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a b s t r a c t

Generalized fiducial inference is closely related to the Dempster–Shafer theory of belief
functions. It is a general methodology for constructing a distribution on a (possibly
vector-valued) model parameter without the use of any prior distribution. The resulting
distribution is called the generalized fiducial distribution, which can be applied to form
estimates and confidence intervals for the model parameter. Previous studies have shown
that such estimates and confidence intervals possess excellent frequentist properties.
Therefore it is useful and advantageous to be able to calculate the generalized fiducial
distribution, or at least to be able to simulate a randomsample of themodel parameter from
it. For a small class of problems this generalized fiducial distribution can be analytically
derived, while for some other problems its exact form is unknown or hard to obtain. A
new computationalmethod for conducting generalized fiducial inferencewithout knowing
the exact closed form of the generalized fiducial distribution is proposed. It is shown
that this computational method enjoys desirable theoretical and empirical properties.
Consequently,with this proposedmethod the applicability of generalized fiducial inference
is enhanced.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fisher (1930) introduced the idea of fiducial probability and fiducial inference as an attempt to overcomewhat he saw as
a serious deficiency of the Bayesian approach to inference: the use of a prior distribution on model parameters even when
no prior information is available. Fiducial inference created some controversy once Fisher’s contemporaries realized that,
unlike earlier simple applications involving a single parameter, fiducial inference often led to procedures thatwere not exact
in the frequentist sense and did not possess other properties claimed by Fisher (Lindley, 1958; Zabell, 1992). An interested
reader can consult Section 2 of Hannig (2009) for a discussion of the history of fiducial inference and a more complete list
of references.

Tsui and Weerahandi (1989) and Weerahandi (1993) proposed a new approach for constructing hypothesis tests using
the concept of generalized P-values and generalized confidence intervals. Hannig et al. (2006) established a direct connection
between fiducial intervals and generalized confidence intervals and proved the asymptotic frequentist correctness of such
intervals. These ideas were unified for parametric problems in Hannig (2009) without requiring any group structure related
to the model. This unification is termed generalized fiducial inference and has been found to have excellent theoretical and
empirical properties for a number of practical applications (E et al., 2008; Hannig and Lee, 2009;Wandler andHannig, 2011).
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The Dempster–Shafer theory of belief functions (Dempster, 2008; Shafer, 2011) is closely related to the generalized
fiducial inference. In both cases a relationship between the data, X, and the parameters, θ ∈ 2 is expressed in a functional
form; i.e.,

X = G(θ,U), (1.1)

where U is the random component of the structural equation, a random variable or vector whose distribution is completely
known and independent of any parameters. The Eq. (1.1) is typically called data-generating equation, structural equation or
a-equation.

After observing a fixed realized value of X, say x0, one can invert the Eq. (1.1) to define a belief function on the parameter
space 2. To explain the idea behind the formal definition of this belief function, suppose first that the structural relation
(1.1) can be inverted, solved for θ , and the inverse Q(x0,u) always exists. That is, for any observed x0 and for all u, there is
always a unique θ solving x0 = G(θ,u). (The more realistic case where the inverse Q does not exist will be discussed in the
next section.) Since the distribution ofU is completely known, one can always generate a random sample ũ1, . . . , ũM from it.
This random sample ofU is transformed into a random sample of θ via the inverseQ: {θ̃1 = Q(x0, ũ1), . . . , θ̃M = Q(x0, ũM)},
and the resulting random sample θ̃1, . . . , θ̃M can be used to obtain estimates and approximate confidence intervals for θ.
From this one can see that a probability density function r(θ) for θ is implicitly defined. The corresponding distribution is
termed the generalized fiducial distribution, which, in this case, is equivalent to the belief function.

This recipe defines a joint distribution on the parameter space. When making inference about individual parameters,
we then use the marginal of this joint distribution. It is well known that marginalization together with different structural
equations can lead to non-uniqueness; i.e., several different marginal fiducial distributions, (e.g., Dawid et al., 1973). We
do not see this as a problem because our goal is not to define the unique fiducial distribution. Instead, we are aiming to
define a distribution on the parameter space with good inferential properties. Approximate confidence intervals based on
the marginal fiducial distribution lead often to asymptotically correct coverage (Hannig, 2009, 2013). More importantly,
such confidence intervals have been shown to have very good small sample properties in a number of applied problems.
For computational reasons, we also recommend using structural equations that have simple form so that the calculations
described in Section 3 can be done in a closed form; see for example Section 4.3. More discussion on the choice of structural
equation can be found in Section 5 of Hannig (2013).

We remark that there is a new exciting inferential approach developed by Zhang and Liu (2011) that in some situations
does not require a computation of the whole distribution, making it attractive for various problems. However, this method
seems to have a requirement that the structural equation is invertible almost surely (Zhang and Liu, 2011, Theorem 3.1).
Such an assumption is not reasonable when the dimension of the minimal sufficient statistics is larger than the number of
parameters; e.g., the Cauchy regression problem to be discussed below.

The density function r(θ) thus plays an important role in the generalized fiducial approach to data analysis: it can be
applied to derive estimates and construct confidence intervals for the parameter θ, in a similar manner as the posterior
density function in the Bayesian paradigm. However, for many statistical problems, the exact form of r(θ) cannot be easily
calculated. Amajor contribution of this article is to propose practical methods for computing integrals of r(θ)when a closed
form expression for r(θ) is not readily available. Consequently, this article greatly enhances the applicability of generalized
fiducial inference for statistical problems.

The rest of this article is organized as follows. Firstly some background material is presented in Section 2. Then some
computational ideas are developed in Section 3 for simulating a random sample from r(θ) when the exact form of r(θ)
is unknown. Section 4 provides some simulation studies to demonstrate the advantages of the proposed computational
approach. Lastly, concluding remarks are offered in Section 5.

2. Background

This section provides some essential background material. First recall that in the discussion above the inverse Q is
assumed to exist. In practice this is likely to be wrong and the inverse Q does not exist. This can happen for two opposing
reasons: for some value of x0 andu, either there ismore than one θ, or there is no θ satisfying x0 = G(θ,u). The first situation
can be dealtwith by using themechanics of Dempster–Shafer calculus (Dempster, 2008); see also Section 4 of Hannig (2009).
The main idea is that the belief function for any set has three components summarizing (i) the strength evidence for the
set, (ii) the strength of the evidence against the set, and (iii) the strength of the evidence that is inconclusive. Hannig (2013)
shows that inmany statistical problems of practical interest the portion of the evidence that is inconclusive is asymptotically
negligible.

For the second situation where no θ satisfies x0 = G(θ,u), Hannig (2009) suggests removing the values of u for which
there is no solution from the sample space and then re-normalizing the probabilities; i.e., using the distribution of U
conditional on the event that ‘‘there is at least one θ solving the equation x0 = G(θ,U)’’. The rationale for this choice is
that we know that the observed data x0 were generated using some fixed unknown θ0 and u0; i.e., x0 = G(θ0,u0). The
information that the solution of the equation x0 = G(θ,U) exists for the true U = u0 is available to us in addition to
knowing the distribution of U. The values of u for which x0 = G(· ,u) does not have a solution could not be the true u0
hence only the values of u for which there is a solution should be considered in the definition of the generalized fiducial
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distribution, which leads to the conditioning. This step is closely related to the Dempster’s rule of recombination (Dempster,
2008). See Section 2 of Hannig (2013) for a mathematically precise definition.

While the recipe for defining a belief function is conceptually straightforward, computational implementation is usually
complicated even for simple problems. Moreover, the set of u for which the solution exists has probability zero in many
practical situations; e.g., most problems involving absolutely continuous random variables. Conditioning on such a set of
probability zero will therefore lead to non-uniqueness due to Borel paradox (e.g., Casella and Berger, 2002, Section 4.9.3).

Hannig (2013) provides an attractive resolution of the Borel Paradox by limit of discretizations. In particular, write the
data generating equation as G = (g1, . . . , gn) so that Xi = gi(θ,U) for i = 1, . . . , n. Assume that U = (U1, . . . ,Un) is
i.i.d. Uniform(0,1) and the parameter θ ∈ 2 ⊂ Rp is p-dimensional. Then under some differentiability assumptions, Hannig
(2013) shows that the generalized fiducial distribution is absolutely continuous with density

r(θ) =
J(x, θ)f (x, θ)

2
J(x, θ′)f (x, θ′) dθ′

, (2.1)

where f (x, θ) is the joint likelihood of the data and

J(x, θ) =


i=(i1,...,ip)

1≤i1<···<ip≤n

det


d
dx

G−1(x, θ)
−1 d

dθ
G−1(x, θ)


i

 . (2.2)

Here the sum goes over all p-tuples of indexes i = (1 ≤ i1 < · · · < ip ≤ n) ⊂ {1, . . . , n}, dG−1(x, θ)/dθ and dG−1(x, θ)/dx
are the n × p and n × n Jacobian matrixes respectively, and for any n × p matrix, (A)i is the p × p matrix comprised of the
rows i1, . . . , ip of A.

If the observations are from an i.i.d. univariate absolutely continuous distribution there is a natural choice of the
structural equation (1.1). Let F(x, θ) and f (x, θ) be the distribution and density functions respectively, and F−1(θ, u) =

infx{F(x, θ) ≥ u} is defined as the usual pseudo-inverse. The natural structural equation in this case is

Xi = F−1(θ,Ui), i = 1, . . . , n, (2.3)

where Ui are i.i.d. Uniform(0,1). The inverse of the structural equation u = G−1(x, θ) is
ui = F(xi, θ), i = 1, . . . , n

and the numerator of generalized fiducial density in (2.1) simplifies to

J(x, θ)f (x, θ) =


i=(i1,...,ip)

1≤i1<···<ip≤n

det
∇θF(xi1 , θ)

...
∇θF(xip , θ)




j∉i

f (xj, θ), (2.4)

where ∇θF(x, θ) is the gradient; i.e., the row vector of partial derivatives computed with respect to elements of θ. Notice
that if n ≥ p = 1 then (2.1) and (2.4) agree with the proposal of Dempster (1963).

When the Jacobians in (2.2) or (2.4) can be evaluated in closed form one can use standard tools such as direct numerical
evaluation, Markov Chain Monte Carlo, importance sampling or sequential Monte Carlo when implementing the formula
(2.1). Examples of such successful implementation are Hannig et al. (2006); E et al. (2008); Hannig (2009); Hannig and Lee
(2009); Wandler and Hannig (2011); Cisewski and Hannig (2012).

When the Jacobian cannot be computed in a closed form, one can attempt to compute it numerically, e.g., Wang et al.
(2012). However, such computations can become prohibitively expensive even for moderate p as each evaluation would
require a computation a large number of determinants of p× p Jacobians. As a main contribution of this article, next section
develops some computational ideas specifically designed for such a situation.

3. Computational formulas

Let us first consider the i.i.d. setup of (2.3). Denote the fixed observed data value by x and its order statistic by
(x(1), . . . , x(n)). Using the notation of the previous section let us assume that for each set of indexes i = (i1, . . . , ip), 1 ≤

i1 < · · · < ip ≤ n, the p-equations F(xi, θ) = ui, i ∈ i have unique solution θ for all u = (u1, . . . , up) ∈ Si ⊂ (0, 1)p, and no
solution if u ∉ Si, where Si have positive Lebesgue measure. Denote this solution by Qi(u) and assume that it is continuous.
When using formulas (2.1) and (2.4) in practice, one needs to approximate integrals

A
J(x, θ)f (x, θ) dθ =


i


A

det ∇θF(xi1 , θ), . . . ,∇θF(xip , θ)


j∉i
f (xj, θ) dθ

=


i


Q−1
i (A)


j∉i

f (xj,Qi(u)) du. (3.1)

We will now discuss several options on how to approximate such integrals in practice.



Author's personal copy

852 J. Hannig et al. / Computational Statistics and Data Analysis 71 (2014) 849–858

3.1. Intrusive method

If the set A is closed and simply connected, then by the mean value theorem there is a point θi ∈ A such that
Q−1
i (A)


j∉i

f (xj,Qi(u)) du = volume(Q−1
i (A))


j∉i

f (xj, θi). (3.2)

If in addition A is a simplex spanned by points {θ0, . . . , θp} we can approximate (3.2) by
Q−1
i (A)


j∉i

f (xj,Qi(u)) du

≈ (p!)−1

det
F(xi1 , θ1) − F(xi1 , θ0) · · · F(xip , θ1) − F(xip , θ0)

...
...

...
F(xi1 , θp) − F(xi1 , θ0) · · · F(xip , θp) − F(xip , θ0)




j∉i

fXj(xj, θ̃).

Here we approximated the volumeQ−1
i (A) by the volume of the simplex spanned by the transformations of the vertexes of

A and replaced the point θi with the center point θ̃ = (θ0 + · · · + θp)/p. Such a numerical scheme would be exact for linear
functions (e.g., Ciarlet, 1978, p. 182).

Additionally, we can estimate the sum over all i by an average as the constant


n
p

−1
would be applied to both numerator

and denominator of (2.1). Next we estimate the average by an average of a random sample of size k of p-tuples of indexes
i1, . . . , iK ; here ik = {1 ≤ ik,1 < · · · < ik,p ≤ n}. Thus for a simplex A spanned by {θ0, . . . , θp} we approximate

n
p

−1 
A
J(x, θ)f (x, θ) dθ

≈ K−1(p!)−1
K

k=1

det
F(xik,1 , θ1) − F(xik,1 , θ0) · · · F(xik,p , θ1) − F(xik,p , θ0)

...
...

...
F(xik,1 , θp) − F(xik,1 , θ0) · · · F(xik,p , θp) − F(xik,p , θ0)




j∉ik

fXj(xj, θ̃). (3.3)

This approximation is unbiased. Moreover, its quality improves for large n as the summands in (2.4) are U-statistics
based on X (Hannig, 2009), and consequently the left-hand-side of (3.3) converges as n → ∞ to the expected value
E

A J(x, θ)f (x, θ)dθ a.s. Similarly the right-hand-side of (3.3) converges to the same limit as K → ∞ and n → ∞.
The approximation (3.3) is most useful when the parameter space is partitioned into simplexes. Such partitions are

available in the numerical mathematics literature (e.g., Brandts et al., 2009). Once we have the simplex partition of the
parameter space we can then implement a Metropolis–Hastings chain on the simplexes. In particular, if the simplex A
spanned by {θ0, . . . , θp} is the current state of the Metropolis–Hastings chain we propose the next state as one of the p + 1
simplexes that share a facewithA. Denote this proposed simplex byA′ and assume it is spanned by {θ′

0, . . . , θ
′

p}. The proposal
is then accepted/rejected based on the usualMetropolis–Hastings ratio computed from (2.1) and (3.3); i.e., it is acceptedwith
probability

K
k=1

Vk(θ
′

0, . . . , θ
′

p)

j∉ik

fXj(xj, θ̃
′

)

K
k=1

Vk(θ0, . . . , θp)

j∉ik

fXj(xj, θ̃)
,

where θ̃
′

= (θ′

0 + · · · θ′

p)/p and

Vk(θ0, . . . , θp) =

det
F(xik,1 , θ1) − F(xik,1 , θ0) · · · F(xik,p , θ1) − F(xik,p , θ0)

...
...

...
F(xik,1 , θp) − F(xik,1 , θ0) · · · F(xik,p , θp) − F(xik,p , θ0)


 .

This method lowers the number of determinants of Jacobian one needs to calculate by eliminating the need to compute a
numerical approximation to a Jacobian at every location used by evaluating volumes of moderate size simplexes. However,
the need to then employ Metropolis–Hastings like algorithms makes it somewhat less desirable. In the next subsection we
discuss a method that avoids both computation of Jacobian like determinants and Monte Carlo computations.
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3.2. Non-intrusive method

In this section we propose a method for evaluating the generalized fiducial distribution r(θ) without computing any
determinants. To this end we use (3.1) to compute the denominator of (2.1). In particular (3.1) simplifies to

2

J(x, θ)f (x, θ) dθ =


i


Si


j∉i

f (xj,Qi(u)) du. (3.4)

See beginning of Section 3 for the definition of Si.
To numerically compute the integrals on the right-hand-side of (3.4) consider a partition E1, . . . , EM of (0, 1)p. To achieve

accuracy the diameter of the elements Ei should be small enough which could potentially lead to a lengthy calculation.
Fortunately our extensive numerical experience suggests that only a relatively small number of elements near themaximum
of the likelihood function are needed in order to get a good approximation of the integration.

This suggests the following approach. For each i compute

Q−1
i (θ̂MLE) = (F(xi1 , θ̂MLE), . . . , F(xip , θ̂MLE)),

where θ̂MLE is themaximum likelihood estimator (MLE) or a similar estimator for θ. For elements El ⊂ [0, 1]p nearQ−1
i (θ̂MLE)

compute a numerical approximation to
El∩Si


j∉i

f (xj,Qi(u)) du.

With ũl the center of El, one such numerical approximation is volume(El)


j∉i f (xj,Qi(ũl)), provided ũl ∈ Si and 0 otherwise.
This requires computing the inverse Qi(ũl). Notice that due to continuity the already computed values of Qi(ũk) at a
neighboring element can be used as the starting point for the numerical solver to speed up the computations. In the rest of
this manuscript we will use the notation f (xj,Qi(ũk)) = 0 if the inverse Qi(ũk) does not exist.

In order to compute

A J(x, θ)f (x, θ) dθ, consider for each i

El⊂Q−1
i (A)


El


j∉i

f (xj,Qi(u)) du ≤


Q−1
i (A)


j∉i

f (xj,Qi(u)) du

≤


El∩Q−1

i (A)≠∅


El


j∉i

f (xj,Qi(u)) du. (3.5)

When using (3.5) recall thatwe have already calculated the inversionQi(ũl) for all important elements El.We can then define
the collection of elements Ei(A) = {El : Qi(ũl) ∈ A}. Thus overall the generalized fiducial probability is approximated by


A
r(θ)dθ ≈

K
k=1


El∈Eik (A)


El


j∉ik

f (xj,Qik(u)) du

K
k=1

M
l=1


El


j∉ik

f (xj,Qik(u)) du
, (3.6)

where i1, . . . , iK is randomsample of size k of p-tuples of indexes and the integrals over the finite elements are approximated
using numerical methods.

Proposition 3.1. Assume that F(x, u) is continuously differentiable in both variables. Then for each i
El∈Eik (A)

volume(El) ·


j∉i

f (xj,Qi(ũ)) →


Si∩A


j∉i

f (xj,Qi(u)) du

asmaxl diamEl → 0.

The proof of this proposition follows from the well-known results for numerical integration (Davis and Rabinowitz, 1984).
As a consequence, the approximationwill for each k converge to the integral it is targeting asmaxi diamEi → 0.Moreover,

strong law of large numbers then provides convergence of the right hand side of (3.6) to the left hand side of (3.6) as k → ∞.
The exact speed of convergence depends on the choice of the partition. The natural regular partition E1, . . . , EN consisting

of cubes of size 1/N1/d converges only at the rate N1/d (Davis and Rabinowitz, 1984, Section 5.5). It is often recommended
to improve the speed of convergence by the use of so-called low discrepancy sequences such as the Hammersley set. In
particular for smooth enough densities if uk are members of the Hammersley sequence,

N−1
N

k=1


j∉i

f (xj,Qi(uk)) →


Si


j∉i

f (xj,Qi(u)) du

at the rate of (logN)d−1N−1.
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3.3. Algorithm for the non-intrusive method

This subsection summarizes the major steps of the above non-intrusive method for approximating the generalized
fiducial probability


A r(θ)dθ in the form of step-by-step instructions.

First obtain θ̂MLE, and sample K sets of p-tuples of indexes ik = {1 ≤ ik,i < · · · < ik,p ≤ n}, k = 1, . . . , K . For each k,
perform the following steps:

1. Compute Q−1
ik (θ̂MLE) = (F(xi1 , θ̂MLE), . . . , F(xip , θ̂MLE)).

2. Partition (0, 1)p into hyper-cubes (e.g., squares for 2-d, cubes for 3-d) Ek,l, 1 ≤ l ≤ M . The sizes of these hyper-
cubes should be small enough to ensure numerical accuracy; hyper-cubes near Q−1

ik (θ̂MLE) can be made smaller than
the hypercubes further away to gain speed. Denote the center of Ek,l as ũk,l.

3. Compute θ̃k,l = Qik(ũk,l); i.e., the solution to the systems of equations
F(xik,1 , θ̃k,l), . . . , F(xik,p , θ̃k,l)

′
= ũk,l.

Numerical methods such as Newton’s method can be employed here. We note that as solution may not exist for some u,
we only restrict ourselves to those Ek,l’s that provide solutions to the equations.

4. Calculate Jk,l = Volume(Ek,l)


j∉ik f (xj, θ̃k,l).

The generalized fiducial probability

A r(θ)dθ is then approximated by

K
k=1

M
l=1

Jk,l1(θ̃k,l ∈ A)

K
k=1

M
l=1

Jk,l

,

and from which a random sample of θ can be (approximately) simulated to form point estimates and confidence intervals
for θ.

The algorithm can be modified accordingly if we choose to use a low discrepancy sequence for integration.

4. Simulation study

To demonstrate the feasibility of the non-intrusive method for approximating the generalized fiducial distribution we
will demonstrate it on three different problems: estimation for the two parameter Gamma distribution, estimation for
the three parameter Weibull distribution, and linear regression with Cauchy errors. In each of these cases we performed
a simulation study in which we compared the repeating sampling frequentist performance of the generalized fiducial
distribution implemented using the non-intrusive method with other methods used in the literature for these problems.

The non-intrusive methods works with the joint generalized fiducial distribution. In order to find a confidence interval
for a single marginal parameters, appropriate rectangular sets A are used, e.g. A = (−∞, a) × R. In other words, in order
to construct a confidence interval of a parameter, we first sample from the joint fiducial distribution then marginalize the
samples. The simulation results show generalized fiducial method’s favorable performance in terms of coverage and length
of approximate confidence intervals.

Throughout the simulation section we compare our method with the MLE and/or MPS (Maximum Product of Spacing)
methods to be described below. These two methods construct confidence intervals based on asymptotic distributions
of likelihood or likelihood-like quantity. If other nuisance parameters are present, they are replaced by their consistent
estimators.

Here we do not include any simulation results for the intrusive method, as in the examples considered the intrusive
method is computationally slower then the non-intrusive method. It is because the intrusive method involves partitioning
the space into a large number of simplexes and a computationally expensive MCMC procedure is required to visit such
simplexes. Also, this MCMC based intrusive method that cannot be easily parallelized, while the non-intrusive method can
be easily parallelized. This makes the non-intrusive method more suited for modern computer environments. Therefore in
general the non-intrusive method is preferable, especially when there is a relatively fast way to compute the inverse Q (ũ).

4.1. Gamma distribution

In this subsection we considered samples of size n = {3, 10, 30} from a Gamma distribution with shape parameter
α = {0.5, 1, 5} and rate parameter λ = 1. Because of the form of the Gamma distribution there is no closed form solution
for either the maximum likelihood estimator nor the generalized fiducial density. Therefore this setting is a prime example
where our algorithms will be useful. A variant of the intrusive method has been implemented in Wang et al. (2012) in the
context of prediction. Here we report the results of the non-intrusive method.
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Table 1
Empirical coverages, in %, of various 95% confidence intervals calculated from
500 independent data sets for the Gamma(α, λ) = (1, 1) simulation. Numbers
in parentheses are median lengths of these confidence intervals.

n α λ

Fiducial MLE Fiducial MLE

3 95 (3.31) 99 (4.22) 93 (4.58) 98 (5.96)
10 96 (1.60) 98 (1.78) 93 (1.88) 98 (2.28)
30 95 (0.92) 96 (0.95) 93 (1.14) 95 (1.22)

Table 2
Similar to Table 1 but for theGamma(α, λ) = (0.5, 1) simulation.

n α λ

Fiducial MLE Fiducial MLE

3 94 (2.08) 97 (2.25) 93 (7.38) 97 (7.54)
10 93 (0.76) 96 (0.82) 95 (2.39) 96 (2.52)
30 94 (0.41) 94 (0.43) 93 (1.25) 96 (1.36)

Table 3
Similar to Table 1 but for the Gamma(α, λ) = (5, 1) simulation.

n α λ

Fiducial MLE Fiducial MLE

3 92 (19.29) 97 (26.19) 91 (3.89) 98 (5.19)
10 94 (8.95) 97 (10.39) 95 (1.84) 98 (2.15)
30 95 (5.00) 96 (5.21) 95 (1.05) 96 (1.10)

For each combination of sample size and parameter values, 500 independent data sets were generated. For each of these
generated data sets, two approximate 95% confidence intervals were constructed for each of the parameters: one was based
on the generalized fiducial distribution computed with the non-intrusive algorithm using K = 100 p-tuples andM = 1000
hypercubes. The otherwas based on themarginal asymptotic distribution of theMLE. Tables 1–3 list the empirical coverages
and median lengths of these approximate 95% confidence intervals, based on the 500 independent data sets. These tables
show that the fiducial based intervals maintain the stated coverage reasonably well while the MLE based intervals tend to
be slightly conservative. Overall the fiducial based intervals are shorter.

We note that our generalized fiducial method is computationally more demanding than the classical MLE methods.
However, it can be seen that the generalized fiducial method outperforms the classical MLE method when the sample size
is relatively small. It suggests that the extra expense of computation is worthing for a better performance.

4.2. Three parameter Weibull distribution

In this subsection we considered samples of size n = {4, 10, 30} from the three parameter Weibull distribution:

F(x, α, λ, θ) = (1 − e−λα(x−θ)α )I(θ,∞)(x), λ > 0, α > 0.

In our simulation we have considered λ = 1, θ = 0 and α = {0.5, 1, 5}.
If the location parameter is fixed and known θ = 0 the resulting two parameter Weibull distribution is a transformation

of location scale family and therefore the generalized fiducial distribution is equivalent to a Bayesian posteriorwith reference
prior (Berger et al., 2009), and is known to lead to exact frequentist confidence intervals.

The three parameter situation is much more interesting. The usual reference prior recipe leads to priors that give
improper posteriors. The generalized fiducial distribution is always proper but has a very heavy tail in the θ parameter;
the fiducial distribution of θ does not have expected value. This makes it very challenging to use standardMCMC techniques
to sample from the generalized fiducial distribution, even though the closed form of the generalized fiducial density could be
potentially computed. The non-intrusive approach allows us to alleviate some of these problems by a natural transformation
of the problem to a problem of integrating on (0, 1)3.

It is well-known that themaximum likelihood estimators could fail in estimating parameters in three-parameterWeibull
distribution (Rockette et al., 1974; Smith, 1985; Nagatsuka et al., 2013) and could not therefore be used for comparison pur-
poses. Three cases may occur:

1. α < 1: the maximized likelihood is infinity and no local maximizer can ever be a consistent estimator;
2. 1 ≤ α < 2: there is a positive probability that the density has no local maximum and the asymptotic distribution of the

estimator does not follow any normal distribution; and
3. α ≥ 2: the weak regularity conditions are satisfied and the maximum likelihood estimators are asymptotic consistent,

efficient and normal.
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Table 4
Similar to Table 1 but for the Weibull(α, λ, θ) = (1, 1, 0) simulation.

n α λ θ

Fiducial MPS Fiducial MPS Fiducial MPS

4 98 (10.55) 73 (2.60) 100 (26.96) 69 (5.75) 98 (6.94) 69 (2.15)
10 96 (2.46) 94 (1.70) 96 (2.21) 89 (3.15) 97 (1.50) 92 (0.97)
30 93 (0.70) 99 (1.14) 96 (0.91) 99 (1.81) 97 (0.20) 99 (0.42)

Table 5
Similar to Table 1 but for the Weibull(α, λ, θ) = (0.5, 1, 0) simulation.

n α λ θ

Fiducial MPS Fiducial MPS Fiducial MPS

4 97 (3.61) 90 (1.34) 99 (50.30) 84 (31.09) 98 (3.77) 81 (2.38)
10 95 (0.59) 99 (0.82) 96 (4.05) 100 (10.56) 97 (0.18) 99 (0.52)
30 93 (0.29) 99 (0.58) 95 (1.71) 100 (4.90) 95 (0.013) 99 (0.088)

Table 6
Similar to Table 1 but for the Weibull(α, λ, θ) = (5, 1, 0) simulation.

n α λ θ

Fiducial MPS Fiducial MPS Fiducial MPS

4 93 (27.19) 61 (61.47) 100 (27.53) 45 (0.056) 91 (4.26) 18 (0.69)
10 96 (42.81) 40 (8.70) 96 (3.20) 40 (0.51) 96 (7.84) 20 (0.48)
30 97 (40.70) 58 (6.25) 97 (1.80) 29 (0.30) 97 (7.63) 25 (0.34)

To avoid inconsistent estimators when α < 1, it was proposed by Cheng and Amin (1983) to replace the likelihood by a
measure of spacings between the observations. The resulting estimator is called theMaximum Product of Spacing (MPS) es-
timator. It is shown that the MPS estimator exists under more general situations and it is asymptotically equivalent to MLE
if MLE exists. MPS has been successfully to construct confidence intervals and goodness-of-fit test (Cheng and Stephens,
1989; Cheng and Traylor, 1995).

For comparisonpurposes, both generalized fiducial inferencewithK = 100 andM = 107 andMPSwere used to construct
approximate confidence intervals in our simulations. Tables 4–6 report the empirical coverages and median lengths of the
various confidence intervals. These tables show that the fiducial based confidence intervals are to be preferred, especially
for small values of n.

The numerical issue cause by the location parameter θ led us to use a rather largeM which in turn made this the slowest
of all our examples. To further gain efficiency we implemented the Hammersley sequence computation described at the
end of Section 3.2. A simulation study for one of the parameters setting took about a day on the University of North Carolina
cluster computer. Though the computational expense for the generalized fiducial method is substantial, we still feel it is
preferable to the rather erratic MPS method.

4.3. Simple linear regression with Cauchy errors

In this last simulation we considered the simple linear regression model with Cauchy errors,

Yj = β0 + β1Xj + σZj,

where Xj is a covariate and Zj are i.i.d. standard Cauchy; i.e., Fz(z) =
1
2 +

1
π
arctan(z).

This example shows that the non-intrusive algorithm can be simply extended to non i.i.d. data situations. For the current
problem the function Qi(u) for non-intrusive method is

Qi(u) = (H′

iHi)
−1H′

iYi,

where Xi = (Xi1 , . . . , Xip)
′, Yi = (Yi1 , . . . , Yip)

′ and Hi =

1,Xi, F−1

z (u)

. Similarly as in the case of i.i.d. data only a subset

of u ∈ (0, 1)3 has a defined inverse Q . Indeed, if Qi(Fz(z)) = (β0, β1, σ )′, then Qi(Fz(−z)) = (β0, β1, −σ)′. Thus the set S
of u = Fz(z) for which there is an inverse has measure 1/2.

We considered samples of size n = {4, 10, 30} with the design points Xj being generated from the standard normal
distribution, β0 = 0, β1 = {1, 2, 5} and σ = 1. In Tables 7–9 we report the performance of the generalized fiducial
inference confidence intervals using K = 100 and M = 104, and the confidence intervals based on the asymptotics of MPS
andMLE. The generalized fiducial based intervals show steady reliable performance while the competingmethods are quite
erratic.

A simulation for one of the parameter settings took about 6 to 7 h using a regular PC with an Intel(R) Core(TM) i7 3.33
GHz CPU (about 45s per dataset). The speed of the non-intrusive method, though slower than MLE and MPS, is still very
reasonable due to the fact that the inverse Qi(ũ) has a closed form in this problem.
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Table 7
Similar to Table 1 but for the Cauchy regression (β0, β1, σ ) = (0, 1, 1) simulation.

n β0 β1 σ

Fiducial MPS MLE Fiducial MPS MLE Fiducial MPS MLE

4 94 (8.68) 94 (6.26) 0 (0.00011) 94 (12.03) 96 (6.79) 0 (0.00012) 96 (7.61) 94 (4.57) 0 (8.2e−05)
10 95 (2.63) 94 (2.35) 74 (1.41) 94 (3.10) 89 (2.56) 74 (1.47) 94 (2.53) 98 (2.22) 69 (1.33)
30 96 (1.14) 96 (1.23) 90 (0.96) 94 (1.20) 56 (1.26) 88 (0.97) 95 (1.09) 96 (1.20) 89 (0.94)

Table 8
Similar to Table 1 but for the Cauchy regression (β0, β1, σ ) = (0, 2, 1) simulation.

n β0 β1 σ

Fiducial MPS MLE Fiducial MPS MLE Fiducial MPS MLE

4 94 (9.33) 94 (6.88) 0 (1e−04) 95 (12.17) 93 (7.77) 0 (0.00012) 96 (7.50) 99 (4.84) 0 (7.5e−05)
10 95 (2.63) 96 (2.83) 71 (1.35) 95 (3.05) 76 (2.99) 71 (1.41) 95 (2.42) 99 (2.68) 71 (1.26)
30 94 (1.13) 91 (1.40) 87 (0.92) 96 (1.20) 34 (1.42) 86 (0.93) 94 (1.12) 89 (1.38) 85 (0.90)

Table 9
Similar to Table 1 but for the Cauchy regression (β0, β1, σ ) = (0, 5, 1) simulation.

n β0 β1 σ

Fiducial MPS MLE Fiducial MPS MLE Fiducial MPS MLE

4 95 (8.92) 91 (12.77) 0 (1e−04) 95 (11.76) 82 (14.53) 0 (0.00011) 94 (7.62) 99 (8.50) 0 (7.7e−05)
10 96 (2.53) 88 (5.50) 75 (1.30) 95 (2,93) 18 (5.80) 71 (1.37) 94 (2.34) 98 (5.24) 71 (1.22)
30 94 (1.13) 88 (3.00) 91 (0.96) 94 (1.20) 0.2 (3.09) 89 (0.95) 94 (1.10) 12 (2.94) 88 (0.93)

4.4. Discussion of simulation results

In the above numerical experiments the experimental settings (e.g., the distribution function and the corresponding
parameter values) were carefully chosen with the hope to represent a large class of practical scenarios. However, just the
same as any other simulation studies, the above numerical study could not cover all the possibilities that onemay encounter
in practice, and therefore caution must be exercised when empirical conclusions are being drawn from the results. Despite
this, we believe that the following conclusions are reliable:
• The relative performances of the fiducial and classical (MLE andMPS) methods depend on the sample size and the shape

of the underlying distribution.
• When the sample size is large, the fiducial and classical methods tend to give similar results. On the other hand, for small

sized problems, the fiducial method could potentially outperform the classical methods by a large margin.
• The fiducial method also tends to provide better results when the underlying distributions are highly skewed or heavy-

tailed.
• Very often the fiducialmethod is computationallymore expensive than the classicalmethods. Therefore if the sample size

is large and the underlying distribution is relatively symmetric without heavy-tails, one could use the classical methods,
for the reason of time saving. Otherwise, one should use the fiducial method to achieve statistical accuracies.

• When possible we recommend the use of structural equations with simple closed form inverses, such as in the case of
Cauchy regression, in order to speed up computations.

5. Conclusions

In this article we have proposed two practical methods for simulating the generalized fiducial samples: the intrusive
method and the non-intrusive method. The intrusive method requires Metropolis–Hastings like algorithms to generate
random samples from the target distribution, while the non-intrusive method avoids such Monte Carlo computations by
transforming the generalized fiducial integral from the parameter space 2 to (0, 1)p. The non-intrusive method can be
applied straightforwardly without computing the exact expression of the generalized fiducial distribution, nor any of its
derivatives. Simulation results show that fiducial based confidence intervals produced by the non-intrusive method have
very reliable frequentist properties. Quite often they outperform other classical methods by a largemarginwhen the sample
size is small. Since for many statistical problems the exact expression of the generalized fiducial distribution is unknown,
the non-intrusive method greatly enhances the applicability of generalized fiducial inference.
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