic is de�ned as

A2
n ≡ −n− 1

n

n∑
i=1

(2i− 1) ln [ui(1− un−i+1)] . (2)

This clearly shows that the AD test is distribution free, as long as the null
distribution is fully known. Approximate expressions for the asymptotic
distribution of the AD test are given by Marsaglia and Marsaglia (2004);
Sinclair and Spurr (1988).

When testing for multinormality with unknown distributional parame-
ters, i.e. testing a composite hypothesis, F (x) is some unknown normal
CDF, something which changes the distribution of the AD test statistic. In
this case, the sorted data are normalized, producing zi, i = 1, . . . , n. Then,
u′

i = F0(zi) is produced, where F0(·) is the standard normal CDF. These
u′

i values are fed into Equation (2), and the �nal test statistic is obtained
by applying the correction factor for �nite sample sizes given on page 123
of D'Agostino and Stephens (1986). The p-values and critical values are
calculated from the approximations given on page 127 of D'Agostino and
Stephens (1986). Following page 373 of D'Agostino and Stephens (1986),
the presented algorithm requires n ≥ 8. The presence of ties in the data is
a good indicator of non-normality, something which the AD test will re�ect
too. For instance, if normally distributed data is in some way rounded o�,
the rejection rate will be higher than the rate expected from the prescribed
signi�cance level.

For the k-sample case, there is no need to estimate any parameters, and
the test statistic reduces to a rank statistic. Hence, the distribution of the test
statistic is independent of the distribution of the k samples. The two-sample
case and the k-sample case are treated separately, even though the k-sample
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reduces to the two-sample case in Pettitt (1976) when k = 2. The correction
factor in Pettitt (1976) is used to produce the �nal two-sample test statis-
tic. Pettitt (1976) shows that the distribution of the sample-size adjusted
two-sample AD test statistic can be approximated well by the asymptotic dis-
tribution of the AD goodness-of-�t test for a fully known null distribution.
The presented algorithm uses Equation (3.6) in Sinclair and Spurr (1988) to
produce the approximate p-value of the test statistic when k = 2.

The general k-sample AD test statistic in Scholz and Stephens (1987) is
given as

AkN ≡ 1

N

k∑
i=1

1

ni

N−1∑
j=1

(NMij − jni)
2

j(N − j)
,

where N = n1 + n2 + · · · + nk, and Mij is the number of observations in
the i'th sample that are not greater than the j'th observation of the pooled
sample of all k samples. Equation (6) in Scholz and Stephens (1987) modi�es
the expression for AkN , to be able to handle ties in the data. The presented
algorithm uses the expression adjusted for ties, both for the two-sample and
k-sample cases. Thereby, Fi(x) in Equation (1) can be connected to a con-
tinuous or discrete random vector. The interpolation scheme of Scholz and
Stephens (1987) is used to determine the p-value of AkN when k > 2. Inspired
by Pettitt (1976), it is required that all ni ≥ 8, i = 1, . . . , k.

In theory, any omnibus test which achieves a speci�ed signi�cance level
could be used in the presented framework. Relying on power studies by
Shapiro and Wilk (1965); Stephens (1974); Thode Jr (2002), the well-known
Shapiro-Wilk test (Shapiro and Wilk, 1965; Rahman and Govindarajulu,
1997; Royston, 1992) is seen as the best alternative to the AD test for the
multinormality testing. Other tests which were considered include Watson's
U2 test (Watson, 1961), Kuiper's test (Stephens, 1965), Lilliefors' test (Lil-
liefors, 1967), the Cramér-von-Mises test (Stephens and Maag, 1968), the
Shapiro-Francia test (Shapiro and Francia, 1972), D'Agostino-Pearson's K2

test (D'Agostino et al., 1990; Pearson et al., 1977), the Jarque-Bera test (Jar-
que and Bera, 1980), and Doornik's test (Doornik and Hansen, 2008). Other
tests considered for the k-sample case include the Kolmogorov-Smirnov test
(Kiefer, 1959), the Cramér-von-Mises test (Kiefer, 1959), and Watson's U2

k

test (Maag, 1966).

2.6. Cramér-Wold

The Cramér-Wold theorem states that two random column vectors X
and Y have the same distribution if and only if for all row vectors a, the
random variables a · X and a · Y have the same distribution (Lehmann,
1998). In the presented algorithms, the di�erent summation weights of the
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Epanechikov window take the role of a. Thereby, when doing the summation
and testing for normality/di�erence between samples for many scales, a set
of a vectors are applied to the single or many data sets. The Cramér-Wold
theorem requires that the distribution of a · X and a · Y are equal for all
possible a vectors. In the presented setting, only a �nite number of vectors
are tested. Since the presented algorithms are most suitable for data with
some sort of neighboring structure (e.g. time series or spatial data), the
important a vectors should be those that look at dimensions close to each
other to a varying degree. Hence, following the Cramér-Wold theorem, a
lack of rejection for (almost) all scales/locations should be seen as a good
indication of the null hypothesis actually being true for the whole data set.

2.7. Signi�cance of Rejections

For all the scale/location pairs, the p-value is available. The lower the
p-value of a �rejection pair�, the more signi�cant the rejection of the null
hypothesis is on that scale/location. In the graphical user interface (GUI)
for the presented algorithms, the user can constantly change the desired
signi�cance level. By moving this signi�cance level up and down, one can
determine on which scales/locations the null hypothesis is most signi�cantly
rejected. In Figure 4 the example of the Introduction is revisited, where
signi�cance levels of 0.001 and 0.005 have been used, compared to the 0.05
in the Introduction. By comparing Figure 4 to Figure 2, it is clear that for this
realization, the most signi�cant region is the single non-normal dimension of
index 20, and the region from index 26 to 40 is the second most non-normal.
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Figure 4: Signi�cance maps of the scale-space multinormality test for the data of the
Introduction with a signi�cance level of 0.005/0.001 for left/right panel

2.8. Power of the Scale-Space Tests

There are no clear templates for power studies of the proposed scale-space
tests. After the summations are done, the tests use the well-documented
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AD tests. Thereby, the power of the scale-space tests is connected to the
power of the AD tests. Instead, it can be informative to illustrate how the
power varies over the di�erent scale/location pairs of the output matrix for
a given example. Assume that the data set has the same structure as in the
motivational example of the Introduction. Figure 5 shows the rejection ratio
(from 1 000 data sets) of the scale-space test for multinormality. As can be
seen, one �nds the highest powers for the scale/location pairs that best �t
the non-normal dimensions. Similar results would be obtained for the test
for comparing k data sets.
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Figure 5: Rejection ratios of all scale/location pairs for 1 000 replications of the motiva-
tional example

To investigate the e�ect of increased number of dimensions, a number
of normally distributed dimensions have been added to the right side of the
signal of the Introduction. Table 1 shows the power of the multinormality test
for di�erent number of dimensions and for the FDR/Bonferroni correction.
The case of 50 dimensions in total corresponds to the power of the pairs of
Figure 5. From this it is clear that the power decreases as the number of
dimensions grows.

3. Results

The suggested algorithms have been tested on a number of di�erent data
sets. A �ve percent signi�cance level has been used for all the �gures, unless
otherwise stated. First, the initial example of the Introduction is investigated
in more detail.
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Window width/location pair
1/20 7/9 9/37

Dimensions in total FDR Bonf. FDR Bonf. FDR Bonf.
50 0.735 0.687 0.863 0.684 0.863 0.563
100 0.619 0.583 0.773 0.596 0.773 0.440
250 0.457 0.443 0.578 0.433 0.578 0.272
500 0.331 0.312 0.411 0.295 0.411 0.197

1 000 0.264 0.248 0.298 0.219 0.227 0.116

Table 1: Power of test for multinormality when the signal of the Introduction is augmented
with a number of normally distributed dimensions

3.1. Introductory Example Revisited

For larger scales, the scale-space test for multinormality can be shown to
increase the mode separation if the distribution has more than one mode.
This is demonstrated through some simple examples. Assume that all the
dimensions of some data set are unimodal normal (that is, all the n samples
of a given dimension have the same normal distribution) with di�erent means
and/or variances for di�erent dimensions. The result of the summation will
then be some other normal distribution.

A short example of this is given. Assume that the data matrix X has
dimensions [10, 3] and that all ten samples of column 1 is N (0, 1) distributed,
while column 2 is N (4, 1) distributed, and column 3 is N (8, 1) distributed.
The summation (for simplicity, assuming even weights of 1/3) over these three
columns would produce a 10-element long vector with distribution N (4, 1/3),
which the AD test would detect as normal, i.e. the test would not reject it.

Now assume that the ten samples of a given dimension do not have the
same distribution. Assume that the �ve �rst samples of the three columns
are distributed as N (1, 1), while the last �ve are distributed as N (0, 1).
When checking the columns separately, the 10-element vector might not
�look� enough di�erent from a unimodal normal distribution to be rejected
by the AD test. When summing (again, assuming even weights of 1/3) over
the three columns, the distribution of the sum of the �rst �ve samples is
given by N (1, 1/3), while the last �ve have a N (0, 1/3) distribution. This
shows that the peaks have larger separation (both variances have decreased)
as a result of the summation.

3.2. Multinormality of Temperature Data

A data set obtained from the Norwegian Meteorological Institute is ana-
lyzed. The data show daily mean temperature for the 92 days of June�August
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for the period 1937 to 2008 at Blindern, Oslo. This gives a data matrix of
dimensions [n, p] = [72, 92], making algorithms that rely on inversion of the
estimated covariance matrix impossible to use. A plot of all the 72 years is
given in Figure 6.
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Figure 6: Daily mean temperatures at Oslo, Blindern, for the period 1937-2008

Figure 7 gives the results of checking for multinormality. Note that sig-
ni�cant features are found both for the FDR and Bonferroni correction. To
see what is going on, the period around time point 75 (i.e. in the middle
of August) is shown in Figure 8. From this �gure it seems that the mean
temperature is around 15◦C, but the temperature distribution around this
time is skewed upwards. This means that Oslo at this time of the year ex-
periences larger positive than negative deviations from the mean, something
that is not a surprising result if you have knowledge about the temperature
in that area.

3.3. Comparison of Temperature Records

For the comparison of data sets, temperature data sets are once more
used. Temperature data sets from two di�erent meteorological stations in
the Oslo area are compared. The �rst one is located at Ferder lighthouse
at the start of the 100 km long Oslo fjord, while the second one is located
at Fornebu, which is at the very inner part of the Oslo fjord. The two data
sets consist of more or less overlapping yearly records, respectively 64 and
45 complete years (years with missing data in the months of interest have
been removed). Figure 9 shows the two data sets, and Figure 10 shows
the resulting signi�cance maps. From this, it is clear that the temperature
distribution at the two stations di�er early and late in the summer. From
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Figure 7: Signi�cance maps for summer temperatures in Oslo
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Figure 8: Mid-August temperatures in Oslo for the years 1937�2008
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a closer inspection, it is clear that Fornebu is warmer during early summer,
while it is the opposite during late summer.
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Figure 9: Temperature data from Ferder (blue) and Fornebu (red)

3.4. Comparison to Other Methods

Just about all methods for testing for multinormality rely in some way
on inverting the estimated covariance matrix. When the number of samples
is less or equal to the number of dimensions, i.e. n ≤ p, the estimated covari-
ance matrix is non-invertible. To the authors' knowledge, only the projection
methods in Liang et al. (2000, 2009) work when n ≤ p. The preferred method
of Liang et al. (2000) �rst transforms the data matrix, and then projects it
onto some lower-dimensional space of dimension d ≤ min(n−2, p). The trans-
formed data will under the null hypothesis be distributed as a d-dimensional
standard multinormal distribution, something which is checked using the
skewness and kurtosis test of Mardia (1970). Asymptotic distributions are
given, but in the setting of interest (n is not large compared to p), the use
of the Liang test relies on a permutation procedure for generating p-values.

It is not straightforward to compare the presented scale-space method to
the Liang procedure since the presented scale-space method does not produce
one single answer to the hypothesis testing problem. To illustrate that the
presented method outperforms the Liang test in some settings, a simple ex-
ample has been tested. Assume the same data set structure as in the example
of the Introduction, except that the only non-normal part is the mixture of
dimensions 6 to 12, the other dimensions are zero mean normally distributed.
This setup results in the optimal scale/location pair being (4, 9), i.e. sum-
ming over dimensions 6 to 12. When the non-zero mean value in this area is
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Figure 10: Signi�cance maps from comparing the temperature data of Ferder and Fornebu
with the scale-space method

2.35, the presented scale-space method has a detection ratio of 0.884/0.918
(Bonferroni/FDR) for the pair (4, 9) (based on 1 000 Monte Carlo repeti-
tions). The Liang test has for the same data sets a rejection ratio of 0.659.
For the Liang test only the kurtosis test and only the optimal projection
dimension (d = 1) are used. In a real setting, the optimal projection dimen-
sion would not be known and both the skewness and kurtosis test would be
used, leading to a signi�cantly lower power when the correction for multiple
testing is done. In the same way, when the non-zero mean value is 2.05, the
presented scale-space method has a rejection ratio of 0.569/0.628 for the pair
(4, 9), while the Liang test has for the same data sets a rejection ratio of
0.480.

For the comparison of two or more data sets, there are several methods
which handle the n ≤ p situation: Friedman and Rafsky (1979); Hall and
Tajvidi (2002); Henze (1988); Székely and Rizzo (2004). The test by Székely
and Rizzo is a k-sample extension of the two-sample test suggested by Bar-
inghaus and Franz (2004). A similar two-sample test was suggested by Aslan
and Zech (2005). This test performed very similar to, but not better than,
the Székely-Rizzo/Baringhaus test in the two-sample test case of Table 2. All
these methods use some kind of distance measure between the data vectors,
and from these distances the test statistics are generated, without estimating
any covariance matrices. For the case of interest (n ≤ p), the tests all rely on
permutation procedures to determine the p-value of the test statistic. The
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case of two data sets X and Y is �rst investigated. The expected value of
X is zero for all dimensions, while Y has one region of a number of neigh-
boring dimensions with a non-zero expected value. Both X and Y have the
same covariance structure as the example of the Introduction. The number
of dimensions of Y that have a non-zero mean value is varied, along with this
non-zero value. The upper part of Table 2 shows the results, where as before
the result of the scale-space algorithm refers to the scale/location pair with
the highest rejection ratio.

Dim: 1 Dim: 3 Dim: 5 Dim: 7

Two-sample δ = 0.85 δ = 0.75 δ = 0.65 δ = 0.55
Scale-space 0.549/0.560 0.713/0.739 0.694/0.760 0.622/0.740
Székely-Rizzo 0.412 0.780 0.845 0.843
Hall-Tajvidi 0.158 0.374 0.488 0.519

Nearest Neighbor 0.246 0.460 0.542 0.539
Friedman-Rafsky 0.265 0.498 0.576 0.571
Three-sample δ = 0.75 δ = 0.55 δ = 0.50 δ = 0.45
Scale-space 0.706/0.721 0.623/0.648 0.675/0.737 0.676/0.763
Székely-Rizzo 0.373 0.559 0.740 0.771
Seven-sample δ = 0.15 δ = 0.11 δ = 0.10 δ = 0.09
Scale-space 0.739/0.755 0.617/0.642 0.694/0.744 0.697/0.771
Székely-Rizzo 0.299 0.477 0.632 0.688

Table 2: Power of comparing a number of di�erent data sets with a varying number of
dimensions (�Dim�) for which there is a distributional di�erence δ in the tested data sets.
For the Hall test, the T and S tests gave very similar results. Three nearest neighbors
were used in the Nearest Neighbor test. The results of the Friedman-Rafsky test are for
three trees, which consistently performed better than one and two threes in this setting.
The scale-space results are for the Bonferroni/FDR correction, respectively, and a 0.10
signi�cance level is used. 2 000 Monte Carlo samples are used.

Of the alternative tests, the method of Székely and Rizzo (2004) consis-
tently shows the greatest power in the settings tested. When the di�erence
between X and Y is across many dimensions, the power of the Székely test
is higher than the power of the scale-space approach. If there instead is
only one dimension with a di�erent distribution of X and Y , the power of
the scale-space approach is greater than for the Székely test. This means
that the Székely is a good alternative approach, but by using the scale-space
approach one can determine where in the data set the di�erence is located.

Except for the Hall method, the methods can all be extended to the case
of k > 2 data sets. For the case of k = 3, the presented scale-space method
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has only been compared to the method of Székely and Rizzo. The same
covariance structure as for the two-sample case has been used for the three
data sets X, Y and Z. X is zero mean, while Y has for some neighboring
dimensions a non-zero expected value of δ, and Z has for the same dimensions
a non-zero expected value of −δ, see the middle part of Table 2. The case
of k = 7 is �nally investigated in the lower part of Table 2. Here, the
di�erent data sets have the same structure as for the case of k = 3, but the
di�erent data sets Xi, i = 1, 2, . . . , 7 have mean value equal to i · δ for the
non-zero dimensions. From these results, the scale-space method seems to
improve compared to the Székely-Rizzo method when the number of data
sets increase, and the methods are giving comparable results in the tested
settings.

3.5. Feature Selection

In a classi�cation setting, the p-values of the di�erent scale/location pairs
could be used to �nd useful scale-space features. The pairs with the smallest
p-values should be good candidate features for classi�cation algorithms. The
p-values of neighboring pairs will be correlated (for all scales larger than 1).
An ad hoc strategy to avoid the selection of neighboring pairs has been used.
That is, say that the most signi�cant pair is at window width 7 (i.e. scale
number 4) and location 5. Then, all pairs for two scales down (scale number
2 and 3) and two scales up (scale number 5 and 6) which sum over the data
of dimension/location 5, are excluded from being selected as a feature as
a result of pair (4, 5) being selected as a feature. The next feature to be
selected corresponds to the scale/location pair, which has not been excluded
in the steps before, with the lowest p-value of the pairs not already selected.
This is repeated until a wanted number of features are found or there are no
good features left to pick from, where a potential feature's �goodness� would
be connected to its p-value.

The suggested feature selection algorithm has been tested on a setting
similar to the example of the Introduction. Here, instead of having one data
set with two parts, there are two data sets X and Y . X is distributed as
the 20 �rst samples of the motivational example, while Y is distributed as
the 20 remaining samples, except that the expected value equals −0.65 for
index 6 to 12 and −1 for index 20. For indices 26, . . . , 40, the expected value
increases linearly from 0.05 to 0.75.

The suggested feature selection scheme has been compared to using all
dimensions as inputs to classi�cation algorithms. This is meant as a proof
of concept, more than a thorough comparison to other methods. The tested
sample sizes of both X and Y were 20, 30 and 60. For the classi�cation,
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k Nearest Neighbor classi�cation (with k=1 and k = 3), Linear Discrimi-
nant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) were used,
when applicable (Hastie et al., 2009). For the scale-space feature selection,
the number of features selected ranged from 1 to 15. One pair of X and Y
data sets was used to �nd the training features. These features were then
used to classify 500 X and 500 Y data sets. This was repeated 100 times,
making up in total 100 000 tests, and the ratio of correct classi�cation was
averaged across these 100 000 tests, as shown in Figure 11. The splitting up
was done to average out the fact that di�erent features will be selected de-
pending on the training data set. With three well-selected features, one could
capture the main di�erences in the two data sets, but as the �gure shows,
one needs on average more than three features to have the maximum ratio of
correct classi�cation. The �gure shows that using the suggested scale-space
features is better than using the raw data in this example.
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Figure 11: Results of using a varying number of scale-space features (solid lines) compared
to using all dimensions (dashed lines) for classi�cation through 1NN (blue), 3NN (red),
LDA (black), QDA (magenta). The vertical axis shows the ratio of correct classi�cations
based on 100 000 simulations. Sample sizes from left to right are: 20, 30 and 60.

4. Discussion

The scale-space approach is applied to the testing for multivariate nor-
mality and to the k-sample problem. The summation across scales reduces
the multivariate problem to a large number of one-dimensional tests. A sig-
ni�cance map, showing where and for which scales the null hypothesis is
rejected, is generated by going through all combinations of the location and
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scale parameters. The summation throws away all information of the depen-
dency structure of the data. When there are more samples than dimensions,
i.e. n > p, the discharging of covariance information will lower the power
of the scale-space tests compared to tests which use this information gained
through estimation of the covariance matrix. What is gained on the other
hand, is the ability to check for multinormality and compare data sets in the
High Dimension Low Sample Size setting, something which almost all other
methods fail to handle.

The presented algorithms have been tested on arti�cial data and real
temperature data sets, showing how both the check for multinormality and
the comparison of data sets could be done through the scale-space approach.

Within the scale-space framework, to the authors' best knowledge, there
is no other algorithm to compare the presented work with, even though a
large number of tests for assessing the multinormality of a given data set
exist (Alva and Estrada, 2009; Mecklin and Mundfrom, 2004; Romeu and
Ozturk, 1993; Thode Jr, 2002). To the knowledge of the authors, the only
multivariate methods for testing multinormality that handle the case when
n ≤ p, are the methods by Liang et al. (2000, 2009), where the method
from 2000 is the preferred method, as stated in Liang et al. (2009). As have
been shown, this method is inferior to the presented method in some relevant
aspects and cases.

In the case of comparing k data sets, there exist some methods which
handle the case where at least one of the sample sizes are less than the
number of dimensions. In general, these methods are based on some distance
measure between the data vectors, and do not estimate the covariance matrix.
The suggested scale-space method has been compared to these methods. In
the tested settings, the power of the method of Székely and Rizzo (2004) is
comparable to the power of the scale-space approach. The Szekely test does
not on the other hand provide any info about where the data sets di�er,
information that is essential for doing feature selection. Selection of relevant
features based on the presented scale-space k-sample problem algorithm is
demonstrated in Section 3.
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