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Abstract
A measurand θ of interest is the ratio of two other quantities, µp and µq .
A measurement experiment is conducted and results P and Q are obtained
as estimates of µp and µq . The ratio Y = P/Q is generally reported as the
result for the measurand θ . In this paper we consider the problem of
computing an uncertainty interval for θ having a prescribed confidence level
of 1 − α. Although an exact procedure, based on an approach due to Fieller,
is available for this problem, it is well known that this procedure can lead to
unbounded confidence regions in certain situations. As a result, practitioners
often use various non-exact methods. One such non-exact method is based
on the propagation-of-errors approach described in the ISO Guide to the
Expression of Uncertainty in Measurement to calculate a standard
uncertainty uy for Y . A confidence interval for θ with a presumed confidence
level of 95% is obtained as [Y − 2uy, Y + 2uy]. In this paper we develop a
highly accurate approximation for the coverage probability associated with
the interval [Y − kuy, Y + kuy]. In particular, we demonstrate that, using
n − 1 degrees of freedom for uy , and the corresponding Student’s t coverage
factor k = t1−α/2 : n−1 rather than k = 2, leads to uncertainty intervals
[Y − t1−α/2 : n−1uy, Y + t1−α/2 : n−1uy], that are nearly identical to Fieller’s
exact intervals whenever the measurement relative uncertainties are small, as
is the case in most metrological applications. In addition, they are easy to
compute and may be recommended for routine use in metrological
applications. Improved coverage factors k can be derived based on the
results of this paper for those exceptional situations where the t-interval may
not have coverage probability sufficiently close to the desired value.

1. Introduction

There are many instances where a physical quantity of interest
is defined as a ratio of two other quantities µp and µq .
A measurement experiment provides values P and Q as the
measured results for µp and µq , and the measurand of interest
is estimated by Y = P/Q. Furthermore, it is quite common to
use a method of propagation of errors based on a first-order
Taylor-series expansion for the calculation of the standard
uncertainty associated with Y .

Calculating confidence intervals for ratios, particularly
when the numerator and denominator estimates are distributed

as Gaussian random variables, is a problem that has attracted
the attention of numerous researchers [1–7]. The method of
propagation of errors proposed in the ISO Guide to the
Expression of Uncertainty in Measurement (ISO GUM) [8],
provides formulae for computing an approximate standard
uncertainty for a ratio, but specifies neither how an associated
number of degrees of freedom is to be computed nor how an
uncertainty interval is to be obtained for ratios. Metrologists
routinely use a coverage factor of 2 to multiply the standard
uncertainty and obtain an expanded uncertainty, for calculating
a confidence interval for the ratio quantity. This confidence
interval is presumed to have a level of confidence equal to 95%.
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In the context of estimation of a ratio, the following two
distinct scenarios must be recognized.

(a) Independent measurements: independent measurement
experiments are conducted for measuring µp and µq ,
respectively. There are no common error components in
the measured results P and Q. Consequently, P and Q

may be assumed to be statistically independent.
(b) Dependent measurements: µp and µq are measured in the

course of a single measurement experiment. It is expected
that common sources of error exist that contribute to errors
in P and Q. Consequently, there is statistical dependence
between the results P and Q.

It turns out that an exact confidence interval procedure has
been discussed in the statistical literature for the dependent
case, based on what is now referred to as Fieller’s method [1].
In this paper we compare, using a statistical simulation study,
the performance of the exact Fieller uncertainty interval for
θ with the uncertainty interval calculated using the standard
uncertainty uy based on propagation of errors and a coverage
factor k = 2. The latter approach is referred to as POE2. In
the process, we make the observation that use of a coverage
factor k = t1−α/2 : n−1 rather than k = 2, with uy , improves
the performance of the POE2 interval. This modified interval
will be referred to as a POEt interval with n − 1 degrees of
freedom.

This paper is organized as follows. In section 2, we
define the statistical model used to describe the results from
the measurement experiment. We give detailed instructions
for calculating uncertainty intervals using each of the three
methods—POE2, POEt , and Fieller’s interval. We also
develop approximate bounds for the coverage probability
associated with POE-type intervals with any specified coverage
factor k. In section 3 we explain how we conducted our
statistical simulation study and the different parameters that
were varied in the study. Furthermore, we discuss the results
and make recommendations. The final section summarizes our
results.

2. The statistical model

Let θ be a measurand of interest. Suppose

θ = µp

µq

,

where µp and µq are quantities that are measured directly with
P and Q denoting the corresponding results. We write

P − µp = ε and Q − µq = δ,

where ε and δ are measurement errors in P and Q, respectively.
Suppose the ensemble of possible errors ε and δ are described
by a bivariate probability density function. The measurand θ

is generally estimated by Y , where

Y = P

Q
.

For this result to be useful one also needs to quantify the
associated uncertainty. This is typically accomplished by
providing a quantity called the standard uncertainty for Y ,

denoted by uy . According to the ISO GUM, uy may be
calculated using the method of propagation of errors.

The standard uncertainty is often used to compute a
confidence interval [L, U ] for the measurand, in this case θ ,
by using the formula

L = Y − k uy and U = Y + k uy,

where L is the lower limit and U is the upper limit of the
confidence interval. The quantity k is called a coverage factor.
The value of k depends on the confidence level to be associated
with the interval. Sometimes a coverage factor of k = 2 or
k = 3 is used with implied confidence levels of 95% and
99%, respectively. However, the actual confidence level will
generally differ from the nominal value, but the difference is
often, but not always, small enough to be of no consequence
in most applications.

2.1. Propagation of errors

Suppose the errors ε and δ have zero means and standard
deviations equal to σp/

√
n and σq/

√
n, respectively, where

n is the number of independent repeat observations (Pi, Qi)

whose means are the reported results P and Q, respectively.
Suppose also that the correlation between P and Q is ρ.
Here σp and σq are the standard deviations associated with
a single measurement of µp and µq . In certain circumstances,
it may be known that ρ is zero, particularly when there are no
common sources of error during the measurements of µp and
µq . However, in this paper, we do not impose any restrictions
on ρ.

Let us denote the usual sample estimate of σp and σq by
Sp and Sq , respectively. The estimate of ρ is given by ρ̂, where

ρ̂ =
∑n

i=1(Pi − P)(Qi − Q)/(n − 1)

SpSq

.

There are ν = n − 1 degrees of freedom associated with Sp,
Sq , and ρ̂. The propagation-of-errors method leads to the
following formula for the standard uncertainty of Y :

uy = P√
nQ

[
S2

p

P 2
+

S2
q

Q2
− 2ρ̂SpSq

PQ

]1/2

. (1)

In the appendix we show that, when (P, Q)t has a bivariate
Gaussian distribution, it is reasonable to associate ν = n − 1
degrees of freedom with uy . The ISO GUM does not give
explicit procedures for calculating a number of degrees of
freedom for uy . This is because the commonly used Welch–
Satterthwaite formula applies only when the expression for uy

is a linear function of a number of sample variance terms (with
no correlation term being present).

The coverage probability associated with the interval
[Y −kuy, Y +kuy] depends on the sample size n, the correlation
coefficient ρ, and the coefficients of variation of P and Q,
which are denoted by κp = σp/µp and κq = σq/µq . We
use p(n, κp, κq, ρ), or simply p, to denote this coverage
probability. It can be evaluated by the use of either a numerical
double integration or a Monte Carlo approach. Alternatively,
a large sample approximation for p, derived using asymptotic
methods, can be used. See theorem 1 in the appendix. The

178 Metrologia, 40 (2003) 177–183



Uncertainty calculation for the ratio of dependent measurements

following simple bounds are a direct consequence of this
theorem.

The coverage probability p of the POE confidence interval
using k as the coverage factor, lies approximately between pL

and pU , where

pL = Pr(|Tn−1| � k) + 4 l(n, k)c1(n, k) k3κ2
q ,

pU = Pr(|Tn−1| � k) + 4 l(n, k)c2(n, k) k3κ2
q

(2)

and

l(n, k) = 1

8
√

π


(n/2)


((n + 1)/2)

(n − 1)(n+1)/2

(n − 1 + k2)(n+5)/2
. (3)

Tn−1 is a student’s t random variable with n − 1 degrees of
freedom, c1(n, k) = min{4n − 4 − k2(n − 2), n − 1 + k2},
and c2(n, k) = max{4n − 4 − k2(n − 2), n − 1 + k2}. In
particular, when k2 > 3 (as is often the case in practical
applications), we have c1(n, k) = 4n − 4 − k2(n − 2) and
c2(n, k) = n − 1 + k2. The bounds (2) work well for all
values κp, κq , and ρ. The values of 4l(n, k)c1(n, k)κ2

q and
4l(n, k)c2(n, k)κ2

q are generally very small. Thus, a coverage
factor k obtained from a t-distribution with n − 1 degrees of
freedom will provide an interval with coverage probability very
nearly equal to the nominal value in most practical applications.
Tables 1 and 2 display pL and pU for the 95% POE2 and POEt

intervals for some values of n and for κq = 10% and κq = 50%,
respectively.

The bounds in (2) allow us to obtain coverage factors k

such that the resulting interval will have actual coverage equal
to or greater than the nominal value. These coverage factors
are obtained by solving for values of k for which the lower
bound equals the nominal confidence level. However, tables 1
and 2 indicate that the bounds for the coverage probability of
the POEt intervals are very tight and are close to the nominal
value, hence there is no need to use these bounds to improve
the coverage factor k = t1−α/2 : n−1 for this problem.

Example. We use an example from the ISO GUM annex H.2
to illustrate the calculation of POE2 and POEt and compare

Table 1. Lower and upper bounds for the coverage probability for
the POE2 and POEt intervals with κq = 10%.

POE2 POEt

n pL pU pL pU

3 0.816 70 0.816 87 0.949 95 0.950 09
5 0.884 00 0.884 12 0.949 92 0.950 14

10 0.923 48 0.923 55 0.949 97 0.950 09
30 0.945 06 0.945 08 0.950 00 0.950 02

Table 2. Lower and upper bounds for the coverage probability for
the POE2 and POEt intervals with κq = 50%.

POE2 POEt

n pL pU pL pU

3 0.822 67 0.825 76 0.948 82 0.952 31
5 0.886 81 0.889 74 0.947 92 0.953 42

10 0.924 26 0.926 08 0.949 22 0.952 23
30 0.945 13 0.945 66 0.959 98 0.950 59

the results. In this example, the amplitude V (in V)
of a sinusoidally alternating potential difference across the
terminals of a circuit element, the amplitude I (in mA) of
the alternating current passing through it, and the phase-
shift angle φ (in rad) of the alternating potential difference
relative to the alternating current are the primary quantities
that are measured. The measurands of interest are the three
impedance components, which are functions of the true values
of V , I , and φ. For illustrative purposes, we consider only one
of the measurands, which is given by µz = µV /µI .

Five sets of simultaneous observations (Vi, Ii, φi),
i = 1, . . . , 5, are available. The summary statistics associated
with (V , I ) are shown below:

V̄ = 4.999, SV = 0.007 176 4,

Ī = 19.661, SI = 0.021 177 8,

ρ̂(V , I ) = −0.3553.

The measurand µz is estimated by Z = V̄ /Ī = 254.2597 �.
Based on (1), we obtain the standard uncertainty of Z, uz =
0.2363 �. The 95% POEt confidence interval on µz is found
to be (253.6035, 254.9159) �, while the 95% POE2 interval
is (253.787, 254.7324) �. The actual coverage probability
of the POE2 interval, based on simulation results reported in
section 3, is about 0.88. Therefore, it is not surprising that the
POE2 interval is shorter. Also, the bounds for p based on the
asymptotic theory, shown in tables 1 and 2, are in excellent
agreement with the simulation results.

Since an exact interval procedure is available for the ratio
quantity being discussed here, it is of interest to compare the
exact intervals with the intervals obtained using POE2 and
POEt . We begin with a description of Fieller’s exact method.

2.2. Fieller’s method

We outline the derivation of an exact confidence set for θ ,
originally derived by Fieller [3]. We begin by noting that the
distribution of the quantity W = P − θQ is normal with mean
zero and variance given by

σ 2
w = σ 2

p − 2θ ρσpσq + θ2σ 2
q

n
.

The ratio

(n − 1)
S2

p − 2θρ̂SpSq + θ2S2
q

σ 2
p − 2θ ρσpσq + θ2σ 2

q

has a χ2
n−1 distribution and is independent of W . Hence

n (P − θQ)2

S2
p − 2θρ̂SpSq + θ2S2

q

has an F -distribution with 1 and n − 1 degrees of freedom.
Therefore,

Pr

[
n(P − θQ)2

S2
p − 2θρ̂SpSq + θ2S2

q

� F0

]
= 1 − α,

where F0 = F1−α:1,n−1 is an F -table value such that the area
under the F -density function with 1 and n − 1 degrees of
freedom between 0 and F0 is 1 − α. From this we deduce that

Pr[(nQ2 − F0S
2
q )θ

2 − 2(nPQ − F0ρ̂SpSq)θ

+(nP 2 − F0S
2
p) � 0] = 1 − α.
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The two roots of the quadratic equation (in θ )

(nQ2 − F0S
2
q )θ

2 − 2(nPQ − F0ρ̂SpSq)θ

+(nP 2 − F0S
2
p) = 0

are, respectively,

L = (nPQ − F0ρ̂SpSq) − Rpq

nQ2 − F0S2
q

(4)

and

U = (nPQ − F0ρ̂SpSq) + Rpq

nQ2 − F0S2
q

, (5)

where

R2
pq = (nPQ − F0ρ̂SpSq)

2 − (nQ2 − F0S
2
q )(nP 2 − F0S

2
p).

Provided that nQ2 − F0S
2
q > 0, it can be shown that the roots

L and U above are real and distinct and that [L, U ] is a 1 − α

confidence interval for θ . The condition nQ2 − F0S
2
q > 0 is

equivalent to the statement that an α level test of the hypothesis
H0: µq = 0 against Ha: µq �= 0 rejects the hypothesis H0

in favour of Ha . This is generally the case in metrological
applications, due to the fact that the variability in the data is
likely to be very small. We will assume the condition holds.
Observe that the interval is asymmetric relative to the reported
value Y for θ .

If the coefficient of variation for Q is large, then the Fieller
method may not result in a proper confidence interval. This
seldom happens in metrological applications and hence we do
not discuss this further. The interested reader may consult [3].

Example. We first obtain F0 = F0.95 : 1,4 = 7.708 647. Since
nĪ −F0S

2
I = 1932.77 > 0, we can use (4) and (5) to obtain the

Fieller interval for µz. The 95% Fieller interval is calculated
as (253.6042, 254.9165) �, which is almost identical to the
POEt interval.

3. Simulation study

The coverage probabilities of the POE2 and POEt intervals
were examined using statistical simulation. This probability
depends only on σp/µp, σq/µq , ρ, and n. Hence, without
loss of generality, we can fix the values of µp and µq , and we
choose µp = 4.999 and µq = 19.661 as in the ISO GUM
annex H.2. Thus, the value of θ in the simulation study is
4.999/19.661.

We used the following grid of values for the unknown
parameters in the simulation study to estimate coverage
probabilities:

(a) (µp, µq) = (4.999, 19.661),
(b) n = {3, 5, 10, 30},
(c) κp = κq = {0.1%, 0.5%, 1%, 2%, 5%, 10%},
(d) ρ = {±0.01, ±0.1, ±0.5, ±0.7, ±0.99}.
In total, there were 1440 combinations of simulation
parameters. For each combination of parameters, we simulated
100 000 independent realizations of (P, Q) according to their
joint normal distribution (see appendix). Both k = t0.975 : n−1

and k = 2 were used to calculate [L, U ] and estimate p.
Although the Fieller interval is exact, we included it in the
study to verify the simulation and to compare with other

intervals. The percentage of times that the intervals contained
θ = 4.999/19.661 and the widths of the intervals were both
recorded. Due to the large quantity of data, for each given
value of the parameters (µp, µq), we show only the case
where the coverage probability of the POE2 interval has the
largest absolute deviation from the nominal value of 0.95
among the cases with different values of ρ. We also show
the results only for n = 5 and 10. Tables 3 and 4 display
the results. In these tables the columns labelled ‘simulated’
report the Monte Carlo estimates of coverage probabilities,
those labelled ‘theorem 1’ give the large-sample approximation
for the coverage probability based on theorem 1 (see appendix),
and columns labelled ‘Relative error’ give the magnitude of the
relative error of the approximation based on theorem 1 when
compared to the Monte Carlo estimates.

For the parameters considered, the coverage probability
of the POEt interval is very close to the nominal value of 0.95.
For the POE2 interval, the coverage probability depends mainly
on the sample size n. When n = 3, the coverage probability
ranges from 0.8149 to 0.8176 for the 360 combinations of κp,
κq , and ρ considered. For n = 30 the ranges of the coverage
probabilities are 0.9436 and 0.9467. In all cases, the relative
errors of the approximations based on theorem 1 are about
one-tenth of 1% or smaller, indicating that the large-sample
approximation performs extremely well even for sample sizes
as low as 5. Additional investigations, not reported here,
confirm that, for values of κq in the practical range, the
approximation based on theorem 1 is highly satisfactory even
for n = 2.

The results suggest that if one were to take the
propagation-of-errors approach, then k = t0.975 : n−1 should be
used to construct the 95% confidence interval for θ ; k = 2
works only when n is large. This is not surprising since the
value of t0.975 : n−1 is approximately equal to 2 when n is large.
It is interesting to note that the POEt intervals were nearly
identical to the Fieller intervals in almost all cases.

Since both the POEt and the Fieller intervals have
comparable coverage probability, and the POEt interval is
symmetric about Y but the Fieller interval is not, we also
compared their average widths. Although it is known that the
expected width of the Fieller interval is infinite, we computed
the empirical average widths for the Fieller intervals obtained
in the simulation study. For the parameters considered, the
POEt interval is slightly shorter, on average, than the Fieller
interval for the simulated data sets; the ratio of the average
width of the POEt interval to the average width of the Fieller
interval ranged from 0.8882 to 1.0000.

The above study indicates that the POEt interval is very
similar to the exact Fieller interval. The POEt interval is
also consistent with the ISO uncertainty guidelines and thus
can be recommended in metrological applications. The POE2

approach is not suitable when n is small.

4. Conclusions

We have considered three methods for constructing confidence
intervals for ratios of dependent measurements. They are
(a) propagation of errors with coverage factor k = 2 (POE2);
(b) propagation of errors with coverage factor k = t1−α/2 : n−1

(POEt ), and (c) Fieller’s method. The Fieller interval is known
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Table 3. Coverage probabilities of discussed intervals for the ratio θ (n = 5).

POE2 POEt

κp κq ρ Simulated Theorem 1 Relative error Simulated Theorem 1 Relative Error Fieller

0.001 0.001 −0.99 0.8832 0.8839 0.000 77 0.9495 0.9500 0.000 53 0.9495
0.005 −0.99 0.8834 0.8839 0.000 55 0.9492 0.9500 0.000 84 0.9491
0.01 −0.99 0.8832 0.8839 0.000 78 0.9493 0.9500 0.000 74 0.9491
0.02 −0.99 0.8833 0.8839 0.000 67 0.9492 0.9500 0.000 84 0.9492
0.05 −0.99 0.8833 0.8839 0.000 69 0.9493 0.9500 0.000 72 0.9492
0.1 −0.99 0.8836 0.8840 0.000 45 0.9490 0.9499 0.000 97 0.9492

0.005 0.001 0.99 0.8831 0.8839 0.000 89 0.9495 0.9500 0.000 53 0.9495
0.005 −0.99 0.8833 0.8839 0.000 66 0.9496 0.9500 0.000 42 0.9495
0.01 −0.99 0.8832 0.8839 0.000 78 0.9496 0.9500 0.000 42 0.9495
0.02 −0.01 0.8837 0.8839 0.000 21 0.9499 0.9500 0.000 10 0.9499
0.05 −0.99 0.8833 0.8839 0.000 69 0.9493 0.9500 0.000 72 0.9491
0.1 −0.99 0.8836 0.8840 0.000 45 0.9491 0.9499 0.000 86 0.9492

0.01 0.001 0.50 0.8832 0.8839 0.000 77 0.9495 0.9500 0.000 53 0.9495
0.005 0.99 0.8831 0.8839 0.000 89 0.9491 0.9500 0.000 95 0.9492
0.01 −0.70 0.8835 0.8839 0.000 44 0.9497 0.9500 0.000 32 0.9498
0.02 −0.99 0.8835 0.8839 0.000 44 0.9495 0.9500 0.000 52 0.9495
0.05 −0.99 0.8832 0.8839 0.000 81 0.9493 0.9500 0.000 72 0.9491
0.1 −0.99 0.8835 0.8840 0.000 57 0.9492 0.9499 0.000 76 0.9491

0.02 0.001 0.01 0.8831 0.8839 0.000 89 0.9494 0.9500 0.000 63 0.9494
0.005 0.99 0.8832 0.8839 0.000 77 0.9493 0.9500 0.000 74 0.9493
0.01 0.99 0.8832 0.8839 0.000 78 0.9490 0.9500 0.001 05 0.9492
0.02 −0.70 0.8834 0.8839 0.000 55 0.9498 0.9500 0.000 21 0.9498
0.05 −0.99 0.8836 0.8839 0.000 35 0.9496 0.9500 0.000 40 0.9494
0.1 −0.99 0.8836 0.8840 0.000 45 0.9493 0.9499 0.000 65 0.9491

0.05 0.001 0.99 0.8834 0.8839 0.000 55 0.9495 0.9500 0.000 53 0.9496
0.005 −0.70 0.8832 0.8839 0.000 77 0.9496 0.9500 0.000 42 0.9495
0.01 0.99 0.8830 0.8839 0.001 00 0.9495 0.9500 0.000 53 0.9495
0.02 −0.01 0.8832 0.8839 0.000 78 0.9497 0.9500 0.000 32 0.9497
0.05 −0.99 0.8834 0.8839 0.000 58 0.9494 0.9500 0.000 61 0.9495
0.1 −0.99 0.8835 0.8840 0.000 57 0.9492 0.9499 0.000 76 0.9495

0.1 0.001 −0.50 0.8833 0.8839 0.000 66 0.9497 0.9500 0.000 32 0.9497
0.005 0.70 0.8831 0.8839 0.000 89 0.9496 0.9500 0.000 42 0.9495
0.01 0.10 0.8832 0.8839 0.000 78 0.9494 0.9500 0.000 63 0.9494
0.02 0.99 0.8831 0.8839 0.000 89 0.9495 0.9500 0.000 52 0.9495
0.05 −0.99 0.8834 0.8839 0.000 58 0.9494 0.9500 0.000 61 0.9494
0.1 −0.70 0.8838 0.8840 0.000 25 0.9498 0.9499 0.000 16 0.9498

to be exact, whereas the other two intervals are approximate.
We have found that the POEt and Fieller intervals are very
similar, and both perform better than the POE2 method for
the parameters considered in the study. The POEt interval
is also consistent with the ISO uncertainty guidelines, and
hence can be recommended in metrological applications. For
those exceptional situations, where the coverage probability of
the POEt interval is not sufficiently close to the desired value,
improved coverage factors derived based on theorem 1 in the
appendix may be used. A table of such values is provided in
table 5.

Appendix

Suppose (P1, Q1)
t , . . . , (Pn, Qn)

t is an independently and
identically distributed sample of size n from a bivariate normal
distribution with mean vector (µp, µq)

t and covariance matrix
Σ given by

Σ =
(

σ 2
p ρσpσq

ρσpσq σ 2
q

)
.

Let S be the sample variance covariance matrix (with n − 1
degrees of freedom), i.e.

S =
(

S2
p ρ̂SpSq

ρ̂SpSq S2
q

)

and A = (n − 1)S. The matrix A is called the sample sum
of squares and cross-products matrix. For any fixed vector L,
LtAL/LtΣL is distributed as χ2 with n−1 degrees of freedom
([9], p 535). In particular, with Lt = (1/Q, −P/Q2), and
conditional on P and Q, the quantity G = n(n − 1)u2

y/σ
2
y has

a χ2 distribution with n − 1 degrees of freedom, where

σ 2
y = σ 2

p

Q2
− 2Pσpσqρ

Q3
+

P 2σ 2
q

Q4
.

Thus, it is reasonable to associate n − 1 degrees of freedom
with uy .

Based on the above result, the coverage probability
associated with interval [Y − kuy, Y + kuy] is given by

p = Pr
[
Y − kuy � θ � Y + kuy

]
,

p = Pr

[
G � n(n − 1)(Y − θ)2

k2σ 2
y

]
.
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Table 4. Coverage probabilities of discussed intervals for the ratio θ (n = 10).

POE2 POEt

κp κq ρ Simulated Theorem 1 Relative error Simulated Theorem 1 Relative error Fieller

0.001 0.001 0.99 0.9229 0.9234 0.000 59 0.9500 0.9500 0.000 00 0.9501
0.005 0.10 0.9226 0.9234 0.000 92 0.9500 0.9500 0.000 00 0.9501
0.01 0.01 0.9228 0.9234 0.000 70 0.9501 0.9500 0.000 11 0.9502
0.02 0.10 0.9224 0.9234 0.001 14 0.9495 0.9500 0.000 53 0.9496
0.05 0.10 0.9226 0.9234 0.000 93 0.9495 0.9500 0.000 52 0.9494
0.1 0.01 0.9227 0.9235 0.000 84 0.9494 0.9500 0.000 60 0.9497

0.005 0.001 0.99 0.9235 0.9234 0.000 06 0.9507 0.9500 0.000 74 0.9507
0.005 0.99 0.9230 0.9234 0.000 48 0.9501 0.9500 0.000 11 0.9501
0.01 0.50 0.9229 0.9234 0.000 59 0.9499 0.9500 0.000 11 0.9497
0.02 0.10 0.9227 0.9234 0.000 81 0.9500 0.9500 0.000 00 0.9501
0.05 −0.01 0.9228 0.9234 0.000 71 0.9501 0.9500 0.000 11 0.9500
0.1 0.10 0.9229 0.9235 0.000 63 0.9496 0.9500 0.000 39 0.9496

0.01 0.001 −0.70 0.9236 0.9234 0.000 17 0.9506 0.9500 0.000 63 0.9506
0.005 −0.99 0.9235 0.9234 0.000 06 0.9506 0.9500 0.000 63 0.9506
0.01 0.99 0.9230 0.9234 0.000 49 0.9501 0.9500 0.000 10 0.9501
0.02 0.50 0.9229 0.9234 0.000 60 0.9498 0.9500 0.000 21 0.9497
0.05 0.10 0.9229 0.9234 0.000 60 0.9501 0.9500 0.000 11 0.9501
0.1 0.10 0.9227 0.9235 0.000 85 0.9494 0.9500 0.000 60 0.9497

0.02 0.001 0.50 0.9234 0.9234 0.000 05 0.9506 0.9500 0.000 63 0.9506
0.005 0.99 0.9234 0.9234 0.000 05 0.9505 0.9500 0.000 53 0.9506
0.01 −0.99 0.9235 0.9234 0.000 06 0.9506 0.9500 0.000 63 0.9506
0.02 0.99 0.9231 0.9234 0.000 38 0.9502 0.9500 0.000 21 0.9501
0.05 0.50 0.9228 0.9234 0.000 71 0.9495 0.9500 0.000 52 0.9497
0.1 0.10 0.9232 0.9235 0.000 31 0.9500 0.9500 0.000 03 0.9501

0.05 0.001 0.99 0.9236 0.9234 0.000 17 0.9509 0.9500 0.000 95 0.9510
0.005 0.50 0.9236 0.9234 0.000 17 0.9506 0.9500 0.000 63 0.9506
0.01 0.99 0.9234 0.9234 0.000 05 0.9507 0.9500 0.000 74 0.9507
0.02 −0.99 0.9238 0.9234 0.000 38 0.9508 0.9500 0.000 84 0.9507
0.05 0.99 0.9231 0.9234 0.000 40 0.9503 0.9500 0.000 29 0.9501
0.1 0.50 0.9226 0.9235 0.000 97 0.9496 0.9500 0.000 42 0.9497

0.1 0.001 0.99 0.9235 0.9234 0.000 06 0.9510 0.9500 0.001 05 0.9510
0.005 0.50 0.9233 0.9234 0.000 16 0.9506 0.9500 0.000 63 0.9506
0.01 0.50 0.9236 0.9234 0.000 16 0.9506 0.9500 0.000 63 0.9506
0.02 0.99 0.9237 0.9234 0.000 27 0.9507 0.9500 0.000 74 0.9507
0.05 −0.99 0.9237 0.9234 0.000 26 0.9510 0.9500 0.001 06 0.9506
0.1 0.99 0.9234 0.9235 0.000 16 0.9504 0.9500 0.000 33 0.9501

Using the standard conditioning argument of probability,
we have

p = E

[
Pr

(
G � n(n − 1)(Y − θ)2

k2σ 2
y

∣∣∣∣∣ P, Q

)]
,

p = E

[
1 − Hn−1

(
n(n − 1)(Y − θ)2

k2σ 2
y

)]
,

where Hn−1(·) represents the cumulative distribution function
of a χ2 random variable with n − 1 degrees of freedom.

The expression for p may be further simplified as follows.
Let Ps = √

n(P/µp − 1) and Qs = √
n(Q/µq − 1). Then,

the distribution of (Ps, Qs)
t is given by(

Ps

Qs

)
∼ N

([
0
0

]
,

[
κ2

p ρκpκq

ρκpκq κ2
q

])
.

Expressing p in terms of Ps and Qs , we get

p = EPs,Qs

[
1 − Hn−1

(
(n − 1)Ys

k2

)]
,

where

Ys = (Ps − Qs)
2

κ2
p − 2ρκpκqZs + κ2

qZ2
s

and

Zs = 1 +
Ps − Qs

Qs +
√

n
.

Then, for each given value of the parameter vector (κp, κq, ρ),
and sample size n, p can either be evaluated using numerical
double integration or estimated by a Monte Carlo approach.
However, an excellent approximation for p is available, as
indicated in theorem 1.

Theorem 1. Let Tn−1 be a random variable having a t

distribution with n − 1 degrees of freedom. Then,

p = Pr(|Tn−1| < k) + Cn + o

(
1

n

)
(6)

with

Cn = l(n, k)[(n − 1)k3(4κ2
q a1 + 5a2

2)

− k5{(n − 3)a2
2 − 4κ2

q a1}],
where

a1 = 2κ2
p(1 − ρ2)

κ2
p − 2ρκpκq + κ2

q

− 1,

a2 = 2κq(κq − ρκp)√
κ2

p − 2ρκpκq + κ2
q
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Table 5. Improved coverage factors k. The first column gives the sample size n. Columns 2 and 3 are improved coverage factors k for the
cases κq � 0.1 and κq � 0.5, respectively, with a confidence level equal to 95%. Column 4 is the corresponding t-table value with n − 1
degrees of freedom. Columns 5 and 6 are improved coverage factors k for the cases κq � 0.1 and κq � 0.5, respectively, with a confidence
level equal to 99%. Column 7 is the corresponding t-table value with n − 1 degrees of freedom.

Confidence level = 95% Confidence level = 99%

Coverage factor k for Coverage factor k for

n κq � 0.1 κq � 0.5
t-table value
(n − 1) df κq � 0.1 κq � 0.5

t-table value
(n − 1) df

2 12.7061 12.7032 12.7062 63.6567 63.6566 63.6567
3 4.3049 4.3580 4.3027 9.9292 10.0327 9.9248
4 3.1846 3.2379 3.1824 5.8476 6.0031 5.8409
5 2.7781 2.8199 2.7764 4.6114 4.7813 4.6041
6 2.5718 2.6028 2.5706 4.0392 4.2065 4.0321
7 2.4478 2.4706 2.4469 3.7140 3.8717 3.7074
8 2.3653 2.3823 2.3646 3.5055 3.6513 3.4995
9 2.3065 2.3193 2.3060 3.3608 3.4945 3.3554

10 2.2625 2.2724 2.2622 3.2548 3.3768 3.2498
11 2.2284 2.2361 2.2281 3.1737 2.2361 3.1693
12 2.2012 2.2073 2.2010 3.1099 2.2073 3.1058
13 2.1790 2.1838 2.1788 3.0583 2.1838 3.0545
14 2.1605 2.1644 2.1604 3.0157 2.1644 3.0123
15 2.1449 2.1481 2.1448 2.9800 2.1481 2.9768
16 2.1316 2.1341 2.1314 2.9496 2.1341 2.9467
17 2.1200 2.1221 2.1199 2.9235 2.1221 2.9208
18 2.1099 2.1117 2.1098 2.9007 2.1117 2.8982
19 2.1010 2.1025 2.1009 2.8808 2.1025 2.8784
20 2.0931 2.0943 2.0930 2.8631 2.0943 2.8609

and l(n, k) is as given in (3). The expression o(1/n) refers to a
term that approaches zero at a rate faster than 1/n as n tends
to infinity. For a proof of this theorem, the reader may refer
to [10].

The term Cn is usually negligible for realistic choices of
κp, κq , and ρ. In fact, it is a relatively simple exercise to show
that if k >

√
3

4l(n, k)c1(n, k) k3 κ2
q � Cn � 4l(n, k)c2(n, k) k3 κ2

q , (7)

where

c1(n, k)=4n−4−k2(n−2) and c2(n, k)=n−1+k2.

For sample sizes n in the range between 2 and 20,
table 5 gives improved coverage factors k that give guaranteed
coverage probability very nearly equal to or greater than 95%
(respectively, 99%) for two cases: (a) when the value of κq

may be assumed to be no greater than 0.1, and (b) when
the value of κq may be assumed to be no greater than
0.5. For comparison, the corresponding t-table values with
n − 1 degrees of freedom are also shown. These coverage
factors were obtained by solving for k after setting the bound

pL equal to 0.95 (respectively, 0.99) in equation (2). Observe
that the t-table values are quite close to the improved coverage
factors k, especially when κq is no greater than 0.1.
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