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Abstract

Regression problems under Poisson variability arise in many different scientific areas such as,

for examples, astrophysics and medical imaging. This article considers the problem of bandwidth

selection for kernel smoothing of Poisson data. Its first contribution is the proposal of a new

bandwidth selection method that aims to choose the bandwidth that minimizes the Kullback–

Leibler (KL) distance between the estimated and the unknown true regression functions. The

idea behind is to first construct an estimator of the KL distance and then chooses the minimizer

of this distance estimator as the bandwidth. The consistency of this distance estimator is

established. As a second contribution, this article establishes the consistency of an existing

estimator that targets the L2 risk between the true and the estimated regression functions. In a

simulation study, when the targeting distance measure is the KL discrepancy, the proposed KL–

based bandwidth selector outperforms a bandwidth selector that uses deviance cross–validation.
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1 Introduction

This article is concerned with regression function estimation under the following Poisson setting.

Suppose n independent Poisson counts yj are observed at a set of grid points xj:

yj ∼ P (fj), fj = f(xj), xj =
j

n
, j = 0, . . . , n − 1, (1)

where P (fj) denotes a Poisson distribution with mean fj. The goal is to estimate the unknown

regression function f , which is assumed to be “smooth”. Practical applications covered by this

setting include the estimation of X–ray or γ–ray burst intensity maps in astrophysics (e.g., Ko-

laczyk 1997 and van Dyk, Connors, Kashyap & Siemiginowska 2001) and the smoothing of Poisson

count data in medical imaging (e.g., Hudson & Lee 1998 and La Riviere & Pan 2000). Possible

generalizations to this setting, including non–equally spaced designs, will be discussed in Section 4.

For simplicity we shall primarily focus on the following kernel–smoothed estimator for f . Let

K be a kernel function. Let also h be a non–negative smoothing parameter, also known as the

bandwidth, that controls the amount of smoothing. Write Kh(·) =
1
hK( ·

h). The kernel estimator

f̂j for fj is defined as

f̂j =
n−1
∑

m=0

Kh(xm − xj)ym

/ n−1
∑

l=0

Kh(xl − xj), j = 0, . . . , n− 1. (2)

Note that f̂j is a function of h, but, for brevity, this dependence is suppressed from its notation.

It is well known that the choice of h is much more crucial than the choice of K (e.g., see Wand &

Jones 1995).

The purpose of this article is to study, both theoretically and empirically, the properties of two

data–dependent methods for choosing h. The first method aims to choose the h that minimizes

the following Kullback–Leibler discrepancy between f̂ and f

∆kl(f̂ , f) =
1

n

n−1
∑

j=0

{

fj − f̂j + f̂j(log f̂j − log fj)
}

. (3)

Derivation for ∆kl(f̂ , f) is given in Appendix A. The second method aims for minimizing the L2

risk between f̂ and f

∆r(f̂ , f) =
1

n

n−1
∑

j=0

(fj − f̂j)
2.

Notice that both ∆kl(f̂ , f) and ∆r(f̂ , f) are unknown, therefore direct minimization of these two

discrepancy measures is not possible. A common approach to overcoming this problem is first to
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construct an estimator for the discrepancy measure of interest, and then choose the bandwidth that

minimizes such a discrepancy estimator. As mentioned in Linhart & Zucchini (1986), the rationale

is that the bandwidth that minimizes the discrepancy estimator should also approximately mini-

mize the unknown discrepancy. Other classical statistical model selection criteria that follow this

rationale include Mallows’ Cp and Akaike Information Criterion. This article proposes a consistent

estimator for ∆kl(f̂ , f), as well as establishes the consistency of an existing estimator for ∆r(f̂ , f).

It is worth mentioning that a technical challenge for estimating ∆kl(f̂ , f) occurs when fj is close

to zero; i.e., when log fj approaches −∞.

The problem of function estimation under Poisson noise has of course been studied by various

authors. Earlier references include Hudson (1978) and Hudson (1985), who studies the problem

from a L2 perspective. Pawitan & O’Sullivan (1993) develop an L2 risk based method for choosing

the amount of smoothing in medical image reconstruction. In the context of generalized linear

models, a computational procedure, based on cross–validating the deviance, is described in Hastie

& Tibshirani (1990, Ch. 6). Xiang & Wahba (1996) propose a generalized approximate cross–

validation (GACV) procedure for choosing the smoothing parameter for smoothing splines with

non–Gaussian data (see also Gu & Xiang 2001). Their numerical results suggest that, in the

Bernoulli noise case, GACV can be used to estimate the Kullback–Leibler discrepancy. However,

no proof has been provided for supporting this observation. Further results concerning the use of

smoothing splines for non–Gaussian data can be found in Gu (2002, Ch. 5). More recently, a wavelet

thresholding method tailored for Poisson noise is proposed by Kolaczyk (1999b). Also, Kolaczyk

(1999a) and Nowak & Kolaczyk (2000) provide Bayesian multi–scale methods for handling Poisson

inverse problems.

The rest of this article is organized as follows. The main theoretical contributions of this

article are presented in Section 2. In Section 3 results from numerical experiments are reported for

evaluating the two bandwidth selection methods mentioned above. Generalizations and conclusions

are offered in Section 4. Technical details are deferred to the appendices.

2 Theoretical Results

This section presents the main contributions of this article, namely, the proposal of a new consistent

estimator for ∆kl(f̂ , f), and a theoretical study of an earlier estimator for ∆r(f̂ , f). We remark

that the kernel estimator f̂j can also be interpreted as a weighted average of the yj’s. It is because
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one could write

f̂j =
∑

m

wm−jym with wm−j =
Kh(xm − xj)
∑

l Kh(xl − xj)
. (4)

Notice that the weights wm’s sum to unity. In what follows we will assume that f satisfies the

periodic boundary condition; i.e., fj = fj+n = fj−n for j = 0, . . . , n− 1. This will allow us to have

the weights wm independent of location.

2.1 Estimating the Kullback–Leibler Discrepancy

One major difficulty behind the construction of an estimator for ∆kl(f̂ , f) is the need for estimating

log fj when fj is close to zero. It is because under this situation yj will take value 0 with probability

close to 1− fj ≈ 1 and 1 with probability close to fj ≈ 0. This will in turn give rise to “low count”

data. The way that we handle this “low count” situation is to lump neighboring observations of

yj (i.e., yj±k for small k) together so that the sum of these yj ’s is large enough to be worked with.

Thus in our estimator, denoted as ∆̂k
kl
(h), there is one integer parameter k that needs to be pre–

specified. This parameter k is used to control the amount of lumping. At the end of this subsection

we will discuss the issue of how to pre–specify k. The details of the construction of our estimator

∆̂k
kl
(h), together with additional comments on k, are given in Appendix B. Here we only describe

the main idea behind this construction.

When estimating ∆kl(f̂ , f) we need to be able to estimate log fj and fj log fj. If Y has

Poisson(λ) distribution the arguments in Appendix B show that

E

{(

log Y −
1

2Y

)

I{Y >0}

}

≈ log λ, (5)

E(Y log Y )−
1

2
≈ λ log λ, (6)

where IE is the indicator function for event E. The approximation in (6) is uniformly good for all

λ, which suggests estimating λ log λ with Y log Y − 1
2I{Y >0}. This and the lumping idea described

above lead directly to the definition of βk
j below. The approximation in (5) needs bias correction

for small λ. The bias corrected version of the estimator of log λ is then used below for the definition

of αk
j . The estimator ∆̂k

kl
(h) is then derived from (3) by replacing of log fj by its estimator αk

j and

fj log fj by βk
j .
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We now can state the exact form of our estimator ∆̂k
kl
(h). Define

ykj =
∑

|m|≤k

yj+m, fk
j =

∑

|m|≤k

fj+m,

αk
j =

{

log
ykj

2k + 1
+

0.5

ykj
−

1.36177

(ykj )
2

+
2.15204

(ykj )
3

}

I{ykj >0} − {log(2k + 1) + 2.10898}I{ykj =0},

and

βk
j =

ykj
2k + 1

log
ykj

2k + 1
−

1

2(2k + 1)
I{ykj >0}.

Our estimator admits the following expression:

∆̂k
kl
(h) =

1

n

n−1
∑

j=0



yj − f̂j + f̂j log f̂j − αk
j

∑

|m|≥k

wmyj+m − βk
j

∑

|m|≤k

wm



 .

If the target discrepancy measure is ∆kl(f̂ , f), we propose to choose the bandwidth h as the

minimizer of ∆̂k
kl
(h).

We have established the consistency of our estimator. The results are summerized in the

following theorem. The proof is given in Appendix C.

Theorem 1. Suppose that f is Lipschitz with constant D and bounded away from 0 and ∞, and

that the kernel K is compact, symmetrical, unimodal and square–integrable. Then

∣

∣

∣
E{∆̂k

kl
(h) −∆kl(f̂ , f)}

∣

∣

∣
≤

C1M1

M2(2k + 1)2
+

C2

M2b(2k + 1)
+

C3M1Dk(k + 1)

M2(2k + 1)n

+
C4Dk(k + 1)

nb
{1 + 2max(− logM2, logM1)}+

C5D
2k2(1 + k)2

M1(2k + 1)n2b
, (7)

where M1 = max f(x), M2 = min f(x), b is the number of yj’s in the support of Kh, and C1, C2,

C3, C4, C5 are constants depending only on K. Furthermore

var{∆̂k
kl
(h)−∆kl(f̂ , f)} ≤ C

b

n
, (8)

where C is a constant depending only on f .

In addition, if k < b < n are simultaneously approaching infinity, b = o{min(n1/3, k2)} and b

grows at least polynomially fast, then

∆̂k
kl
(h)−∆kl(f̂ , f)

∆kl(f̂ , f)
→ 0 in probability. (9)

We remark that the quantity b plays a dual role to the bandwidth h. It is because b = ⌊Lnh⌋

if L is the length of the support of K.
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Now we consider the choice of k. Of course its optimal value would depend on different unknown

quantities such as various properties of f . In practice these quantities may not be available, which

makes pre–specifying the optimal value of k difficult. However, from our numerical experience,

setting k = 1 is often a good and conservative choice. We have used k = 1 through out all our

numerical experiments described in Section 3 below.

Remark 1. The established consistency of the estimator ∆̂k
kl
(h) suggests an important implication

about the asymptotic behavior of our estimator. Denote f̂hkl,0 the estimator of f calculated us-

ing the optimal bandwidth hkl,0 minimizing ∆kl(f̂ , f) (not obtainable in practice) and f̂ĥkl

the

estimator of f calculated using the bandwidth ĥkl minimizing ∆̂k
kl
(h) (our estimator). Assume

that
∆̂k

kl
(h)−∆kl(f̂ , f)

∆kl(f̂ , f)
→ 0

for both h = ĥkl and h = hkl,0. This could be achieved for example by strengthening equation (9)

of Theorem 1 to hold uniformly for all h. Then

∆̂k
kl
(ĥkl)

∆kl(f̂ĥkl

, f)
→ 1 and

∆kl(f̂hkl,0 , f)

∆̂k
kl
(hkl,0)

→ 1. (10)

Since f̂hkl,0 minimizes ∆kl(f̂ , f) and f̂ĥkl

minimizes ∆̂k
kl
(h), we have

∆kl(f̂ĥkl

, f)

∆kl(f̂hkl,0 , f)
≥ 1 and

∆̂k
kl
(hkl,0)

∆̂k
kl
(ĥkl)

≥ 1. (11)

From here and (10) calculate

lim sup
n→∞

∆kl(f̂ĥkl

, f)

∆kl(f̂hkl,0 , f)
≤ lim sup

n→∞

∆kl(f̂ĥkl

, f)

∆kl(f̂hkl,0 , f)
·
∆̂k

kl
(hkl,0)

∆̂k
kl
(ĥkl)

= 1. (12)

Combining (11) and (12) we have ∆kl(f̂ĥkl

, f)/∆kl(f̂hkl,0 , f) → 1 concluding that ∆kl(f̂ĥkl

, f)

converges to 0 at the same speed as ∆kl(f̂hkl,0 , f).

2.2 Estimating the L2 Risk

Unbiased estimation of the L2 risk under Poisson variability has been studied by previous authors;

e.g., see Hudson (1978) and Pawitan & O’Sullivan (1993). For the current setting, the following

estimator ∆̂r(h) for ∆r(f̂ , f) can be obtained from results in Pawitan & O’Sullivan (1993):

∆̂r(h) =
1

n

∑

j

{

(yj − f̂j)
2 + (2w0 − 1)yj

}

.
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One could choose h as the minimizer of ∆̂r(h) if ∆r(f̂ , f) is the target discrepancy measure.

We have also studied the theoretical properties of ∆̂r(h) in a similar fashion as for ∆̂k
kl
(h). Our

results are summarized in the theorem below. In short, our contribution in this subsection is that

we have established the consistency of ∆̂r(h). Proof of the theorem is delayed to Appendix D.

Theorem 2. Suppose that f is Lipschitz and bounded, and that K is compact, symmetrical, uni-

modal and square–integrable. Then

E{∆̂r(h)−∆r(f̂ , f)} = 0 (13)

and

var{∆̂r(h)−∆r(f̂ , f)} ≤ C
b

n
, (14)

where C is a constant depending only on f .

In addition, if b = o(n1/3)

∆̂r(h)−∆r(f̂ , f)

∆r(f̂ , f)
→ 0 in probability. (15)

2.3 Computational Issues

Both of the above two bandwidth selection procedures are computationally inexpensive and straight-

forward to implement. It is because both ∆̂k
kl
(h) and ∆̂r(h) can be directly computed without using

any Monte Carlo type approximations. Also, since the data are assumed to be regularly spaced,

fast computation of f̂j can be achieved by using Fourier techniques.

3 Numerical Results

A small scale simulation study was conducted to evaluate the empirical properties of the two

bandwidth selection methods discussed above. For comparative purposes, the cross–validating (CV)

deviance procedure described in Hastie & Tibshirani (1990, Ch. 6) was also studied. This procedure

chooses the bandwidth h that minimizes the following leave–one–out CV deviance function

CVDev(h) =
1

n

n−1
∑

j=0

{

f̂−j − yj + yj(log yj − log f̂−j)
}

,

where f̂−j is the estimate of fj obtained from using all but the ith observation yi. Notice that

CVDev(h) is targeting the KL discrepancy.
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3.1 Setup

In this study three test functions, three signal–to–noise ratios (snrs) and four sample sizes were

used. The three test functions were

Test Function 1: f(x) = max{sin(4πx), ǫ}, ǫ = 0.000005,

Test Function 2: f(x) = max{sin(4πx) + 1, ǫ},

Test Function 3: f(x) = 2 sin(4πx) + 3.

These three test functions are derived from a standard sine wave and present three different levels

of difficulties. For Test Function 1 half of its domain “touches zero” (i.e., has “y–value” that

are virtually zero), for Test Function 2 the valleys of the sine wave “touch zero”, while for Test

Function 3 the whole sine wave is shifted up so that it is sufficiently far away from zero. As indicated

above a major difficulty for estimating ∆kl(f̂ , f) is the estimation of log f(x) when f(x) ≈ 0. Thus

one may treat that Test Function 1 is a hard example, Test Function 2 is a medium example while

Test Function 3 is an easy example. Plots of the test functions can be found in Figures 1 to 6.

We define signal to noise ratio (further just snr) as ‖f‖/
√

var(f) =
√

∑

f2
j /
∑

fj, where var(f)

can be interpreted as the variance of the noise. To change the snr of a test function f , a constant

c is multiplied to it so that
√
∑

(cfj)2/
∑

cfj reaches the pre–specified value. The three snrs used

were 2, 4, and 6. The four sample sizes were n = 200, 400, 800 and 1600. The kernel function used

was K(x) = 3
4(1 − x2), x ∈ [0, 1]. It is the optimal kernel of order (0, 2) derived in Gasser, Műller

& Mammitzsch (1985). Throughout the whole study we set k = 1.

For each of the above 36 experimental settings, 250 independent data sets were simulated. For

each of these simulated data sets, the bandwidths ĥkl, ĥr and ĥdev that minimize respectively

∆̂k
kl
(h)|k=1, ∆̂r(h) and CVDev(h) were computed. In addition, two practically unobtainable op-

timal bandwidths were also computed. They were hkl,0, the bandwidth that minimizes ∆kl(f̂ , f),

and hr,0, the bandwidth that minimizes ∆r(f̂ , f).

3.2 Results

Four numerical measures were adopted to evaluate the quality of ĥkl. Let f̂[h] be the estimate of f

computed using the bandwidth h. The four numerical measures were

∆kl(f̂[ĥkl]
, f), ∆r(f̂[ĥkl]

, f),
∆kl(f̂[ĥkl]

, f)

∆kl(f̂[hkl,0], f)
, and

∆r(f̂[ĥkl]
, f)

∆r(f̂[hr,0], f)
.

The first and the third measures were used to assess the performance of ĥkl when ∆kl(f̂ , f) is

of interest: the first assesses the quality in an absolute sense while the third assesses the quality
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Test Bandwidth Sample Size

Function Selection n = 200 n = 400 n = 800 n = 1600

1 ĥkl 0.284 (0.005) 0.150 (0.002) 0.088 (0.001) 0.051 (0.001)

ĥr 0.927 (0.021) 0.598 (0.014) 0.404 (0.010) 0.277 (0.006)

ĥdev 0.333 (0.008) 0.181 (0.004) 0.104 (0.002) 0.060 (0.001)

2 ĥkl 0.081 (0.001) 0.043 (0.001) 0.025 (0.001) 0.015 (0.001)

ĥr 0.153 (0.004) 0.090 (0.002) 0.056 (0.001) 0.034 (0.001)

ĥdev 0.087 (0.002) 0.047 (0.001) 0.026 (0.001) 0.015 (0.001)

3 ĥkl 0.037 (0.001) 0.020 (0.001) 0.012 (0.001) 0.007 (0.001)

ĥr 0.037 (0.001) 0.020 (0.001) 0.012 (0.001) 0.007 (0.001)

ĥdev 0.037 (0.001) 0.020 (0.001) 0.012 (0.001) 0.006 (0.001)

Table 1: Averages and standard deviations (in parentheses) of ∆kl(f̂[h], f) for h = ĥkl (minimizer

of ∆̂k
kl
(h)), h = ĥr (minimizer of ∆̂r(h)) and h = ĥdev (minimizer of CVDev(h)).

relative to the best possible bandwidth hkl,0 that one could get only if f is known. Although ĥkl is

not targeting the L2 risk ∆̂r(h), it would still be interesting and worthwhile to include the second

and the fourth measures. Averages and standard deviations for these four measures, computed

from the 250 repetitions for each experiment setting, are given in Tables 1 to 4. Similar values for

evaluating the quality of ĥr and ĥdev were also computed and are reported in the same tables.

The following empirical conclusions can be drawn from examining these tables. First, for all

experimental settings, the values of ∆kl(f̂ , f) and ∆r(f̂ , f) decrease as n increases (see Tables 1

and 2). Secondly, for the “easy” Test Function 3, all three bandwidth selectors ĥkl, ĥr and ĥdev

gave very similar performances regardless of which numerical measure is being used. Thirdly, for

Test Functions 1 and 2, ĥkl seems to outperform ĥdev when the targeting distance measure is the

KL discrepancy. Lastly, as most of the corresponding entries in Table 3 are close to 1, the proposed

ĥkl gave very good results when comparing to the best possible (but practically unobtainable)

hkl,0.

To visually evaluate the quality of various estimated curves, the following was done. For Test

Function 1 with snr = 4 and n = 200, the simulated data set that corresponds to the 125th sorted

value of ∆kl(f̂[ĥkl]
, f) is plotted in Figures 1, together with the estimated curves computed using

the corresponding ĥkl ĥr and ĥdev. Similar plots were also produced for n = 800 and also for Test

Functions 2 and 3; they are displayed in Figures 2 to 6.
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Test Bandwidth Sample Size

Function Selection n = 200 n = 400 n = 800 n = 1600

1 ĥkl 1.175 (0.027) 0.754 (0.015) 0.486 (0.009) 0.321 (0.006)

ĥr 0.814 (0.022) 0.465 (0.011) 0.270 (0.006) 0.165 (0.004)

ĥdev 1.164 (0.034) 0.708 (0.018) 0.444 (0.009) 0.292 (0.006)

2 ĥkl 1.066 (0.027) 0.588 (0.014) 0.345 (0.008) 0.204 (0.004)

ĥr 0.876 (0.027) 0.428 (0.011) 0.253 (0.006) 0.147 (0.003)

ĥdev 0.991 (0.027) 0.524 (0.012) 0.317 (0.007) 0.194 (0.004)

3 ĥkl 0.892 (0.026) 0.499 (0.013) 0.297 (0.008) 0.164 (0.004)

ĥr 0.889 (0.026) 0.495 (0.014) 0.284 (0.007) 0.158 (0.004)

ĥdev 0.905 (0.026) 0.490 (0.013) 0.290 (0.007) 0.16 (0.004)

Table 2: Similar to Table 1 but for ∆r(f, f̂[h]).

Test Bandwidth Sample Size

Function Selection n = 200 n = 400 n = 800 n = 1600

1 ĥkl 1.835 (0.031) 1.641 (0.023) 1.584 (0.021) 1.541 (0.023)

ĥr 6.299 (0.196) 6.827 (0.198) 7.584 (0.217) 8.539 (0.223)

ĥdev 2.147 (0.051) 2.001 (0.044) 1.874 (0.034) 1.821 (0.036)

2 ĥkl 1.118 (0.009) 1.096 (0.008) 1.096 (0.008) 1.085 (0.008)

ĥr 2.260 (0.067) 2.399 (0.063) 2.540 (0.066) 2.614 (0.071)

ĥdev 1.213 (0.017) 1.180 (0.013) 1.136 (0.010) 1.112 (0.008)

3 ĥkl 1.159 (0.018) 1.155 (0.017) 1.162 (0.017) 1.121 (0.013)

ĥr 1.169 (0.018) 1.170 (0.019) 1.136 (0.014) 1.116 (0.009)

ĥdev 1.187 (0.022) 1.145 (0.017) 1.142 (0.015) 1.100 (0.010)

Table 3: Similar to Table 1 but for
∆kl(f̂[h],f)

∆kl(f̂[h
kl,0]

,f)
.
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Test Bandwidth Sample Size

Function Selection n = 200 n = 400 n = 800 n = 1600

1 ĥkl 1.759 (0.033) 1.985 (0.043) 2.149 (0.041) 2.269 (0.045)

ĥr 1.206 (0.031) 1.193 (0.029) 1.144 (0.015) 1.117 (0.012)

ĥdev 1.746 (0.051) 1.863 (0.053) 1.954 (0.043) 2.053 (0.042)

2 ĥkl 1.597 (0.041) 1.698 (0.037) 1.602 (0.032) 1.585 (0.028)

ĥr 1.249 (0.032) 1.182 (0.021) 1.137 (0.017) 1.113 (0.014)

ĥdev 1.458 (0.036) 1.497 (0.030) 1.471 (0.027) 1.507 (0.025)

3 ĥkl 1.198 (0.022) 1.197 (0.021) 1.204 (0.020) 1.157 (0.016)

ĥr 1.190 (0.021) 1.184 (0.021) 1.147 (0.017) 1.111 (0.012)

ĥdev 1.232 (0.028) 1.170 (0.019) 1.174 (0.019) 1.120 (0.012)

Table 4: Similar to Table 1 but for
∆r(f,f̂[h])

∆r(f,f̂[h
r,0]

)
.

4 Concluding Remarks

In this article the problem of bandwidth selection for kernel regression with Poisson data is consid-

ered. A new bandwidth selection procedure that targets the KL discrepancy is proposed and both

analytically and empirically studied. In addition, an existing L2 risk based bandwidth selection

procedure is also studied. In a simulation study the proposed bandwidth selection procedure out-

performed a deviance cross–validation based procedure if the KL discrepancy is the target distance

measure.

Several important extensions of this work are worth considering. The first one comes when

the design points are non–equally spaced. One can construct an estimator for the KL discrepancy

as before, but use nearest neighbors when calculating ykj . This approach works well if the design

points x are dense enough. For example if maxj(xj − xj−1) → 0 then the theorems of this article

can be straightforwardly modified to show that the resulting estimator is consistent.

Another direct extension is to apply the above methodology to the class of linear nonparametric

smoothing estimators that produce estimates f̂ of the form f̂ = Hy, where y = (y0, . . . , yn−1)
T

and H is known as the “hat” or the “smoother” matrix. The kernel estimator considered in this

article is a member of this class. Other class members include smoothing splines and penalized

regression splines.

Extension to two–dimensional regularly spaced data setting (e.g., image data) is straightforward.

Another possible extension of this work we are currently investigating is to construct similar KL

11
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Figure 1: Visual inspection for Test Function 1 with n = 200. Top–left: true function (solid line)

with noisy data points superimposed. Top–right: true function (solid line) with estimated function

using h = ĥkl (broken line). Bottom–left: true function (solid line) with estimated function using

h = ĥr (broken line). Bottom–right: true function (solid line) with estimated function using

h = ĥdev (broken line).

discrepancy estimators for the use in generalized linear and additive models.
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Figure 2: Similar to Figure 1 but for Test Function 1 with n = 800.

A Derivation of ∆kl(f̂ , f)

The KL discrepancy for measuring the distance between two discrete probability density functions

(pdfs) g1(t) and g2(t) is defined as

d(g1, g2) =
∑

t

g1(t) log
g1(t)

g2(t)

(e.g., see Burnham & Anderson 1998). Note that d(g1, g2) 6= d(g2, g1). For the current problem, in

order to use d(g1, g2) for comparing a true f and an estimate f̂ , one needs to compare them design

point by design point. At design point xj, the pdf gf (t) corresponding to f is Poisson with mean

fj. That is, gf (t) = e−fjf t
j/t!, t = 0, 1, . . .. For f̂ , a natural candidate for the corresponding pdf is

Poisson with mean f̂j. Denote this pdf as gf̂ (t), and thus gf̂ (t) = e−f̂j f̂ t
j/t!, t = 0, 1, . . .. We choose

to measure the distance between f and f̂ at xj with

d(gf̂ , gf ) =

∞
∑

t=0

gf̂ (t) log
gf̂ (t)

gf (t)
=

∞
∑

t=0

e−f̂j f̂ t
j

t!
log

e−f̂j f̂ t
j/t!

e−fjf t
j/t!

= fj − f̂j + f̂j(log f̂j − log fj).
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Figure 3: Similar to Figure 1 but for Test Function 2 with n = 200.

Upon summing over j we obtain ∆kl(f̂ , f).

Notice that one could also use ∆kl(f, f̂) (i.e., use d(gf , gf̂ )) instead of ∆kl(f̂ , f) (i.e., use

d(gf̂ , gf )), but we choose ∆kl(f̂ , f) for the following reason. Using the Taylor series approximation

1− y + y log y = (y − 1)2/2 for y ≈ 1, we obtain

∆kl(f̂ , f) ≈
1

2n

n−1
∑

j=0

(fj − f̂j)
2

fj

and

∆kl(f, f̂) =
1

n

n−1
∑

j=0

{

f̂j − fj + fj(log fj − log f̂j)
}

≈
1

2n

n−1
∑

j=0

(fj − f̂j)
2

f̂j
.

Our belief is that ∆kl(f̂ , f) is a better measure to use, as in the above approximation it uses

a fixed quantity, the denominator term fj, to adjust for the variance of (fj − f̂j)
2 while ∆kl(f, f̂)

uses a random quantity f̂j. In addition, for the following reason ∆kl(f̂ , f) is more desirable in

the case when fj ≈ 0 for several consecutive j’s. In this case it is quite possible that f̂j = 0 for

some small values of bandwidth h, which causes ∆kl(gfj , gf̂j ) = ∞ while ∆kl(gf̂j , gfj ) = fj, and

14
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Figure 4: Similar to Figure 1 but for Test Function 2 with n = 800.

of course the latter is more reasonable. Thus in order to get a finite ∆kl(gfj , gf̂j ) and hence finite

∆kl(f, f̂) the bandwidth will have to be large enough to guarantee f̂j > 0. This may possibly lead

to oversmoothing in other parts of f . On the other hand ∆kl(f̂ , f) does not suffer from this issue.

B Construction of ∆̂k
kl
(h)

This appendix outlines the construction of ∆̂h,k. The goal is to find an unbiased estimator of

∆kl(f̂ , f), which breaks down to the estimation of fj and f̂j log fj. Estimation of fj is straightfor-

ward as E(yj) = fj. As shown below, the estimation of f̂j log fj can be further broken down to the

estimation of log fj and fj log fj. However, this poses a bigger challenge as log fj ≈ −∞ whenever

fj ≈ 0. We first work on log fj.

Here and in what follows let Y denote a Poisson(λ) random variable. Consider estimating log λ

(i.e., log fj). The Taylor’s series expansion of log y at the point λ is log y ≈ log λ+(y−λ)/λ− (y−
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Figure 5: Similar to Figure 1 but for Test Function 3 with n = 200.

λ)2/(2λ2), which leads to

E{(log Y )I{Y >0}} ≈ log λ−
1

2λ
. (16)

This suggests estimating log λ by

{log Y − 1/(2Y )}I{Y >0}, (17)

where the factor of 1/(2Y ) is motivated by the fact that E{(2Y )−1I{Y >0}} ≈ 1/(2λ). The approx-

imation in (16) works very well for large λ. However, the bias is not satisfactory for λ < 10. To

correct this we suggest the following correction. Take an estimator

G = C0I{Y=0} +

{

log Y −
1

2Y
+

C1

Y 2
+

C2

Y 3

}

I{Y >0}, (18)

and choose C0, C1 and C2 to minimize
∫∞
1 {E(G)− log λ}2 dλ, where E(G) is considered as a

function of λ. The motivation of this step is that the effect of the added terms is negligible for

large values of λ. More precisely it is of the order O(1/λ2). At the same time the choice of C0,

C1 and C2 will guarantee improvement of the bias for small values of λ. We performed numerical
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Figure 6: Similar to Figure 1 but for Test Function 3 with n = 800.

integration and obtain C0 = 2.10898, C1 = 1.36177 and C2 = 2.15204. These constants improved

the bias remarkably for λ > 1.

Recall that a major difficulty with estimating log fj occurs when fj is close to zero. To overcome

this difficulty, we make use of the fact that if f is locally smooth, then fj−k ≈ . . . ≈ fj+k for small

k. This implies that yj−k, . . . , yj+k are approximately independent and identically distributed as

Poisson with mean fj. Therefore ykj =
∑k

m=−k yj+m has approximately Poisson distribution with

mean λ = (2k + 1)fj . Now if k is large enough so that λ > 1, we have

E(G) ≈ log fj + log(2k + 1). (19)

Thus combining (18) and (19) we derive the estimator of log fj as

αk
j =

{

log
ykj

2k + 1
+

1

2ykj
−

1.36177

(ykj )
2

+
2.15204

(ykj )
3

}

I{ykj >0} − {log(2k + 1) + 2.10898}I{ykj =0}.

Now we consider estimating λ log λ (or fj log fj). The Taylor’s series expansion of y log y at the

17



point λ is y log y ≈ λ log λ+ (y − λ) (1 + log λ) + (y − λ)2 /(2λ), which gives

E(Y log Y ) ≈ λ log λ+
1

2
. (20)

Similarly as before we plug ykj into (20) and obtain

ykj log y
k
j −

1

2
I{ykj >0} ≈ (2k + 1){fj log fj − fj log(2k + 1)},

which leads to

βk
j =

ykj
2k + 1

log
ykj

2k + 1
−

1

2(2k + 1)
I{ykj >0}

as the estimator of fj log fj based on ykj .

To finish the derivation we decompose f̂j log fj into two parts:

f̂j log fj =
k
∑

m=−k

wmyj+mlog fj +

(

f̂j −
k
∑

m=−k

wmyj+m

)

log fj.

Since the expectation of the first part is approximately fj log fj
∑k

m=−k wm, we estimate it by

βk
j

∑k
m=−k wm. Notice also that the first term of the second part and ykj are independent. Thus an

approximately unbiased estimator of the second part is
(

f̂j −
∑k

m=−k wmyj+m

)

αk
j . The parameter

k, in a way, can be treated as a device for controlling the bias and variance of our estimator for

f̂j log fj.

Finally putting the two parts together we have

f̂j log fj ≈ βk
j

k
∑

m=−k

wm +

(

f̂j −
k
∑

m=−k

wmyj+m

)

αk
j .

This finishes the construction of ∆̂k
kl
(h), which is an approximately unbiased estimator of ∆kl(f̂ , f).

C Proof of Theorem 1

We first state and prove the following lemma. Let Y denote a Poisson(λ) random variable, and

define residuals

r1(λ) = E

[{

log Y +
0.5

Y
−

1.36177

Y 2
+

2.15204

Y 3

}

I{Y >0} − 2.10898I{Y =0}

]

− log λ,

r2(λ) = E

(

Y log Y −
1

2
I{Y >0}

)

− λ log λ.

18



Lemma 1. The following relations are true:

E(αk
j ) = log

fk
j

2k + 1
+ r1(f

k
j ), (21)

E(βk
j ) =

fk
j

2k + 1
log

fk
j

2k + 1
+

r2(f
k
j )

2k + 1
. (22)

Furthermore as λ → ∞:

r1(λ) = O(1/λ2), (23)

r2(λ) = O(1/λ). (24)

Proofs of (21) and (22): Notice that ykj has a Poisson(fk
j ) distribution and direct calculation

shows

E

(

βk
j −

fk
j

2k + 1
log

fk
j

2k + 1

)

=
1

2k + 1
E

(

ykj log y
k
j − fk

j log fk
j −

1

2
I{ykj >0}

)

Relation (22) follows immediately. Similarly one obtains

E

(

αk
j − log

fk
j

2k + 1

)

=

E

[{

log ykj +
0.5

ykj
−

1.36177

(ykj )
2

+
2.15204

(ykj )
3

}

I{Y >0} − 2.10898I{Y =0}

]

− log(fk
j ),

which implies (21).

Proof of (24): We first derive an upper bound for r2(λ). Using log y = log λ+log{1+(y−λ)/λ}

and log(1 + y) ≤ y − y2/2 + y3/3 we get

E(Y log Y ) = E(Y log λ) + E

{

Y log

(

1 +
Y − λ

λ

)}

≤ λ log λ+ E

[

Y

{

Y − λ

λ
−

1

2

(

Y − λ

λ

)2

+
1

3

(

Y − λ

λ

)3
}]

= λ log λ+
1

2
+

5

6λ
+

1

3λ2
,

whence

r2(λ) ≤
5

6λ
+

1

3λ2
+

1

2
e−λ.

Now we establish a lower bound for r2(λ), and we need two inequalities to proceed. The

first inequality is, if C > 0 then log(1 + y) ≥ y − y2/2 + y3/3 − (1 + C)y4/4 for y > −D,

where D > 0 depends on C. The second inequality is a classical large deviation result, namely,
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P [(Y − λ)/λ ≤ −D] ≤ e−Kλ, where K depends on D (e.g., see Grimmett & Stirzaker 2001,

page 202). With these two inequalities, we proceed as

E(Y log Y ) = E(Y log λ) + E

{

Y log

(

1 +
Y − λ

λ

)

I{Y >λ−Dλ}

}

− E

{

Y log

(

1 +
Y − λ

λ

)

I{Y≤λ−Dλ}

}

≥ λ log λ+ E

{

Y log

(

1 +
Y − λ

λ

)

I{Y >λ−Dλ}

}

+ min
0≤x≤λ−Dλ

{

x log

(

1 +
x− λ

λ

)}

P

(

Y − λ

λ
≤ −D

)

≥ E

[

Y

{

Y − λ

λ
−

1

2

(

Y − λ

λ

)2

+
1

3

(

Y − λ

λ

)3

−
1 + C

4

(

Y − λ

λ

)4
}]

+ λ log λ− λe−Kλ−1

= λ log λ+
1

2
+

1

λ

(

1

12
−

3C

4

)

+O(
1

λ2
)

and Equation (24) follows.

Proof of (23): Using similar arguments as above we conclude that

E(log Y I{Y >0}) = log λ−
1

2λ
+O(

1

λ2
).

Analogously we can write x−1 = λ−1{1+(x−λ)/λ}−1 . It is again well-known that 1/(1+y) ≥ 1−y

and if C > 0 than 1/(1+ y) ≤ 1− y+(1+ c)y2 for y > −D, where D > 0 depends on C. From here

E

(

1

Y
I{Y >0}

)

≥
1

λ
E

(

1−
Y − λ

λ

)

I{Y >0} =
1

λ
−

2

λ
e−λ

and

E(
1

Y
I{Y >0}) ≤

1

λ
E(

1

1 + Y−λ
λ

I{Y >λ−Dλ}) + max
1≤x≤λ−Dλ

1

x
P (1 ≤ Y ≤ λ−Dλ)

≤
1

λ
+

1 + C

λ2
+ e−Kλ.

Similar considerations show that

E(
1

Y k
) =

1

λk
+O(

1

λk+1
)

and Relation (23) follows by simple algebra. This completes proving Lemma 1 and we are now

ready to give the proof for Theorem 1.
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Proof of (7): To compute the bias consider ∆̂k
kl
(h)−∆kl(f̂ , f) = n−1

∑n−1
j=0 Sj and decompose

each summand Sj into four parts:

Sj = (yj − fj)− (αk
j − log fj)

∑

|m|≥k

wmyj+m

− (βk
j − fj log fj)

∑

|m|≤k

wm +
∑

|m|≤k

wm(yj+m − fj) log fj. (25)

Let us calculate E(Sj) term by term:

E(yj − fj) =0, (26)

E







(αk
j − log fj)

∑

|m|≥k

wmyj+m







=

{

r1(f
k
j )− log

fj

fk
j /(2k + 1)

}

∑

|m|≥k

wmfj+m, (27)

E







(βk
j − fj log fj)

∑

|m|≤k

wm







=r2(f
k
j )

1

2k + 1

∑

|m|≤k

wm

+

(

fk
j

2k + 1
log

fk
j

2k + 1
− fj log fj

)

∑

|m|≤k

wm, (28)

E







∑

|m|≤k

wm log fj(yj+m − fj)







=
∑

|m|≤k

wm(fj+m − fj) log fj. (29)

Recall M1 = max f and M2 = min f . Combining equations (26) through (29), observing the fact
∑

|m|≤k wm ≤ (2k + 1)w0, and using inequalities

∣

∣

∣log
y

x

∣

∣

∣ ≤
|x− y|

y
, and |x log x− y log y| ≤ |x− y||1 + log y|+

|x− y|2

2y
,

we get

|E(Sj)| ≤M1r1(f
k
j ) + w0r2(f

k
j ) +

M1

M2

∣

∣

∣

∣

∣

fk
j

2k + 1
− fj

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

fk
j

2k + 1
− fj

∣

∣

∣

∣

∣

{1 + max(logM1,− logM2)}(2k + 1)w0

+
1

2M2

∣

∣

∣

∣

∣

fk
j

2k + 1
− fj

∣

∣

∣

∣

∣

2

(2k + 1)w0 +max(logM1,− logM2)w0

∑

|m|≤k

|fj+m − fj|.

Observe that fk
j ≥ M2(2k+1), and w0 ≤ K ′/b, where K’ is a constant depending only on the kernel

K. Combining these observations with Lemma 1 and the fact that f is Lipschitz with constant D

one obtains (7).
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Proof of (8): By noting that the wm’s are zero when |m| > bn/2, and that the observations are

independent, we have

var{∆̂k
kl
(h)−∆kl(f̂ , f)} =

1

n2

n−1
∑

i=0

n−1
∑

i=0

cov(Si, Sj) =
1

n2

∑

|i−j|≤b

cov(Si, Sj)

≤
1

n2

∑

|i−j|≤b

{var(Si) var(Sj)}
1
2 . (30)

Therefore we need to prove that var(Si) is bounded. Using Equation (25) we get:

var(Sj) ≤ 4 var(yj) + 4var







(αk
j − log fj)

∑

|m|≥k

wmyj+m







+ 4





∑

|m|≤k

wm





2

var(βk
j ) + 4(log fj)

2 var





∑

|m|≤k

wmyj+m



 . (31)

Notice that the large deviations considerations mentioned before give us that

P (M2 − ǫ < ykj < M1 + ǫ) ≥ 1− e−ck for M2 > ǫ > 0 and some c > 0.

This combined with the definition of αk
j , βk

j and the fact that ykj has a Poisson distribution im-

mediately imply that both var(βk
j ) and var(αk

j ) are bounded by a constant C̃ that depends on M1

and M2.

Let us now calculate each part of (31) separately:

var(yj) ≤M1, (32)




∑

|m|≤k

wm





2

var(βk
j ) ≤C ′

3

(

k

b

)2

, (33)

(log fj)
2 var





∑

|m|≤k

wmyj+m



 ≤C ′
4

2k + 1

b2
M1 max(− logM2, logM1)

2. (34)

The only part that requires a little bit more attention is:

var







(αk
j − log fj)

∑

|m|≥k

wmyj+m







= E











∑

|m|≥k

wmyj+m





2




var(αk
j )

+ var





∑

|m|≥k

wmyj+m





{

E(αk
j − log fj)

}2

≤(M2
1 +M1

∑

k

w2
m)C̃ +M1(

∑

k

w2
m)

[

log

{

fk
j /(2k + 1)

fj

}

+ r1(f
k
j )

]2

. (35)
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Now by substituting (32) through (35) into (31) one can see that there is a universal constant C

depending on the function f through M1, M2 and the Lipschitz constant D such that var(Sj) ≤ C.

Therefore from (30) we arrive (8).

Proof of (9): We will need to use the following relations:

E(∆̂k
kl
(h)−∆kl(f̂ , f))

2 = O

(

bn
n

+
1

k4

)

, (36)

var∆kl(f̂ , f) = O

(

bn
n

)

, (37)

E{∆kl(f̂ , f)} ≥
C

bn
+ o(

1

bn
). (38)

Recall, bn = o{min(n1/3, k2n)}. Thus both (bn/n)
1/2 = o(1/bn), 1/k

2
n = o(1/bn) and there is rn such

that rn = o(1/bn) and bn/n+ 1/k4 = o(r2n). Fix ε > 0 and calculate:

P

(∣

∣

∣

∣

∣

∆̂k
kl
(h)−∆kl(f̂ , f)

∆kl(f̂ , f)

∣

∣

∣

∣

∣

> ε

)

< P

(∣

∣

∣

∣

∣

∆̂k
kl
(h)−∆kl(f̂ , f)

rn

∣

∣

∣

∣

∣

> ε

)

+ P (∆kl(f̂ , f) < rn).

By combining (36), (38), (37), the Markov’s and Chebyshev’s inequalities we get

P

(∣

∣

∣

∣

∣

∆̂k
kl
(h) −∆kl(f̂ , f)

rn

∣

∣

∣

∣

∣

> ε

)

<
E(∆̂k

kl
(h) −∆kl(f̂ , f))

2

ε2r2n
→ 0,

P (∆kl(f̂ , f) < rn) < P (|∆kl(f̂ , f)− E∆kl(f̂ , f)| > E∆kl(f̂ , f)− rn)

<
var∆kl(f̂ , f)

(E∆kl(f̂ , f)− rn)2
→ 0.

This proves (9). The only remaining part is to verify (36), (38) and (37).

Proof of (36): Recall

E(∆̂k
kl
(h)−∆kl(f̂ , f))

2 = varE(∆̂k
kl
(h) −∆kl(f̂ , f))

2 + (E∆̂k
kl
(h) −E∆kl(f̂ , f))

2.

Since kn < bn < n the right-hand-side of (7) is of the order 1/k2 + k/n. Thus equations (7) and

(8) imply (36).

Proof of (37): The proof follows along the same steps as proof of (8) and we omit the details.

Proof of (38): We need two inequalities to prove (38). Define l(y) = 1 − y − y log(y) and

hence ∆kl(f̂ , f) = n−1
∑n−1

j=0 fj l(f̂j/fj). Denote Sn = {max |f̂ /f − 1| > 1/2)}. It follows from a

large deviation argument simular to Louani (1999) P (Sn) ≤ ne−Kb → 0. By applying the Taylor

approximation l(y) ≈ 1
2(y− 1)2 to l(f̂j/fj) and using the assumption that f is bounded away from

0 and ∞, we obtain our first inequality:

C

(

f̂j − fj

)2

fj
ISn ≤ fj l

(

f̂j
fj

)

with appropriate 0 < C <
1

2
. (39)
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To get the second inequality calculate

E(f̂j − fj)
2

fj
= 2fj − 2E(f̂j) +

E(f̂2
j )− f2

j

fj
. (40)

Notice that

E(f̂2
j ) =

{

E(f̂j)
}2

+
∑

m

w2
mfj+m. (41)

Thus combining (40) and (41) we get

1

n

∑

j

E(f̂j − fj)
2

fj
=

1

n

∑

j

[

fj + E(f̂j)

fj
{E(f̂j)− fj}+

∑

m

w2
m

fj+m

fj

]

.

Since the weights wm’s are zero when |m| > bn/2 and the function f is Lipschitz, we have

{E(f̂j)− fj} =

2n−1
∑

m=−n

wm−j{E(ym)− fj} ≤ D
bn
n
. (42)

Also notice that
2n−1
∑

m=−n

w2
m−j ≈

L
∫

K2(ω)dω

bn
, (43)

where L is the length of the support of K. Combining Equations (40) to (43) we can conclude that

there is a constant D1 > 0 depending on K such that

1

n

∑

j

E(f̂j − fj)
2

fj
≥

D1

bn
+O

{

bn
n

}

.

Equation (38) then follows from this, our first inequality (39) and the Cauchy-Schwartz inequality.

D Proof of Theorem 2

Notice that ∆̂r(h) −∆r(f̂ , f) = n−1
∑n−1

j=0 Zj where

Zj = 2yj(fj − f̂j) + (yj)
2 − (fj)

2 + (2w0 − 1)yj . (44)

Using independence of yj we get

E(Zj) = 2E{yjw0(fj − yj)}+ fj + (2w0 − 1)fj = 0,

proving (13).
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Let us now turn our attention to the variance. Notice that wm’s are zero when |m| > bn/2,

whence the independence of observations implies:

var{∆̂r(h) −∆r(f̂ , f)} =
1

n2

n−1
∑

i=0

n−1
∑

i=0

cov(Zi, Zj) =
1

n2

∑

|i−j|≤b

cov(Zi, Zj)

≤
1

n2

∑

|i−j|≤b

{var(Zi) var(Zj)}
1
2 . (45)

Therefore we need to prove that var(Zi) is bounded. Using equation (44) we get:

var(Zj) ≤ 3 var{2yj(fj − f̂j)}+ 3var{(yj)
2}+ 3var{(2w0 − 1)yj}.

Since the function f is bounded and if Y has Poisson(λ) distribution then E(Y 4) = λ+7λ2+6λ3+λ4

we conclude that there is a universal constant C depending on the function f through max f , such

that var(Zj) ≤ C. This and the fact that (45) has no more than (2b+ 1)n non-zero terms implies

var{∆̂r(h) −∆r(f̂ , f)} ≤ C
b

n

which is (14).

Finally, we will prove (15). Notice first that arguments almost identical to those in the proof

of (14) imply

var∆r(f̂ , f) ≤ C ′ b

n
. (46)

Second, we will estimate E∆r(f̂ , f). Substituting

E(f̂2
j ) =

{

E(f̂j)
}2

+
∑

m

w2
mfj+m (47)

into

E{(f̂j − fj)
2} = (fj)

2 − 2fjE(f̂j) +E(f̂2
j ) (48)

we get

1

n

∑

j

E(f̂j − fj)
2 =

1

n

∑

j

[

{fj − E(f̂j)}
2 +

∑

m

w2
mfj+m

]

.

The assumption that function f is Lipschitz assures that |fm−fj| < D|m− j|/n. Since the weights

wm’s are zero when |m| > bn/2, we have

{E(f̂j)− fj}
2 =

{

2n−1
∑

m=−n

wm−j(fm − fj)

}2

≤

(

D
bn
n

)2

. (49)
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Combining Equations (43) and (48) we can conclude that there is a constant D2 > 0 depending on

K and M , such that

1

n

∑

j

E{(f̂j − fj)
2} ≥

D2

bn
+O

[

{

bn
n

}2
]

. (50)

Recall, bn = o(n1/3). Thus (bn/n)
1/2 = o(1/bn) and there is rn such that rn = o(1/bn) and

(bn/n)
1/2 = o(rn). Fix ε > 0 and calculate:

P

(∣

∣

∣

∣

∣

∆̂r(h) −∆r(f̂ , f)

∆r(f̂ , f)

∣

∣

∣

∣

∣

> ε

)

< P

(∣

∣

∣

∣

∣

∆̂r(h) −∆r(f̂ , f)

rn

∣

∣

∣

∣

∣

> ε

)

+ P (∆r(f̂ , f) < rn).

By combining (13), (14), (46), (50), and the Chebyshev’s inequality we get

P

(∣

∣

∣

∣

∣

∆̂r(h)−∆r(f̂ , f)

rn

∣

∣

∣

∣

∣

> ε

)

<
var ∆̂r(h)−∆r(f̂ , f)

ε2r2n
<

Cbn/n

ε2r2n
→ 0,

P (∆r(f̂ , f) < rn) < P (|∆r(f̂ , f)− E∆r(f̂ , f)| > E∆r(f̂ , f)− rn)

<
var∆r(f̂ , f)

(E∆r(f̂ , f)− rn)2
<

C ′bn/n

(D2/bn −D(bn/n)2 − rn)2
→ 0.

This proves (15).
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