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Abstract

It is often the case that there are several studies measuring the
same parameter of interest. Naturally, it is of interest to provide a
systematic way to combine the information from these studies. Ex-
amples of such situations include clinical trials, key comparison trials
and other problems of practical importance. Singh et al. (2005) pro-
vide a compelling framework for combining information from multiple
sources using the framework of confidence distributions. In this paper
we investigate the feasibility of using the Dempster-Shafer recombina-
tion rule on this problem. We derive a practical combination rule and
show that under assumption of asymptotic normality, the Dempster-
Shafer combined confidence distribution is asymptotically equivalent
to one of the method proposed in Singh et al. (2005). Numerical stud-
ies and comparisons for the common mean problem and the odds ratio
in 2× 2 tables are included.
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1 Introduction

In many cases, there are multiple estimates of a particular quantity of inter-
est arising from different experiments, or representing the particular quan-
tity with respect to different populations, locations, years, etc. This sce-
nario occurs often in, but not limited to, the context of meta-analysis, in
which it is often desired to combine information from independent studies.
There are numerous developments in this area. The range of meta-analysis
approaches include the classical approaches of combining p-values, model-
based (both fixed-effects and random effects) meta-analysis approaches, as
well as specialized meta-analysis approaches targeting specific settings such
as the Mantel-Haenszel method, Peto’s method and a recently proposed ex-
act meta-analysis approach by Tian et al. (2009) on combining confidence
intervals, among others. Singh et al. (2005) proposed a simple but general
recipe for combining confidence distributions from independent studies. Xie
et al. (2011) and subsequent research showed that this general recipe and
its extension can provide a unifying framework for almost all information
combination methods used in current practice, including all aforementioned
meta-analysis approaches. This unifying framework provides a compelling
theoretical framework to understand and explore existing combining infor-
mation approaches and also to develop new methodologies; cf., Xie et al.
(2011).

Since confidence distributions are associated with Fisher’s fiducial distri-
butions and the Dempster-Shafer theory of belief functions, natural questions
are whether it is possible to use the general Dempster-Shafer recombination
rule (Dempster, 2008) to combine confidence distributions and how such a
rule would relate to the general combination framework of Singh et al. (2005).
This paper investigates these questions and in so doing links for the first time
the seemingly unrelated research directions of Dempster-Shafer calculus and
frequentist confidence distributions together through the combination.

The concept of confidence distributions has often been loosely referred
to as a sample-dependent distribution function that can represent confidence
intervals of all levels for a parameter of interest, see Cox (1958). It has a
long history, especially when its interpretation is fused with fiducial inference
(Fisher, 1973; Efron, 1993). Historically, it has been long considered as part of
fiducial inference, although recent developments tend to define and interpret
it within the frequentist framework without involving any fiducial reasoning,
see Xie and Singh (2012) for a comprehensive review on the concept. In
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recent years, the notion of confidence distribution has attracted a surge of
renewed attention. Together with the developments on generalized fiducial
inferences and belief functions under Dempster-Shafer theory, it represents an
emerging new research field to address problems where frequentist methods
with good properties were previously unavailable.

In this paper we link together seemingly unrelated research directions
of Dempster-Shafer calculus and confidence distributions. The paper is or-
ganized as follows. We first present in the remainder of this Introduction
section the basic ideas of confidence distribution, Dempster-Shafer calculus,
generalized fiducial inference and our extensions. Section 2 develops practi-
cal procedures for combining confidence distributions for either discrete or
continuous data based on the Dempster-Shafer recombination rule. Section 3
shows that the combined confidence distributions are asymptotically equiva-
lent to one of the methods proposed in Singh et al. (2005). Section 4 discusses
results of two simulation studies, as well as provides real data examples and
comparisons for the common mean problem and the odds ratio in 2×2 tables
using two real data sets from the literature. Technical proofs are provided in
Appendix.

In order to prevent confusion we use the following notation: Any object,
e.g., density or centering, that is connected to the confidence distribution
combined using the Dempster-Shafer recombination rule will have superscript
(DS). Similarly any object connected to the confidence distribution combined
using the rule of Singh et al. (2005) will have superscript (c).

1.1 Confidence Distributions

Let us assume that the observed data were generated from some distribution
with parameters (θ0, ξ0) ⊂ Θ×Ξ, where θ0 is a one-dimensional parameter of
interest and ξ0 is a nuisance parameter. Denote by X the random sample, x
its sample realization, and X the sample space. The following is a frequentist
definition formulated by both Schweder and Hjort (2002) and Singh et al.
(2001, 2005), where the parameters (θ0, ξ0) are treated as unknown fixed
(not random) quantities.

Definition 1. A sample-dependent function H(·,x) on Θ × X → [0, 1] is
called a confidence distribution (CD) for the parameter of interest θ, if
(i) H(θ,x) is a cumulative distribution function in θ for a given sample x
and (ii) H(θ0,X) follows the standard uniform U [0, 1] distribution under the
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sample probability measure P(θ0,ξ0).
The function H(θ,X) is an asymptotic confidence distribution if (ii) is

true only asymptotically.

The density h(θ,x) = (∂/∂θ)H(θ,x), if it exists, is called a confidence
density, also known as a CD density; see, e.g., Efron (1993); Singh et al.
(2007). For each fixed observed data x, Singh et al. (2007) and Xie and
Singh (2012) call a random variable Q ∈ Θ distributed according to the
confidence distribution function H(θ,x) a CD random variable.

The concept of confidence distribution is quite broad, it encompasses and
unifies a wide range of examples; from regular parametric cases to bootstrap
distributions, p-value functions, normalized likelihood functions and, in some
cases, Bayesian priors and Bayesian posteriors; see, e.g., Singh et al. (2005);
Xie and Singh (2012). In particular, generalized fiducial distribution as de-
scribed in Hannig et al. (2006); Hannig (2009, 2012); Wang et al. (2012) is
often an asymptotic confidence distribution.

Singh et al. (2005) proposed a simple but general recipe for combining
confidence distributions from, say k, independent studies, using a coordinate-
wise monotonic function from a k-dimensional cube [0, 1]k to the real lineR =
(−∞,∞). The recipe is an extension of the combining rules of the classical
methods of combining p-values. Specifically, let Hi(·,xi) be a confidence
distribution for θ from the sample xi of the ith study and suppose gc(u1,
. . . , uk) is a given continuous function on [0, 1]k → R1 which is nondecreasing
in each coordinate. Singh et al. (2005) proposed a general framework for
combining the k independent confidence distributions Hi(·,xi), i = 1, . . . , k:

H(c)(θ,x1,x2, . . . ,xk) = Gc{gc(H1(θ,x1), . . . , Hk(θ,xk))}. (1)

where the function Gc(·) is completely determined by the monotonic gc func-
tion with Gc(t) = P (gc(U1, . . . , Uk) ≤ t). Here, U1, . . . , Uk being independent
U [0, 1] random variables. The combined function H(c)(·) contains informa-
tion from all k studies and Singh et al. (2005) showed that the combined
function H(c)(·) is a confidence distribution for the parameter θ.

A nice feature of the combining method (1) is that it does not require
any information regarding how the input confidence distributions Hi(·) are
obtained, aside from the assumed independence. Xie et al. (2011) and sub-
sequent research showed that this general recipe and its extension can pro-
vide a unifying framework for almost all information combination methods
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used in current practice. This includes the classical approaches of combin-
ing p-values, e.g., Fisher, Stouffer, Tippett, Max and Sum methods, and the
modern model-based meta-analysis approach, e.g., fixed and random effects
models.

A special class of choices for gc illustrated by Singh et al. (2005) is:

gc(u1, . . . , uk) = F−1(u1) + . . .+ F−1(uk),

where F (·) is a given cumulative distribution function. In this case, Gc(·) is
the convolution of the k copies of F (·). When F (t) = exp(t), for t < 0, is
the cumulative distribution function of the negative exponential distribution,
the recipe (1) is an extension of Fisher’s way of combining p-values. When
F (t) = Φ(t), the cumulative distribution function of the standard normal,
we have

H(c)(θ,x1,x2, . . . ,xk) = Φ

(
1√
k

k∑
i=1

Φ−1{Hi(θ,xi)}
)
, (2)

which is an extension of Stouffer’s way of combining p-values. Xie et al.
(2011) suggested to include weights in the combination to improve efficiency.
In particular, (2.2) of Xie et al. (2011) suggested using

H(c)(θ,x1,x2, . . . ,xk) = Φ

(∑k
i=1 w

−1
i Φ−1{Hi(θ,xi)}

(
∑k

i=1w
−2
i )1/2

)
, (3)

where the weights wi could be sample dependent. In Section 4 of this article,

we focus on the special combination rule (3) with wi = τi
def
= {H−1

i (.75) −
H−1
i (.25)}/{2Φ−1(0.75)}, where H−1

i (β) is the β quantile of the confidence
distribution Hi(θ,xi) (i.e., it solves the θ equation Hi(θ,Xi) = β for a given
0 ≤ β ≤ 1). In this case (with sample-dependent weights and under mild
conditions), inference based on (3) is only asymptotically valid.

In Section 1.2 next, we provide an introduction of the Dempster-Shafer
theory of inference and demonstrate that confidence distributions as defined
in Definition 1 also fit into this framework. This relationship allows us to
derive an alternative approach for combining confidence distributions.

1.2 Dempster-Shafer theory
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In this section we provide a brief introduction of the Dempster-Shafer theory.
A more thorough introduction can be found in Dempster (2008) and Shafer
(1976). Some comments can be also found in Hannig (2009) and Zhang
and Liu (2011). The main purpose of the Dempster-Shafer (DS) theory is
to convert observed data and pivotal relationships to “upper” and “lower”
probability statements. Mathematically, these statement are derived with
the help of random subsets of the parameter space.

In particular, Dempster starts with an auxiliary equation

0 = a(X, θ,U)

relating the observable data vector X ∈ X , the parameters θ ∈ Θ and an
auxiliary random vector U with a fully known distribution independent of
any parameters, e.g., vector of independent standard uniforms U(0, 1). Tra-
ditionally, the auxiliary equation is either in the form of a data generating
equation

X = G(θ,U) (4)

or a pivotal equation U = H(X, θ) and is chosen based on the distribution
of the observable data.

DS theory then inverts the auxiliary equation into the multivalued map-
ping

M(U) = {(X, θ), a(X, θ,U) = 0}
that is called the DS model. After observing a particular data vector x we
constrain the multivalued mapping to a random set of parameters

Mx(U) = {θ, a(x, θ,U) = 0}.

For any assertion A ⊂ Θ about the parameters the DS theory then gives
three probabilities

p =
P (A ⊂Mx(U))

P (Mx(U) 6= ∅)
, q =

P (A{ ⊂Mx(U))

P (Mx(U) 6= ∅)
, r = 1− p− q. (5)

Here p is interpreted as the probability in support of A, q the probability in
contradiction to A and r the probability “do not know”, supporting neither
A nor A{.

By inspecting (5) we see that DS inference is based on random set Q̃ with
a distribution given by the conditional distribution of

Q̃ ∼ [Mx(U) | {Mx(U) 6= ∅}] , (6)
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so that p = P (Q̃ ⊂ A) and q = P (Q̃ ⊂ A{). In this article we will call Q̃
belief random set.

Let us demonstrate this on two simple examples. First, consider the
simple example of a single observation x from the N(θ, 1). The appropriate
data generating equation is X = θ + U , where U ∼ N(0, 1). After observing
x the constraint multivalued mapping is the singletonMx(U) = {x−U} and
Q̃ = {Q} where Q follows N(x, 1).

Second, let X1, . . . , Xn be a sample from Bernoulli(p). A possible data
generating equation is Xi = I(0,p)(Ui), i = 1 . . . , n, with Ui i.i.d. U(0, 1). After
observing the vector x the constraint multivalued mapping

Mx(U) =

{
p ∈ [0, 1] :

p ≤ Ui if xi = 0

p ≥ Ui if xi = 1

}
.

An exchangeability argument shows that the belief random set has the same
distribution as the random interval interval Q̃ = [U(x), U(x+1)] where U(x) is
the xth order statistics of U1, . . . , Un.

Dempster-Shafer theory provides a recombination rule to combine infor-
mation from several sources into a single object. We will state this recombi-
nation rule in the language of belief random sets. Let Q̃1, . . . , Q̃k be belief
random sets to be combined. The combined belief random set Q̃ will have
as its distribution the following conditional distribution

k⋂
i=1

Q̃i | {
k⋂
i=1

Q̃i 6= ∅}. (7)

Both (6) and (7) provide a general recipe. However, it is not always clear
how to implement them in any given particular situation. In particular the
conditional distribution in (6) and (7) is not uniquely defined if the condition
has probability zero due to the Borel paradox (Casella and Berger, 2002).
For this reason, Dempster-Shafer theory is predominantly applied to discrete
distributions where the problem of the Borel paradox does not arise. In the
next section we comment on how this limitation can be overcome using ideas
of generalized fiducial inference.

Confidence distributions can be formally put into the DS framework as
follows. Let H(θ,X) be a confidence distribution function. The equation
H(θ,X) = U is a pivotal equation, since by Definition 1 the random variable
U has the standard uniform distribution U(0, 1). Assuming that the solution
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to H(·,x) = u exists for the observed x and almost all u ∈ (0, 1), the belief
random set defined in (6) is a singleton Q̃ = {Q} where Q is a CD random
variable distributed according to H(·,x).

1.3 Generalized Fiducial Inference

The aim of generalized fiducial inference is to define a measure on the proba-
bility space by inversion from the structural generating equation (4). In this
section we explain two ideas of generalized fiducial inference pertinent to this
paper.

In the case when the belief random set is a singleton Q̃ = {Q} with prob-
ability 1, the generalized fiducial distribution is the same as the distribution
of Q. When the belief random set is not a singleton Hannig (2009) suggest
selecting one of the elements of Q̃ based on a predetermined, possibly ran-
dom rule. Hannig (2012) shows that for many popular models the effects of
this choice disappear asymptotically.

If the belief random set is an interval Q̃ = [Q−, Q+] with probability
1 then it is often recommended to maximize the variance of the fiducial
distribution by selecting either end of the interval with probability 0.5. This
selection is called “half correction” (Efron, 1998; Schweder and Hjort, 2002;
Hannig, 2009) and we will use it in Section 2.2.

A more serious issue arises when P (Mx(U) 6= ∅) = 0. In this case
the quantities in (5) and (6) are not well defined due to Borel paradox.
Hannig (2012) recommends a plausible resolution of this non-uniqueness by
discretizing the data.

In particular, define

Mx,ε(U) = {θ, ‖x−G(θ, U)‖∞ < ε}.

Here ‖v‖∞ is the l∞ norm of the vector v. Notice that for any observable x
and ε > 0 the P (Mx,ε(U) 6= ∅) > 0. The generalized fiducial distribution of
Hannig (2012) is the weak limit of the conditional distributions

Q̃ ∼ lim
ε→0

[Mx,ε(U) | {Mx,ε(U) 6= ∅}] .

Under weak assumptions Hannig (2012) shows the limit exists and pro-
vides a formula for the density of the generalized fiducial distribution. For
example, if θ ∈ R, x ∈ Rn and the inverse to (4) denoted by u = H(x, θ)
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exists, the density of generalized fiducial distribution simplifies to

r(θ) ∝ J(x, θ)f(x, θ),

where f(x, θ) is the likelihood and

J(x, θ) =

∥∥∥∥ ∂∂θG(θ,u)
∣∣∣
u=H(x,θ)

∥∥∥∥
1

where ‖v‖1 is the l1 norm of the vector v.
In Section 2.1 we will use the same discretization idea to resolve non-

uniqueness due to the Borel Paradox in the DS recombination rule (7).

2 Dempster-Shafer recombination rules

In this section we derive Dempster-Shafer based formulas for combining con-
fidence distributions derived from either discrete data or continuous data.
Continuous data are dealt with in Section 2.1 and discrete data are addressed
in Section 2.2.

2.1 Dempster-Shafer recombination rule for continu-
ous data

Let us assume that we have k confidence distributions for a single parameter
θ based on independent data sets. In particular we assume that we have
Hi(θ,xi), i = 1, . . . , k, each satisfying conditions (i) and (ii) of Definition 1.

In this section we will make the following additional assumptions for all
i = 1, . . . , k and an open A ∈ θ

(A1) For all ui and all x in a neighborhood of xi the equation Hi(·,x) = ui
has a unique solution Qi(ui,x).

(A2) The partial derivatives (∂/∂θ)Hi(θ,x) and the gradients ∇xHi(θ,x)
are continuous for all θ and all x in a neighborhood of xi.

(A3) For all θ ∈ A, the Euclidean norm (l2) of the gradient

Dxi
Hi(θ,xi) = ‖∇xHi(θ,xi)‖2 > 0. (8)
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We remark that the conditions (A1) – (A3) are well suited for confidence
distributions derived from continuously distributed data sets. They are sat-
isfied for most usual continuous distributions such as exponential family.
Discretely distributed data will be dealt with in the next section.

The belief random sets are Q̃i = {Qi(Ui,xi)}. Consequently, the Dempster-
Shafer recombination rule (7) gives the distribution of the combined belief
random set as

{Qi(Ui,xi)} | Q1(U1,x1) = · · · = Qk(Uk,xk), (9)

where Ui are i.i.d. U(0,1). Unfortunately the condition in (9) has probability
0 and therefore the conditional distribution in (9) is not unique due to the
Borel paradox.

We follow the spirit of the generalized fiducial inference in interpreting
(9). Using the Euclidean neighborhoods of xi denote

Q̃i,ε(ui,xi) = {θ : Hi(θ,x) = ui for some ‖x− xi‖2 < ε}.

Then define the distribution of the DS recombined belief random set as the
weak limit as ε→ 0 of conditional distributions

k⋂
i=1

Q̃i,ε(Ui,xi) | {
k⋂
i=1

Q̃i,ε(Ui,xi) 6= ∅}.

Continuity implies that Qi,ε(ui,xi) = [Q−i,ε(ui,xi), Q
+
i,ε(ui,xi)]. The exis-

tence of the total derivative, Cauchy-Schwartz inequality and some calculus
shows that the limiting belief random set Q̃(DS) = {Q(DS)}, where Q(DS) is
a random variable with density

h(DS)(θ|x1, . . . ,xk) ∝ L(θ|x1, . . . ,xk)J(θ|x1, . . . ,xk). (10)

Here

L(θ|x1, . . . ,xk) =
k∏
i=1

Dxi
Hi(θ,xi),

with Dxi
Hi(θ,xi) defined in (8), could be viewed as a profile likelihood in-

duced by the confidence distribution and

J(θ|x1, . . . ,xk) =
k∑
i=1

∣∣ ∂
∂θ
Hi(θ,xi)

∣∣
Dxi

Hi(θ,xi)

is similar to the fraction of Jacobians seen in Hannig (2012).
To demonstrate this rule we will consider two examples.
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Example 1. Let us consider k independent normal samples with common
unknown mean and known variances. Denote the standard normal density
and distribution function by ϕ(z) and Φ(z) respectively. The individual
confidence distributions based on each of the k samples are

Hi(µ,xi) = Φ

(
µ− x̄i
σi/
√
ni

)
, i = 1, . . . k,

respectively. The Dempster-Shafer recombined density (10) is proportional
to

h(DS)(µ|x̄1, . . . , x̄k) ∝
k∏
i=1

ϕ

(
µ− x̄i
σi/
√
ni

)
.

A simple calculation shows that the recombined confidence distribution is the
normal distribution with mean (

∑k
i=1 σ

−2
i nix̄i)/(

∑k
i=1 σ

−2
i ni) and variance

(
∑k

i=1 σ
−2
i ni)

−1. This is the same as the combined confidence distribution
using (3).

Example 2. Let us consider k independent normal samples with common
unknown mean and unknown unequal variances. Denote the density and
distribution function of the t distribution with m degrees of freedom by
fm(z) and Fm(z) respectively. The individual confidence distributions are

Hi(µ,xi) = Fni−1

(
µ− x̄i
si/
√
ni

)
, i = 1, . . . k,

respectively. Here x̄i and si are the sample mean and standard deviation of
the ith sample.

To compute the Dempster-Shafer recombined density (10) we evaluate

∂

∂µ
Hi(µ,xi) = fni−1

(
µ− x̄i
si/
√
ni

) √
ni
si

=

√
niCni

si

{
1 +

ni(µ− x̄i)2

(ni − 1)s2
i

}−ni/2

and

‖∇xi
Hi(µ,xi)‖2 = fni−1

(
µ− x̄i
si/
√
ni

)∥∥∥∥∇xi

µ− x̄i
si/
√
ni

∥∥∥∥
2

=
Cni

si

{
1 +

ni(µ− x̄i)2

(ni − 1)s2
i

}−(ni−1)/2

.
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Thus the DS combined density is

h(DS)(µ|x1, . . . ,xk) ∝

[
n∑
i=1

{
1

ni
+

(µ− x̄i)2

(ni − 1)s2
i

}−1/2
]

k∏
i=1

{
1 +

ni(µ− x̄i)2

(ni − 1)s2
i

}−(ni−1)/2

.

(11)
Surprisingly, this is not the same as the generalized fiducial distribution

for the common mean problem using the pooled data (Hannig et al., 2006).
Regardless, arguments similar to the arguments in Hannig et al. (2006) prove
(11) is an asymptotic confidence distribution.

We study small sample performance of (11) in Section 4.1. In particular
we compare (11) with the confidence distributions combined using methods
(2) and (3) in terms of coverage and median length of 95% confidence inter-
vals. A numerical example in Section 4.2 illustrates the use of this recombined
distribution on a real data example.

2.2 Dempster-Shafer recombination rule for discrete
data

When dealing with confidence distributions for discrete data, it is often the
case that there is a range of acceptable (approximate) confidence distribu-
tions; this is due to the discrete nature of the data. This uncertainty due
to discretization is often dealt with by splitting the difference and applying
the “half correction” (Efron, 1998; Schweder and Hjort, 2002; Hannig, 2009).
Here, “acceptable” means that these distributions can be utilized to make
valid inference, e.g., they are asymptotic confidence distributions.

Let us assume that we have Hi(θ,xi), i = 1, . . . , k, where the “half cor-
rected” CD has been obtained by averaging the right and left limit {H+

i (θ,xi)+
H−i (θ,xi)}/2, where both H±i (θ,xi) are approximate CDs, see Definition 1.
By the nature of “half correction”, any distribution function betweenH+

i (θ,xi)
and H−i (θ,xi) is an approximate confidence distribution and so we define the
belief random sets as

Q̃i(u,xi) = {θ : u ∈ [H+
i (θ,xi), H

−
i (θ,xi)]}

with the understanding that if a > b then we reverse the interval [a, b] to
[b, a].
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The Dempster-Shafer recombination rule (7) simplifies in this setting to
the conditional distribution of

k⋂
i=1

Q̃i(Ui,xi) | {
k⋂
i=1

Q̃i(Ui,xi) 6= ∅}, (12)

where Ui are i.i.d. U(0,1).
To simplify (12) into a workable formula we make the following assump-

tions for all i = 1, . . . , k and an open A ⊂ Θ.

(A1’) For all ui and the observed xi the equations H+
i (·,xi) = ui and

H−i (·,xi) = ui have a unique solution Q+
i (ui,xi) and Q−i (ui,xi) respectively.

(A2’) The partial derivatives (∂/∂θ)H+
i (θ,xi) and (∂/∂θ)H−i (θ,xi) are

continuous for all θ.
(A3’) For all θ ∈ A, the absolute value of the difference

Dxi
Hi(θ,xi) =

∣∣H−i (θ,xi)−H+
i (θ,xi)

∣∣ > 0. (13)

These assumptions are satisfied for the usual discrete families of distribu-
tions such as those based on exponential families.

Notice that the assumptions imply Q̃i(Ui,xi) = [Q−i (Ui,xi), Q
+
i (Ui,xi)]

modulo a possible reversal of the interval. Consequently the intersection⋂k
i=1 Q̃i(Ui,xi) is an interval or an empty set. A simple calculation shows

that the conditional distribution (12) is a random interval [Q(DS)−, Q(DS)+],
where Q(DS)± have a marginal density proportional to

h(DS)±(θ|x1, . . . ,xk) ∝ L(θ|x1, . . . ,xk)J
±(θ|x1, . . . ,xk)

respectively, with

L(θ|x1, . . . ,xk) =
k∏
i=1

Dxi
Hi(θ,xi),

Dxi
Hi(θ,xi) defined in (13),

J+(θ|x1, . . . ,xk) =
k∑
i=1

∣∣∣∣∣ ∂
∂θ
H+
i (θ,xi)

Dxi
Hi(θ,xi)

∣∣∣∣∣ and J−(θ|x1, . . . ,xk) =
k∑
i=1

∣∣∣∣∣ ∂
∂θ
H−i (θ,xi)

Dxi
Hi(θ,xi)

∣∣∣∣∣
respectively. The half corrected Dempster-Shafer recombined density is then

h(DS)(θ|x1, . . . ,xk) =
1

2

{
h(DS)−(θ) + h(DS)+(θ)

}
. (14)

We will demonstrate (14) on the following examples.
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Example 3. Let us assume that we have k independent binomial samples with
common probability of success p and number of trials n1, . . . , nk. Denote
the observed values by x1, . . . , xk. The half corrected confidence distribu-
tion (Efron, 1998; Schweder and Hjort, 2002; Hannig, 2009) is obtained from
Hi(p, xi) = Pp(Xi > xi) as

Hi(p, xi) +Hi(p, xi − 1)

2
=

∑
xi<k≤ni

(
ni
k

)
pk(1−p)ni−k+

1

2

(
ni
xi

)
pxi(1−p)ni−xi .

Thus H+
i (p, xi) = Hi(p, xi) and H−i (p, xi) = Hi(p, xi − 1). Notice that the

half corrected confidence distribution function is the 50-50 mixture of the
Beta(xi, ni − xi + 1) and Beta(xi + 1, ni − xi) distributions.

In order to evaluate (14) set x =
∑k

i=1 xi and n =
∑k

i=1 ni and compute

∂

∂p
H+
i (p, xi) =

pxi(1− p)ni−xi−1

B(xi + 1, ni − xi)
,

∂

∂p
H−i (p, xi) =

pxi−1(1− p)ni−xi

B(xi, ni − xi + 1)
,

DxiHi(p, xi) =

(
ni
xi

)
pxi(1− p)ni−xi .

From here we see immediately that h(DS)+(θ|x1, . . . , xk) and h(DS)−(θ|x1, . . . , xk)
are the density of Beta(x, n−x−1) and Beta(x−1, n−x) respectively. There-
fore the half corrected Dempster-Shafer recombined confidence distribution
function is given by∑

x<k≤n

(
n

k

)
pk(1− p)n−k +

1

2

(
n

x

)
px(1− p)n−x

which is the same as the half recombined confidence distribution computed
from the pooled sample which is known to have good small and large sample
properties (Hannig, 2009).

Example 4. In the meta-analysis literature, many articles have considered the
setting of performing a combined inference for the common odds ratio across
a series of 2× 2 tables from binomial clinical trials; see Liu et al. (2011), and
references therein. Consider a series of k independent 2 × 2 tables formed
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by binomial random variables (X1i, X0i) with probability of a success (p1i, p0i

and number of trials (n1i, n0i). Assume that the odds ratio

ψ =
p1i/(1− p1i)

p0i/(1− p0i)

remains constant across the tables. Set Ti = X1i +X0i and define

Hi(ψ, xi, ti) = Pψ(Xi > xi|Ti = ti).

We have H+
i (ψ, xi, ti) = Hi(ψ, xi, ti), H

−
i (ψ, xi, ti) = Hi(ψ, xi − 1, ti) and

DxHi(ψ, x, ti) = Pψ(Xi = x|Ti = ti) =

(
n1i

x

)(
n0i

ti−x

)
ψx∑Ui

k=Li

(
n1i

k

)(
n0i

ti−k

)
ψk
, (x = Li, . . . , Ui).

with Li = max(0, ti − n0i) and Ui = min(n1i, ti).
To simplify the formulas set F (ψ, n,m, t) =

∑U
k=L

(
n
k

)(
m
t−k

)
ψk. This is

a constant multiple of the hypergeometric 2F1 function. Notice that the
derivative F ′(ψ, n,m, t) = nF (ψ, n − 1,m, t − 1). By collecting the terms
together we obtain

h(DS)±(ψ) ∝ ψ
∑k

i=1 xi−1J±(ψ)∏k
i=1 F (ψ, n1i, n0i, ti)

(15)

where

J+(ψ) =
k∑
i=1

∣∣∣∣∣
Ui−xi∑
l=1

ψl
(
n1i

xi+l

)(
n0i

ti−xi−l

)(
n1i

xi

)(
n0i

ti−xi

) (
(xi + l)− n1iψF (ψ, n1i − 1, n0i, ti − 1)

F (ψ, n1i, n0i, ti)

)∣∣∣∣∣
and

J−(ψ) =
k∑
i=1

∣∣∣∣∣
Ui−xi∑
l=0

ψl
(
n1i

xi+l

)(
n0i

ti−xi−l

)(
n1i

xi

)(
n0i

ti−xi

) (
(xi + l)− n1iψF (ψ, n1i − 1, n0i, ti − 1)

F (ψ, n1i, n0i, ti)

)∣∣∣∣∣ .
If desired, the density of the confidence distribution for the log odds ratio

θ = logψ can be obtained by a simple change of variable.
We report results of a simulation study in Section 4.1 comparing con-

fidence distribution combined using (15) with the confidence distributions
combined using (3) in terms of coverage and median length of 95% confi-
dence intervals. A numerical example in Section 4.2 illustrates the use of
this recombined distribution on a real data example.
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3 Asymptotic results

It is often the case that each of the confidence distributions we are recombin-
ing is asymptotically normal; i.e. Hi(θ,xi) ≈ Φ

(
θ−Ti(xi)

ci

)
for some statistic

Ti(xi) and scaling ci. We explain in what sense the confidence distribution
should be asymptotically close to normal in the assumptions below. We show
that under the assumptions the confidence distribution combined using the
Dempster-Shafer rule (10) is asymptotically equivalent to the combination
rule (3). Additionally, we show that under the assumptions the Dempster-
Shafer recombined distribution is an asymptotic confidence distribution.

In the assumptions below we assume that we have a sequence of asymp-
totic confidence distributions Hi,n(θ,Xi,n) each based on a sample Xi,n gen-
erated from a distributions with a common parameter of interest θ0 and
increasing sample size (see Assumption 1a). We also assume that these sam-
ple sizes grow to infinity at the same rate (see Assumption 3). To highlight
the dependence of certain terms on sample sizes, we add subscript n’ to these
terms whenever it applies in this section. For instance, in this section and in
the Appendix we write Xi,n instead of Xi, Hi,n(θ,Xi,n) instead of Hi(θ,Xi),
etc.

The assumptions and the theorem are formulated for the continuous
case. In the discrete case we can modify the the Assumption 2a by slightly
modifying Assumption 2b so that it holds for both (∂/∂θ)H+

i,n(θ,xi,n) and

(∂/∂θ)H−i,n(θ,xi,n). Then (16) in the Theorem 1 will hold for both h
(DS)±
n .

Assumption 1. For all i = 1 . . . k as n→∞:

(a) Hi,n(θ0,Xi,n)
D−→ U(0, 1) and X1,n, . . . ,Xk,n are independent for each n.

(b) Hi,n(θ0,Xi,n)− Φ
(
θ0−ti,n(Xi,n)

ci,n

)
P−→ 0.

Assumption 2. For all i = 1, . . . , k as n→∞

(a)
∫

Θ

∣∣∣Dxi,n
Hi,n(θ,Xi,n)− 1

ci,n
ϕ
(
θ−ti,n(Xi,n)

ci,n

)∣∣∣ dθ P−→ 0.

(b)
∫

Θ

∣∣∣ ∂∂θHi,n(θ,Xi,n)− 1
ci,n
ϕ
(
θ−ti,n(Xi,n)

ci,n

)∣∣∣ dθ P−→ 0.

(c) ci,nDxi,n
Hi,n(θ,Xi,n) is bounded in probability.
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Assumption 3. For all i = 1, . . . , k, ci,n

(∑k
j=1 c

−2
j,n

)1/2

→ ri ∈ (0,∞) as
n→∞.

We will first state a theorem showing asymptotic normality of the DS
combined confidence distribution.

Theorem 1. Suppose Assumptions 1, 2, 3. Using tj,n(x) and cj defined in
Assumption 2 define the centering

T (DS)
n =

∑k
j=1 tj,n(Xj,n)c−2

j,n∑k
j=1 c

−2
j,n

.

Also denote by h̃n(θ|t) the density of N(t,
∑k

j=1 c
−2
j,n). Then∫

Θ

∣∣∣h(DS)
n (θ|X1,n, · · · ,Xk,n)− h̃n(θ|T (DS)

n )
∣∣∣ dθ P−→ 0 (16)

and the Dempster-Shafer recombined confidence distribution is an asymptotic
confidence distribution.

The combined confidence distribution using the Dempster-Shafer recom-
bined rule is

H(DS)
n (θ,X1,n, · · · ,Xk,n) =

∫ θ

−∞
h(DS)
n (η|X1,n, · · · ,Xk,n)dη.

The following theorem states that, under certain conditions, the confidence
distribution H

(c)
n (θ,X1,n,X2,n, . . . ,Xk,n) obtained by the CD combination

recipe (3) is asymptotically equivalent to the recombination confidence dis-

tribution H
(DS)
n (θ,X1,n, · · · ,Xk,n) obtained by the Dempster-Shafer recom-

bination rule.

Theorem 2. Suppose the assumptions in Theorem 1 holds. We have τi,n =
ci,n + op(1/n), for each i = 1, 2, . . . , K and∣∣H(DS)

n (θ,X1,n, · · · ,Xk,n)−H(c)
n (θ,X1,n,X2,n, . . . ,Xk,n)

∣∣ P−→ 0. (17)
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We remark that the Assumptions 1-3 required in the two theorems are
trivially satisfied for the normal example (Example 1) in Section 2.1. Argu-
ments similar to the proof of Proposition 3 of Hannig et al. (2006) show that
the assumptions cover the t example (Example 2) and many other examples
of likelihood inference where the corresponding likelihood is asymptotically
normally distributed. The assumptions do not cover examples of likelihood
inference where the corresponding likelihood is not asymptotically normally
distributed such as inference about parameters of a uniform distribution.

4 Numerical examples

In this section, we use both simulation and real data sets to study the prop-
erties of the combination rule based on Dempster-Shafer recombination de-
veloped in Section 2. The results are compared with corresponding CD com-
bination methods.

4.1 Simulation studies

Example 5. This is a continuation of Example 2, the common mean problem,
in Section 2.1.

We simulate k independent samples of sizes ni from N(µ, σ2
i ). Without

loss of generality, the common mean parameter µ is set to be µ = 0. Then,
based on these k independent normal samples and using (11) based on the
Dempster-Shafer recombination rule, we obtain a 95% confidence interval
for the common mean parameter µ. We repeat the simulation 1000 times,
and computed the empirical coverage rate (the percentage of times that the
1000 confidence intervals cover the true µ = 0) and the median length of the
1000 confidence intervals. The same 1000 data sets are analyzed using the
corresponding normal-based and asymptotically equivalent CD combination
method (3) and the no-weight rule (2).

In our simulation study, the number of studies is k = 9. We have con-
sidered three × two settings of parameters and sample sizes. The sample
sizes n1 = n2 = . . . = n9 ≡ n have three choices: I) n = 5, II) n = 25 and
III) n = 125, representing small, medium and large sample sizes. In each of
the three sets of sample sizes n, we consider two sets of variances: (a) equal
variances σ2

1 = σ2
2 = . . . = σ2

9 ≡ 0.01 and (b) unequal variances (σ2
1, . . . , σ

2
9) =

(0.0007, 0.0007, 0.0013, 0.0009, 0.0007, 0.0004, 0.0004, 0.0002, 0.0004). The vari-
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DS-recombination method Weighted CD-method No-weight CD-method Relative length
Setting Coverage Length Coverage Length Coverage Length CDw vs DS CDw/o vs DS CDw/o vs CDw

I-(a) 92% 6.36×10−3 86% 5.91×10−3 95% 6.19×10−3 7.2% 2.7% -4.7%
II-(a) 95% 2.68×10−3 95% 2.63×10−3 95% 2.65×10−3 1.8% 0.9% -0.9%

III-(a) 95% 1.17×10−3 94% 1.17×10−3 95% 1.17×10−3 0.4% 0.2% -0.2%
I-(b) 93% 2.80×10−4 89% 2.59×10−4 94% 3.12×10−4 7.5% -11.7% -20.8%

II-(b) 95% 1.12×10−4 95% 1.10×10−4 94% 1.29×10−4 2.1% -14.6% -17.1%
III-(b) 95% 4.91×10−5 94% 4.85×10−5 96% 5.67×10−5 1.3% -15.4% -16.9%

Table 1: Numerical comparison of DS versus CD for the common mean
problem. We report the empirical coverage, median length of 95% CIs and
relative median length (1− a/b) for method-a versus method-b.

ances in (b) mimic a real data set of a key comparison by Strawderman and
Rukhin (2010) studied in Section 4.2. The numerical results are reported in
Table 1.

Table 1 suggests that the approach applying the Dempster-Shafer recom-
bination rule and the norm-based weighted CD combination approach (3)
have almost the identical performance when sample sizes are large. The
weighted CD combination approach (3) typically provides shorter confidence
intervals, but when the sample sizes are small the approach has an under-
coverage problem. The approach using the Dempster-Shafer recombination
rule also has a slight under-coverage problem when sample sizes are small, but
their performance are better than the weighted CD combination approach
(3). The norm-based no-weight CD combination approach (2) can produce
intervals at right coverage at all cases. But when samples have heterogeneous
variances, the no-weight CD-combination approach (2) produces longer con-
fidence intervals, suggesting a loss of efficiency. This loss of efficiency will
not be diminish even when sample sizes go to ∞.

Example 6. This is a continuation of Example 4, common odds ratio, in
Section 2.2.

We simulate k sets of independent sample (x1i, x2i) from two independent
Binomial distributions x1i ∼ Binomial(n1,i, p1i) and x0i ∼ Binomial(n0,i, p0i),
for i = 1, . . . , k. To ensure that we have the common odds ratio, say ψ, across
all k studies, we set values for ψ and p1i, and compute p0i by p0i = eπ0i/(1+eπ0i)
with π0i = {p1i/(1− p1i)}/ψ, for i = 1, . . . , k. Then, based on these k sets of
paired binomial samples and using (15) based on the Dempster-Shafer recom-
bination rule, we obtain a 95% confidence interval for the log common odds
ratio log(ψ). We repeat the simulation 1000 times, and compute the empir-
ical coverage rate and the median length of the 1000 confidence intervals.
The same 1000 data sets are analyzed using the asymptotically equivalent
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CD combination method (3).
In this simulation example, the number of studies is k = 6. We have

considered three × five = 15 different settings of parameters and sample
sizes. Five values of the true common odds ratio ψ are considered: ψ =
0, 3, 6, 1/3, 1/6. For each of the five ψ values, we have considered thee sam-
ple sizes and p1i settings: I) n1 = . . . = n6 = 20, m1 = . . . = m6 = 20,
(p11, p12, p13, p14, p15, p16) = (0.10, 0.20, 0.10, 0.05, 0.10, 0.15); II) (n1, n2, n3, n4, n5, n6) =
(39, 44, 107, 103, 110, 154), (m1,m2,m3,m4,m5,m6) = (43, 44, 110, 100, 106, 146),
(p11, p12, p13, p14, p15, p16) = (0.0513, 0.0909, 0.0561, 0.0680, 0.0636, 0.0714); III)
n1 = n2 = . . . = n6 = 200, m1 = m2 = . . . = m6 = 200, (p11, p12, p13, p14, p15, p16) =
(0.10, 0.20, 0.10, 0.05, 0.10, 0.15). The numerical results are reported in Ta-
ble 2.

Table 2 suggests that the approach applying the Dempster-Shafer recom-
bination rule and the norm-based weighted CD combination approach (3)
provide more or less very similar results, in terms of the coverage rate and in-
terval length. The results are getting closer and closer when the sample sizes
increases. Unlike the previous example, the approach based on DS recombi-
nation rule produces slightly shorter intervals in majority settings, although
the computing based on DS recombination rule is much more complicated in
the discrete settings. The equivalent CD recombined method applies the half
correction to each of the individual confidence distribution before combining
them while the Dempster-Shafer rule first recombines the confidence random
sets and then applies the half correction to the final results.

4.2 Real data examples

We end with analysis of two real data sets. One concerns pp′-DDT levels in
fish-oil measured by nine laboratories (Webb et al., 2003; Strawderman and
Rukhin, 2010) and the other is an analysis of mortality data for control and
intravenous lidocaine treatment from six studies (Normand, 1999).

For increased clarity, we illustrate our numerical results by plotting confi-
dence curves (Birnbaum, 1961). For a given confidence distribution H(θ,x),
its corresponding confidence curve is defined as

CV (θ) = 1− 2|H(θ,x)− 0.5| = 2 min

{
H(θ,x), 1−H(θ,x)

}
.

On a plot of CV (θ) versus θ, a line across the height (y-axis) of α, for any
0 < α < 1, intersects with the confidence curve at two points, and these
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DS-recombination method Weighted CD-method Relative length
Setting Odds Ratio Coverage Length Coverage Length CD vs DS

I 1 96% 1.66 98% 1.71 3.3%
II 1 95% 0.959 97% 0.981 2.3%

III 1 95% 0.505 95% 0.509 0.7%
I 3 96% 2.24 97% 2.12 -5.3%

II 3 95% 1.33 97% 1.35 1.4%
III 3 96% 0.669 97% 0.676 1.1%

I 6 98% 3.23 91% 2.35 -27.2%
II 6 94% 1.78 93% 1.68 -5.5%

III 6 96% 0.861 95% 0.868 0.8%
I 1/3 96% 1.44 97% 1.47 2.5%

II 1/3 95% 0.802 96% 0.813 1.3%
III 1/3 95% 0.442 95% 0.444 0.5%

I 1/6 95% 1.40 97% 1.42 1.7%
II 1/6 96% 0.765 95% 0.772 0.9%

III 1/6 94% 0.432 95% 0.433 0.4%

Table 2: Numerical comparison of DS versus CD for the 2× 2 table setting.
We report the empirical coverage, median length of 95% CIs and the relative
median length (1− a/b) for method-a (CD) versus method-b (DS).

two points correspond (on x-axis) to a 1 − α level, equal tailed, two sided
confidence interval for θ. Thus, a confidence curve is a graphical device that
shows confidence intervals of all levels; see, e.g. Birnbaum (1961); Bender
et al. (2005). The mode of a confidence curve plot θ̂ = arg maxθ CV (θ) =
H−1(1/2) is the median of the confidence distribution. It provides a point
estimator which is typically a median unbiased (Birnbaum, 1961) and con-
sistent under some mild condition (Singh et al., 2007; Xie and Singh, 2012).

Example 7. An interlaboratory study CCQM-K21 involving nine national
laboratories across nine different countries (Webb et al., 2003) reported con-
centrations of pesticide pp′-DDT in fish-oil collected by the nine national
laboratories, with each making replicate measurements on aliquots of fish-
oil. Table 3 is a reproduction of the nine means and standard errors reported
in Table 1a of Webb et al. (2003), along with the reported sample sizes ni.
A consensus (or reference) value is required to be established by combining
information from the results of these nine laboratories. Strawderman and
Rukhin (2010) studied the point estimation problem for the data. We pro-
vide here combined confidence distributions (distributional estimation) using
the the Dempster-Shafer recombination rule (11), the asymptotically equiv-
alent CD combination rule (3), and also the CD combination rule without
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Sample size (ni) 4 3 4 5 4 4 4 4 4
Mean (µgg−1) .0732 .0794 .0756 .0736 .0711 .0739 .0725 .0724 .0768
SE (µgg−1) .0007 .0007 .0013 .0009 .0007 .0004 .0004 .0002 .0004

Table 3: CCQM-K21 data on pp′-DDT in fish-oil for nine laboratories.

any weight (2).
Figure 1 plots the confidence curves obtained from the Dempster-Shafer

recombination rule, the two CD combination methods and the individual
confidence curve from data collected in each laboratory. The plots indicate
that all combination rules provide a good aggregation of the information
for the nine individual laboratories. The combined confidence curves by the
three methods appear close, although the recombined confidence curve by
the Dempster-Shafer recombination rule is slightly skewed and also slighted
shifted to the left and the combined confidence curve by the no-weight CD
combination (2) is slightly wider and also slightly shifted to the right. The
point estimate of the common mean by the three methods are 0.0727, 0.0732
and 0.0736, with corresponding 95% confidence intervals (0.0723, 0.0736),
(0.0726, 0.0740) and (0.0728, 0.0745), respectively.

Example 8. Table 1 of Normand (1999) contained mortality data for control
and intravenous lidocaine treatment from k = 6 studies. The sample sizes of
these six studies range from 82 to 300 heart attack patients. A parameter of
interest is the logarithm of the odds ratio parameter of the treatment versus
control. In this example, we obtain and compare the combined estimators of
the common odds ratio using both the combination rule based on Dempster-
Shafer recombination (15) and the normal based CD combination rule (3).

Figure 2 below plots the confidence curves obtained from the Dempster-
Shafer recombination rule (15) and its asymptotically equivalent CD com-
bination (3), as well as the individual confidence curve from data collected
in each clinical trial. For each individual trial, the confidence distribution
used is the p-value function from the left-sided test using the Fisher exact
test but with half correction, as stated in Section 2.2. Based on Figure 2,
we see again that both combined inferences provide a good aggregation of
of the information for the six individual clinical trials. Again, the combined
confidence curves by the two different methods are very similar. The point es-
timate of the common log odds ratio by the two methods are 0.575 and 0.568,
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Figure 1: The comparison of confidence curves for combination of several con-
fidence distributions for the common normal mean for data in Example 7.
The plot displays confidence curves combined using the Dempster-Shafer
based rule (11), the asymptotically equivalent normal based CD combination
(3), the CD combination rule without weight (2) and the individual confi-
dence curves that are being combined. The red circles denote the median of
each of the confidence distributions. 23



with corresponding 95% confidence intervals (0.010, 1.126) and (0.033, 1.142),
respectively.
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Appendix: Proofs

Proof of Theorem 1. Assumption 1 and some algebra imply that ci,n
−1{ti,n(Xi,n)− θ0}

D−→
N(0, 1). Consequently (

∑k
j=1 c

−2
j,n)1/2(T

(DS)
n − θ0)

D−→ N(0, 1).
We will now investigate the right-hand-side of (10). Define Xn = (X1,n, . . . ,Xk,n)

and

Kn(Xn) = (2π)−
k−1
2 exp

 k∑
i=1

{
ti,n(Xi,n)− T (DS)

n

}2

2c2
i,n

 .

Notice that Kn(Xn) is bounded in probability and

h̃n(θ|T (DS)
n ) = Kn(Xn)

(
k∑
i=1

c−2
i,n

)1/2 n∏
i=1

ϕ

(
θ − ti,n(Xi,n)

ci,n

)
.

Fix j = 1, . . . , k and denote the term

h̃
(DS)
j,n = Kn(Xn)

(
k∑
i=1

c−2
i,n

)1/2

cj,n

∣∣∣∣ ∂∂θHj,n(θ,Xj,n)

∣∣∣∣ k∏
i=1
i 6=j

∣∣ci,nDxi,n
Hi,n(θ,Xi,n)

∣∣ .
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Figure 2: The comparison of confidence curves for combination of several
confidence distributions for the logarithm of the odds ratio for data in Ex-
ample 8. The plot displays confidence curves combined using the Dempster-
Shafer based rule (15), the normal based CD combination rule (3) and the
individual confidence curves that are being combined. The red circles denote
the median of each of the confidence distributions.
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Compute∣∣∣h̃(DS)
j,n − h̃n(θ|T (DS)

n )
∣∣∣

≤
k∏
i=1
i 6=j

∣∣ci,nDxi,n
Hi,n(θ,Xi,n)

∣∣
×Kn(Xn)cj,n

(
k∑
j=1

c−2
j,n

)1/2 ∣∣∣∣ ∂∂θHj,n(θ,Xj,n)− 1

cj,n
ϕ

(
θ − tj,n(Xj,n)

cj,n

)∣∣∣∣

+
k−1∏
i=1
i 6=j

∣∣ci,nDxi,n
Hi,n(θ,Xi,n)

∣∣ϕ(θ − tj,n(Xj,n)

cj,n

)

×Kn(Xn)ck,n

(
k∑
j=1

c−2
j,n

)1/2 ∣∣∣∣ ∂∂θHk,n(θ,Xk,n)− 1

ck,n
ϕ

(
θ − tk,n(Xk,n)

ck,n

)∣∣∣∣
+

k−2∏
i=1
i 6=j

∣∣ci,nDxi,n
Hi,n(θ,Xi,n)

∣∣ϕ(θ − tk,n(Xk,n)

ck,n

)
ϕ

(
θ − tj,n(Xj,n)

cj,n

)

×Kn(Xn)ck−1,n

(
k∑
j=1

c−2
j,n

)1/2 ∣∣∣∣ ∂∂θHk−1,n(θ,Xk−1,n)− 1

ck−1,n

ϕ

(
θ − tk−1,n(Xk−1,n)

ck−1,n

)∣∣∣∣
+ . . .

integral of which is converging to 0 by Assumption 2. Equation (16) fol-
lows by uniform integrability arguments (Durrett, 2005, Theorem 5.2) and
summing over j.

To prove that the Dempster-Shafer recombined confidence distribution is
an asymptotic confidence distribution notice that∫ θ0

−∞
h(DS)
n (θ|X1,n, · · · ,Xk,n) dθ =

∫ θ0

−∞
h̃n(θ|T (DS)

n ) dθ + εn,

where

|εn| ≤
∫

Θ

∣∣∣h(DS)
n (θ|X1,n, · · · ,Xk,n)− h̃n(θ|T (DS)

n )
∣∣∣ dθ P−→ 0
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and ∫ θ0

−∞
h̃n(θ|T (DS)

n ) dθ = Φ{(
k∑
j=1

c−2
j,n)1/2(θ0 − T (DS)

n )} D−→ U(0, 1),

since (
∑k

j=1 c
−2
j,n)1/2(T

(DS)
n − θ0)

D−→ N(0, 1). The statement now follows.

Proof of Theorem 2. For a given β, 0 < β < 1, by basic calculations and
Assumption 2b, we have∣∣∣Hi,n

(
tj,n(Xi,n) + ci,nΦ−1(β)

)
− β

∣∣∣
=
∣∣∣ ∫ ti,n(Xi,n)+ci,nΦ−1(β)

−∞
dHi,n(θ,Xi,n)−

∫ ti,n(Xi,n)+ci,nΦ−1(β)

−∞

1

ci,n
ϕ

(
θ − ti,n(Xi,n)

ci,n

)
dθ
∣∣∣

≤
∫ ti,n(Xi,n)+ci,nΦ−1(β)

−∞

∣∣∣ ∂
∂θ
Hi,n(θ,Xi,n)− 1

ci,n
ϕ

(
θ − ti,n(Xi,n)

ci,n

) ∣∣∣dθ
≤
∫

Θ

∣∣∣ ∂
∂θ
Hi,n(θ,Xi,n)− 1

ci,n
ϕ

(
θ − ti,n(Xi,n)

ci,n

) ∣∣∣dθ P−→ 0.

Since we assume Hi(θ,Xi,n) is continuous in θ, we have H−1
i (β) = ti,n(Xi,n)+

ci,nΦ−1(β)+op(1). Thus, τi,n = {H−1
i,n (.75)−H−1

i,n (.25)}/{2Φ−1(.75)} = ci,n+
op(1). The first statement of the theorem follows.

Now, write εi,n = Hi,n(θ0,Xi,n) − Φ[{θ0 − ti,n(Xi,n)}/ci,n]. By Assump-

tion 1b, εi,n
P−→ 0. From Lemma 1 of Xie et al. (2011) and also noting that

τi,n = ci,n + op(1), we have∣∣∣∣∣H(c)
n

(
θ,X1,n,X2,n, . . . ,Xk,n

)
− Φ{(

k∑
j=1

c−2
j,n)1/2(T (DS)

n − θ0)}

∣∣∣∣∣
=

∣∣∣∣∣Φ
(∑k

i=1 τ
−1
i,n Φ−1{Hi(θ,X1,n)}
(
∑k

i=1 τ
−2
i,n )1/2

)
− Φ

(∑k
i=1 c

−1
i,nΦ−1{Φ({θ − ti,n(Xi,n)}/ci,n)}

(
∑k

i=1 c
−2
i,n)1/2

)∣∣∣∣∣
≤

k∑
i=1

εi,n + op(1)
P−→ 0.

Thus, H
(c)
n

(
θ,X1,n,X2,n, . . . ,Xk,n

)
and

Φ{(
k∑
j=1

c−2
j,n)1/2(θ − T (DS)

n )} =

∫ θ

−∞
h̃n(η|T (DS)

n ) dη
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are asymptotically equivalent. The second statement of the theorem follows
from equation (16).
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