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Abstract
This paper presents an approach for making inference on the
parametersµ andσ of a Gaussian distribution in the presence of resolution
errors. The approach is based on the principle of fiducial inference and
requires a Monte Carlo method for computing uncertainty intervals. A small
simulation study is carried out to evaluate the performance of the proposed
procedure and compare it with some of the existing procedures. The results
indicate that the fiducial procedure is comparable to the best of the
competing procedures for inference onµ. However, unlike some of the
competing procedures, the same Monte Carlo calculations also provide
inference forσ and many other related quantities of interest.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One common source of uncertainty in metrological applica-
tions is the one due to limited resolution of instruments. The
error in theresult that is attributable to limited instrument res-
olution or quantization during analog-to-digital conversion is
sometimes referred to as resolution error or quantization error.
We say that an instrument has resolutiond (in appropriate
units) if the absolute difference between the actual value and
the instrument reading could be as high asd/2. That is, if the
instrument reading isy then the actual value is known to be
betweeny − d/2 andy + d/2. No finer information about
the value is available. Early attempts to account for resolution
error took the approach of treating resolution error as a ran-
dom quantity having a uniform distribution within the interval
(−d/2, d/2). This led to a model of the form

Xi = µ + σZi + dUi, i = 1, . . . , n, (1)

where µ is the measurand,σ is the standard deviation of
the measurement process under repeatability conditions,Zi

are independent standard Gaussian errors,d is instrument
resolution andUi are independent uniform(−1/2, 1/2)

variates. An implicit assumption is thatZi and Ui are

independent. Using such a model Lira and Wöger [1] proposed
the use of the formula

sx̄ =
√

s2
x

n
+

d2

12

for the standard uncertainty ofx̄. Heres2
x is the sample variance

of the measured values.
However, Lira [2] correctly pointed out thatZi and

Ui cannot be independent and provided a method, using a
Bayesian approach, for calculating the standard uncertainty
of a quantity using discretized measurement data. Prior to
Lira’s work, Elster [3] had proposed a Bayesian treatment
of this resolution error problem and provided a solution
that did not make any distributional assumptions about the
resolution errors. Lira [2] remarked that the Elster solution
is computationally unsuitable for routine work and provided
an approximation that is easy to use. Frenkel and Kirkup [4]
considered this resolution error problem and provided charts
that can be used to estimate the unknown varianceσ 2 from the
observed variances2

x . Taraldsen [5] and Willink [6] have also
presented simple alternative approaches for the problem.

In this paper we propose a different approach for making
inference on the parametersµ andσ of a Gaussian distribution
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in the presence of resolution errors. Our approach is based
on generalizations offiducial inference proposed by Fisher
[7] and structural inference introduced by Fraser [8]. The
paper is organized as follows. In section2 we review
the measurement model in the presence of resolution or
quantization errors. The main problem is that of estimating
the measurandµ and obtaining an appropriate uncertainty
interval. A related problem of importance is the estimation
of σ along with an uncertainty interval. This latter estimate
provides information about the variability of the measurement
process in the absence of resolution errors. Section3
contains an outline of the fiducial method and gives simple
illustrations of how the method is implemented. We then
briefly describe a technical formulation of a generalized
fiducial recipe for deriving uncertainty intervals for parameters
in general problems. Section4 uses two examples to illustrate
the fiducial uncertainty intervals forµ and compares them
with the uncertainty intervals obtained based on the existing
procedures mentioned in this section. Section 5 uses a Monte
Carlo study to examine the coverage properties of the fiducial
uncertainty intervals under a variety of scenarios involving
different values for the measurand, the experimental standard
deviation and the instrument resolution, namely,µ, σ andd,
respectively. Section6discusses two other related problems of
interest in metrology that can also be solved using the fiducial
approach. Finally, we conclude with some summary remarks
in section7.

2. Measurement model with resolution error

If an instrument has a resolution ofd units, the measured value
can only be reported as the closest multiple ofd. If x is the
measured value, then there is a unique integerk such that
kd − d/2 < x � kd + d/2 and we defineψ(x) = kd. It
follows that

x − d/2 < ψ(x) � x + d/2.

As in [5], we let the independent random variablesX1, . . . , Xn

represent the measurement process with perfect resolution.
The reported valuesY1, . . . , Yn are then given byYi = ψ(Xi).
The measurement model is

Yi = ψ(Xi) = ψ(µ + σZi), i = 1, . . . , n. (2)

In this paper we use an extension of the fiducial argument
of Fisher, described by Hannig [9], to obtain the fiducial
distribution of(µ, σ ) for the measurement model in (2). This
approach is described in the next section. Earlier works on
generalized confidence intervals and generalized inference
[10–13] are special cases of generalized fiducial inference.
See Hannig [9] for a detailed discussion of generalized fiducial
inference.

3. Generalized fiducial inference

The following three simple examples serve to illustrate the
basic ideas of fiducial inference.

3.1. Example 1

SupposeX ∼ N(µ, 1) where µ is the measurand, the
measurement process has a known variance equal to 1, and
X is the random variable representing values that may be
observed. One might express the relationship between the
measured values and the underlying random experimental error
process by the following equation:

X = µ + E, (3)

whereE is a random error withN(0, 1) distribution. Each
measured value is associated with a particular random
experimental error. Suppose a single measurement is made and
its value is 10. The associated measurement error is denoted
by e. So

10 = µ + e.

Henceµ = 10−e. If the value ofe were known, then we would
know the measurand exactly, but the value ofe is not known.
Nevertheless, the fact that we know the distribution from which
e was generated helps us determine a set of values ofµ that
we consider plausible. For instance, how plausible is the value
µ = 2 for the measurand? For this to be true we neede = 8.
A value of 8 is highly unlikely to have come from aN(0, 1)

distribution. So we conclude that the valueµ = 2 is highly
unlikely. How likely is it thatµ is between 10 and 12? Forµ

to be between 10 and 12,e needs to be between 0 and 2 and
we can calculate the probability for this to be�(2) − �(0),
where�(z) is the value of the cumulative standard normal
distribution atz. Thus, probabilities associated withE can
be transferred to probabilities forµ. Our knowledge about
µ, based on the measured value of 10, can be described by
the distribution of the random variablẽµ whose distribution
is given by that of 10− E. That is,µ̃ ∼ N(10, 1). We say
that the fiducial distribution ofµ (that is, the distribution of
µ̃) is N(10, 1).

The fiducial distribution ofµ may be used to obtain
a coverage interval forµ. An equal-tails 95% probability
interval forµ̃ is

P(10− z0.975 � µ̃ � 10 +z0.975) = 0.95,

where zγ is the 100γ percentile of a standard normal
distribution. This probability interval for̃µ may be interpreted
as a coverage interval forµ and we say that(10− z0.975, 10 +
z0.975) is a 95% fiducial coverage interval forµ. Note that
this is exactly the interval one would get using either the
classical frequentist approach or a Bayesian approach with a
non-informative improper prior forµ.

3.2. Example 2

In the above example, suppose we consider making two
measurements. LetX1 and X2 be the random variables
denoting the possible values one might obtain for the two
measurements. We can write

X1 = µ + E1,

X2 = µ + E2. (4)
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Suppose the actual measurements are 10 and 8. We then
have the following equations relating the measured values, the
measurand and the realized values of experimental errors, say
e1 ande2.

10 = µ + e1,

8 = µ + e2.

Plausible values forµ are related to plausible values of(e1, e2).
What makes this example different from the first example is
that here weknow e1 −e2 equals 2. So the universe of possible
values for(e1, e2) is now limited by this requirement. We know
(e1, e2) is from a standard bivariate Gaussian distribution but is
constrained to lie on the linee1 − e2 = 2. So the probabilities
one would associate withµ are the probabilities one would
associate with either 10− e1 (sinceµ = 10 − e1) or 8− e2

(sinceµ is also equal to 8− e2), knowing that(e1, e2) is
a realization from a bivariate standard Gaussian distribution
subject to the additional condition thate1 − e2 = 2. Hence
we define the random variablẽµ to have a distribution that
is equal to the conditional distribution of 10− E1 given that
E1 − E2 = 2. This is the same distribution as the conditional
distribution of 8− E2 given thatE1 − E2 = 2. A simple
calculation tells us that the distribution ofµ̃ isN(x̄, 1/2) where
x̄ = (x1 + x2)/2 = (10 + 8)/2 = 9. Thus, a 95% fiducial
coverage interval forµ is (9 − z0.975/

√
2, 9 + z0.975/

√
2).

Again, this is the same interval that one would obtain by the
classical frequentist method or a Bayesian method with a non-
informative improper prior.

Interestingly, this argument is fully generalizable and one
can develop fiducial distributions for model parameters in very
general problems. The starting point for this process is what
we call a structural equation. In example 1, equation (3)
constitutes the structural equation. In example 2, equations (4)
constitute the structural equations. The structural equations
relate the observations with model parameters and error
processes whose distributions are fully known. For instance,
in example 1 we know the distribution ofE completely.

In examples 1 and 2 we have assumed that the variance
of the measurement error process is known to be 1. This is
for simplicity only. One can assume that the measurement
error process has an unknown varianceσ 2. In this case,
for example 2, we will start with the following structural
equations:

X1 = µ + σE1,

X2 = µ + σE2.

More generally, if we haven measurements ofµ, then we can
write

X1 = µ + σE1,

X2 = µ + σE2,

. . . ,

Xn = µ + σEn,

whereE1, . . . , En are independent, standard Gaussian random
variables. It is well known that the fiducial argument will yield

the following fiducial distribution forµ:

µ̃ ∼ x̄ − s√
n
Tn−1, (5)

namely, a shifted and scaled Student’st distribution withn−1
degrees of freedom. Herēx is the mean of then measured
values ands is the sample standard deviation of thesen

measurements. The coverage interval forµ turns out to be
the same as the standard Student’st intervals.

The fiducial distribution forµ in (5) can also be obtained
with a simpler approach based on minimal sufficient statistics
X̄ and S2. SinceX̄ ∼ N(µ, σ 2/n) and (n − 1)S2/σ 2 ∼
χ2(n−1), whereχ2(ν) stands for the chi-squared distribution
with ν degrees of freedom, we have the following two structural
equations:

X̄ = µ +
σ√
n
E,

S2 = σ 2

n − 1
V,

whereE is standard normal andV is chi-squared withn − 1
degrees of freedom random variables. By solving the structural
equations, we obtain the fiducial distribution forµ in (5). This
is the approach used in [10] and [11].

One may wonder if the fiducial method will lead to
anything different from standard results. The answer is yes. In
fact, except in very simple situations such as those discussed
above, the fiducial method will differ from other methods.
The theoretical properties of coverage intervals derived from
fiducial distributions are discussed in detail in [9,13]. Many
articles have also examined, via statistical simulation, the
coverage properties of generalized confidence intervals in a
variety of applications, and as shown in [13], these generalized
confidence intervals are all, in fact, fiducial coverage intervals.

The next example develops the fiducial reasoning for
the model that is the topic of this paper, namely, the
measurement model with resolution errors in addition to
random experimental errors.

3.3. Example 3

The goal of this example is to illustrate how the fiducial
argument is applied to the measurement error model with
resolution error and so we consider a simple situation with only
three measurements ofµ, the measurand. Supposed = 1 is
the resolution (by appropriate choice of units,d can always
be taken to be 1). LetY1, Y2, Y3 be the random variables
representing the three measurements. Suppose the observed
values of these random variables arey1 = 4, y2 = 5 and
y3 = 6. The structural equations are

Y1 = ψ(µ + σE1),

Y2 = ψ(µ + σE2),

Y3 = ψ(µ + σE3),

(6)

whereψ(·) is the function defined in section2.
From the observed values we know

3.5 � µ + σe1 < 4.5,

4.5 � µ + σe2 < 5.5,

5.5 � µ + σe3 < 6.5,

(7)

478 Metrologia, 44 (2007) 476–483



Fiducial approach to uncertainty assessment accounting for error due to instrument resolution

4.0 4.5 5.0 5.5 6.0 6.5 7.0

–2

–1

0

1

2

µ

σ

3.5 = µ + 3σ

µ + 3σ = 4.5

5.5 = µ + σ
µ + σ = 6.5

µ = 4.5 µ = 5.5

Figure 1. Empty region for(µ, σ ) when(y1, y2, y3) = (4, 5, 6) and
(e1, e2, e3) = (3, 0, 1), demonstrating that not all values for
(e1, e2, e3) are allowable.

where e1, e2, e3 are independently realized values from
a standard Gaussian distribution. However, knowing
the measured values, these equations imply that certain
combinations of values for(e1, e2, e3) are impossible. For
instance, could the underlying errors(e1, e2, e3) equal
(3, 0, 1)? Plug in these values for theei into equations (7).
This will imply thatµ andσ must satisfy the inequalities

3.5 � µ + 3σ < 4.5,

4.5 � µ < 5.5,

5.5 � µ + σ < 6.5.

(8)

In particular, this implies that(µ, σ ) belongs to the region in
the (µ, σ ) plane determined by the inequalities in (8). This
region turns out to beempty if (e1, e2, e3) = (3, 0, 1). See
figure1.

So we know, on the strength of the observed values, that
(e1, e2, e3) = (3, 0, 1) is an impossibility. On the other hand,
(e1, e2, e3) = (3, 0, −1) leads to the following inequalities.

3.5 � µ + 3σ < 4.5,

4.5 � µ < 5.5,

5.5 � µ − σ < 6.5.

(9)

The points in the(µ, σ ) plane that satisfy these inequalities
belong to the shaded region in figure2. In particular,
(e1, e2, e3) = (3, 0, −1) is, in fact, a feasible realization
for (E1, E2, E3).

In fact, it is easy to characterize the setS of values of
(e1, e2, e3) in R3 which are possible realizations of the random
errors given the observed data. Given that(E1, E2, E3)

belongs to the setS, the inequalities in (7) define a set
Q = Q(E1, E2, E3) in the (µ, σ ) plane that is not empty.
Let (µ̃(Q), σ̃ (Q)) be a randomly chosen element from the set
Q. The distribution of(µ̃(Q), σ̃ (Q)), conditional on the event
that (E1, E2, E3) belongs to the setS, is defined to be the
generalized fiducial distribution of(µ, σ ).

4.0 4.5 5.0 5.5 6.0 6.5 7.0

–2

–1

0

2

1

µ

σ

3.5 = µ + 3σ

µ + 3σ = 4.5

5.5 = µ − σ

µ − σ = 6.5

µ = 4.5 µ = 5.5

Figure 2. Solutions for(µ, σ ) when(y1, y2, y3) = (4, 5, 6) and
(e1, e2, e3) = (3, 0, −1), demonstrating that some values for
(e1, e2, e3) are allowable.

In general, it is impossible to derive an analytic expression
for the fiducial distribution of(µ, σ ) in the resolution error
model. However, Markov Chain Monte Carlo (MCMC)
methods [14] are available such that we can obtain random
samples of any size from the fiducial distribution. Hence the
joint fiducial distribution of(µ, σ ), as well as the marginal
fiducial distributions ofµ andσ , can be empirically estimated.
Appropriate percentiles from these empirical distributions can
be used to estimate the theoretical percentiles for computing
coverage intervals. The description of an MCMC algorithm
that can be used to obtain random samples from the joint
fiducial distribution of(µ, σ ) is given in the appendix. AnR
[15] program, which takes the recorded data and the minimum
resolution as inputs and calculates various coverage intervals
for µ and/orσ , is available from the authors on request.

3.4. Generalized fiducial recipe

We will briefly describe the generalization of the idea described
above to arbitrary statistical models. LetX be a (possibly
discrete) random vector with a distribution indexed by a
parameterξ ∈ �. Assume that the data-generating mechanism
for X could be expressed in the following form

X = G(W, ξ), (10)

whereG is a function andW is a random variable or vector
with a completely known distribution independent of any
parameters. We call equation (10) the structural equation.
SupposeX has been observed and the realized value isx. This
must correspond to some realized value ofW which we denote
by w. We do not know the value ofw but we do know that
it has to be a value such that there is a valueξw of ξ which,
together withw, results inx = G(w, ξw). So, given the data,
only those values ofw are possible for whichx = G(w, ξw).
Denote this set of values ofw byS. For any given value ofw in
S, letQ(x, w) be the set of values ofξ such thatx = G(w, ξ).
That is,

Q(x, w) = {ξ : x = G(w, ξ)}. (11)
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Finally, let ξ̃ denote a randomly chosen value fromQ(x, W).
We define a generalized fiducial distribution ofξ as the
conditional distribution of̃ξ givenW ∈ S.

The choice of a particular form of the structural equation
(10) could influence the generalized fiducial distribution. This
situation is well recognized in the fiducial literature. However,
it is important to remark that, in many practical applications,
the physical process by which the data were generated is
known. In this case we can and should choose the structural
equation to reflect this process, thus eliminating the problem of
non-uniqueness due to the choice of structural equation. In the
field of metrology where an unknown measurand is measured
using some known processes, one typically knows that random
errors influence the measurement in some pre-specified known
fashion. The resulting measured values are expressed as an
equation combining some unknown measured quantities and
errors. This equation can be taken as the structural equation.

4. Examples

We use the examples in [1] to illustrate the proposed fiducial
intervals forµ and compare them with the intervals obtained
from other procedures. In the first example, ten measurements
of some lengthµ are obtained using a micrometer with a
resolution of 0.001 mm. The measurements (in millimetres)
are 7.489, 7.503, 7.433, 7.549, 7.526, 7.396, 7.543, 7.509,
7.504 and 7.383. Table1 displays the point estimates and the
95% uncertainty intervals forµ produced by the method that
ignores the resolution information (called RI method), Lira
and Wöger [1], Lira [2], Taraldsen [5], Willink [ 6], Bayesian
and fiducial procedures. The intervals that can be analytically
expressed are

ȳ ± t0.975,n−1 sy/
√

n (RI),

ȳ ± t0.975,n−1

√
s2
y/n + d2/12 (Lira and Ẅoger),

ȳ ± (d/2 + t0.975,n−1(sy/
√

n + d/
√

n − 1)) (Taraldsen)

ȳ ± t0.975,n−1 u(ȳ) (Willink ),

where

u2(ȳ) =




d2/12 if ymax = ymin,

max(s2
y/n, [(ymax + ymin)/2 − ȳ]2/3)

if ymax − ymin = d,

s2
y/n otherwise

and where ymax = max(y1, . . . , yn) and ymin =
min(y1, . . . , yn).

Table1 shows that the intervals from the various methods
are almost identical. This is because, when the resolution is
small relative to the spread of the data, the resolution error can
be safely ignored.

In the next example, ten measurements of the same
lengthµ are taken with a caliper. The measured values (in
millimetres) are 7.5, 7.5, 7.4, 7.5, 7.5, 7.4, 7.5, 7.5 7.5 and
7.4. The caliper has a resolution of 0.1 mm. Table2 displays
the point estimates and the 95% uncertainty intervals forµ

produced by the same methods listed in table1.
The simulation study described in the next section

shows that the Lira and Ẅoger interval is moderately

Table 1. Estimates and 95% uncertainty intervals forµ with
measurements obtained using a micrometer.

Method Estimate Conf. limits

RI 7.484 7.441 7.526
Lira and Ẅoger 7.484 7.441 7.526
Lira 7.484 7.440 7.531
Taraldsen 7.484 7.440 7.527
Willink 7.484 7.441 7.526
Bayesian1 7.48 7.44 7.52
Fiducial2 7.483 7.441 7.525

1 Taken from [5].
2 Based on 10 000 Monte Carlo samples.

Table 2. Estimates and 95% uncertainty intervals forµ with
measurements obtained using a caliper.

Method Estimate Conf. limits

RI 7.47 7.44 7.50
Lira and Ẅoger 7.47 7.40 7.54
Lira 7.47 7.45 7.52
Taraldsen 7.47 7.31 7.63
Willink 7.47 7.44 7.50
Bayesian1 7.46 7.43 7.49
Fiducial2 7.47 7.44 7.51

1 Taken from [5].
2 Based on 10 000 Monte Carlo samples.

conservative and the Taraldsen interval is very conservative
when the measurement resolution is not small relative to the
measurement uncertainty, which is the case in this example.
This explains why the intervals in table2 can be roughly
classified into three groups according to their interval widths:
Taraldsen, Lira and Ẅoger and the rest. In the extreme case
of no spread in the data, that is, all the ten measurements
were 7.5 mm, the RI interval degenerates to a single point.
With a resolution of 0.1 mm, the 95% Lira and Wöger,
Taraldsen and fiducial intervals are(7.43, 7.57), (7.37, 7.63)
and (7.45, 7.55), respectively. Also, the Lira and Willink
intervals are identical to the Lira and Ẅoger interval.

5. Performance evaluation

We conducted a simulation study to evaluate the coverage
properties of the fiducial interval forµ discussed above. The
simulation parameters for this problem wereµ, σ , n andd.
The value ofµ was fixed at 10. The parameters that were
varied aren (5, 10 or 30),σ (0.01, 0.1, 0.2 or 1) andd (0.001,
0.01 or 0.1).

For each combination ofσ , n andd, xi , i = 1, . . . , n,
were generated fromN(10, σ 2) and rounded according to the
value ofd. That is,yi = [xi/d] d, where [·] indicates the
nearest integer, were taken to be the rounded value ofxi . Using
theseyi , 95% fiducial intervals forµ based on 10 000 fiducial
samples were computed. Also, with the same generated
data, 95% confidence intervals forµ were computed using
competing methods. The competing methods we considered
here are RI, Lira and Ẅoger, Taraldsen and Willink. This
process was repeated 10 000 times. The percentage of times
that the intervals containedµ = 10 was recorded. The average
lengths for the coverage intervals were also recorded.

480 Metrologia, 44 (2007) 476–483
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Table 3. Coverage probabilities of the fiducial and other intervals forµ corresponding to sample sizen = 10.

σ d RI Lira and Ẅoger Taraldsen Willink Fiducial

1.0 0.001 0.9503a 0.9503 0.9503 0.9503 0.9504
1.3918b 1.3918 1.3943 1.3918 1.3922

1.0 0.01 0.9508 0.9508 0.9544 0.9508 0.9508
1.3928 1.3928 1.4178 1.3928 1.3931

1.0 0.1 0.9513 0.9523 0.9788 0.9513 0.9509
1.3949 1.4014 1.6457 1.3949 1.3950

0.2 0.1 0.9503 0.9730 0.9998 0.9503 0.9486
0.2802 0.3105 0.5311 0.2802 0.2801

0.1 0.1 0.9574 0.9953 1.0000 0.9574 0.9479
0.1442 0.1959 0.3950 0.1443 0.1436

0.01 0.1 1.0000 1.0000 1.0000 1.0000
0.1306 0.2508 0.1306 0.1000

The simulated coverages of the intervals were found to
be mainly dependent on the ratiod/σ . To simplify the
presentation, we only report the results corresponding to
n = 10 and some selected values of(σ, d) to cover a range
of practical values ofd/σ . Table3 contains the results.

Each cell in table3 consists of two entries. The first entry
(a) is the simulated coverage probabilities of the intervals.
The second entry (b) is the average width of the intervals.
Table3indicates that whend is small relative toσ , the coverage
probabilities of all the five intervals are close to the stated
value of 95%. However, asd/σ increases, both the Lira
and Wöger and Taraldsen intervals become more conservative,
especially the Taraldsen interval. In the extreme case of
d/σ = 0.1/0.01 = 10, the variation of the distribution cannot
be estimated from the data and the RI interval degenerates to
a single point and is not included in the study. All the other
intervals are conservative in this case.

Both Willink and fiducial intervals perform well under a
wide range of values ofd/σ . The Willink interval is simpler
to compute, so if onlyµ is of interest, then this interval can
be recommended in practice. If bothµ andσ are of interest,
or, if a tolerance interval or a conformance interval (see the
next section) is required for the application, then the fiducial
method is recommended. The strength of the fiducial approach
is its ability to obtain the joint fiducial distribution of(µ, σ )

and use it to make inference on many related problems, not
just the construction of uncertainty intervals forµ.

6. Related problems

In the previous section we were concerned with the estimation
of µ andσ and constructing coverage intervals for them. We
proposed the fiducial method as a way to accomplish this. One
of the strengths of the fiducial approach is that once a joint
fiducial distribution for(µ, σ ) has been developed, a number
of related problems can also be solved without much additional
work. One such related problem is the estimation of specified
percentiles of the distribution of interest and another is the
estimation of the probability content associated with a specified
interval. We explain the significance of these problems below.

6.1. Estimation of percentiles

Suppose it is desired to characterize the distribution of a
population of standard reference materials (SRMs). One way

of doing this is by estimating the mean and the standard
deviation of the population. Another, somewhat more useful,
approach is to provide tolerance intervals for the distribution.
With a tolerance interval, one makes a statement of the
following type: on the basis of the data, we can claim with
100γ % confidence that 100β% of the SRMs will have a
response value betweenL(X) andH(X) units. The interval
[L(X), H(X)] is called aβ content,γ confidence tolerance
interval for the distribution of interest. We apply the fiducial
method for constructing such tolerance intervals.

6.2. Estimation of conformance proportions

Often it is of interest to know what proportion of the population
have values between specified numbersA andB (A < B).
This proportion is referred to as aconformance proportion.
Suppose we have a lot of material and an associated distribution
of a characteristic of interest (say, breaking strength). Suppose
only samples having values betweenA andB are of acceptable
quality. Hence it is of interest to estimate the proportion from
the lot whose values are betweenA and B. We apply the
fiducial method to estimate the proportion and also to provide
a lower bound for this proportion with a stated confidence level.

6.3. Fiducial solutions to tolerance and conformance
problems

Once we have the fiducial distribution of(µ, σ ), either
analytically or empirically, the derivation of tolerance
intervals and bounds for conformance proportion follow in
a straightforward manner. In particular, if the population
of interest has the distributionN(µ, σ 2), then aβ content,
γ confidence tolerance interval is given by(L, H), where
L is the (1 − γ )/2 quantile of the fiducial distribution
of µ + z(1−β)/2σ and H is the (1 + γ )/2 quantile of the
fiducial distribution ofµ + z(1+β)/2σ . These quantiles are
most conveniently estimated using a Monte Carlo approach.
This involves generating a large number of realizations from
the fiducial distribution of(µ, σ ), denoted by(µ̃1, σ̃1), . . .,
(µ̃M, σ̃M), and determining the empirical(1 − γ )/2 quantile
of µ̃i + z(1−β)/2σ̃i and (1 + γ )/2 quantile ofµ̃i + z(1+β)/2σ̃i ,
i = 1, . . . , M. An example is given in the appendix.

The conformance proportion has the theoretical value
equal to�((B − µ)/σ) − �((A − µ)/σ) denoted byθ . Then
a 1− α lower confidence bound forθ is the α quantile of
�((B − µ̃i)/σ̃i) − �((A − µ̃i)/σ̃i), i = 1, . . . , M.
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7. Conclusion

In this paper we have provided an approach for making
inference on the parametersµ andσ of a Gaussian distribution
in the presence of resolution errors. Specifically, we have
provided procedures for constructing uncertainty intervals for
µ andσ , tolerance intervals for the distributionN(µ, σ 2), and
lower confidence bounds for the proportion of conformance.
The approach is based on fiducial inference. Recent research
results [9,13] and many simulation studies, including the one
carried out in this paper, show that fiducial inference is a valid
statistical method with good operating characteristics.

A small scale simulation study showed that the fiducial
interval forµ in the resolution error model performs as well
as the best of the competing methods. However, unlike the
other methods, the fiducial method also provides an uncertainty
interval forσ and allows the calculation of tolerance intervals
and confidence bounds for conformance probabilities without
any additional theoretical effort and with very little additional
computational effort.

We used the resolution error model to illustrate the fiducial
approach in a problem where an analytic expression for the
fiducial distribution is not available. We also described a
generalized fiducial recipe based on structural equation(s)
defining the data generation mechanism. The concept of the
structural equation(s) is particularly useful in metrological
applications since it is closely related to the measurement
equation that describes the measurement process. Having
specified the structural equation(s), the fiducial distribution of
the parameters of interest can be obtained using the recipe.

Appendix

We describe an algorithm that can be used to obtain random
samples from the joint fiducial distribution of(µ, σ ). Given
measurementsyi , i = 1, . . . , n and resolutiond, the algorithm
consists of the following steps:

1. Calculateai = yi − d/2 andbi = yi + d/2, i = 1, . . . , n,
which are the bounds of the measurements, i.e.,ai �
µ+σzi < bi , wherezi is the realized value from a standard
Gaussian distribution.

2. Generatevi ∼ uniform(ai, bi), i = 1, . . . , n.
3. Generate a fiducial sample of(µ, σ ) of a Gaussian

distribution based onvi , i = 1, . . . , n. That is,

σ̃ =
√

(n − 1)s2
v /w,

µ̃ = v̄ +
σ̃√
n
q,

wherev̄ andsv are mean and standard deviation ofvi , and
q andw are random deviates fromN(0, 1) andχ2(n−1).

4. Obtain the initial values ofzi = (vi −µ̃)/σ̃ , i = 1, . . . , n.
5. Givenai , bi andzi , find solutions of(µ, σ ) that satisfy

ai � µ + σzi < bi , i = 1, . . . , n. This is equivalent to
finding the vertices of a polygon determined by then pairs
of two parallel linesai = µ + σzi andbi = µ + σzi .

6. For eachi, i = 1, . . . , n, updatezi by

(a) obtaining the polygon with theith pair of lines
removed and hence the new solutions(µ�, σ �),

(b) calculating

r1 = min
(µ�, σ �)

{(ai − µ�)/σ �}

and
r2 = max

(µ�, σ �)
{(bi − µ�)/σ �},

(c) obtaining the newzi as a standard normal random
deviate conditional onzi ∈ (r1, r2) or zi = �−1(v�)

wherev� ∼ uniform(�(r1), �(r2)).
7. Based on these updatedzi , i = 1, . . . , n, obtain the

polygon described in step 5. Obtain a fiducial sample
randomly from the vertices of the polygon.

8. Repeat steps 6 and 7 for the desired number of fiducial
samples.

We implemented the above algorithm in anR functionfir.
The function has five arguments:

1. A vector of measurements.
2. Resolution value.
3. Number of fiducial samples desired.
4. Number of cycles of the Gibbs sampler for burn in. The

default value is 100.
5. Number of cycles skipped between samples. The default

value is 10.

The output contains the desired number of samples from
the fiducial distribution of(µ, σ ). With this function, the
following commands may be used for the micrometer example:

> micrometer <- c(7.489, 7.503, 7.433,
7.549, 7.526, 7.396,
7.543, 7.509, 7.504,
7.383)

> d <- 0.001
> nsample <- 10000
> fs <- fir(micrometer, d, nsample)

The output fs consists of two components:mu and
sigma. We can use the following command to plot the 10 000
realizations of the fiducial distribution:

> plot(fs$mu, fs$sigma)

Figure3 displays this plot. A 95% fiducial interval forµ is
obtained from

> quantile(fs$mu, c(0.025, 0.975))
2.5% 97.5%

7.441340 7.524986

To obtain a 99% content, 95% confidence tolerance interval
for this example, the following commands may be used:

> beta <- 0.99
> gamma <- 0.95
> z1 <- qnorm((1-beta)/2)
> z2 <- qnorm((1+beta)/2)
> low <- fs$mu + z1 * fs$sigma
> quantile(low, (1-gamma)/2)

2.5%
7.193229
> high <- fs$mu + z2 * fs$sigma
> quantile(high, (1+gamma)/2)
97.5%

7.76826

The desired tolerance interval is(7.193229, 7.76826).
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Figure 3. Samples from a fiducial distribution of(µ, σ ).

Acknowledgments

The authors are grateful to the referees for their valuable
suggestions. This work is a contribution of the National

Institute of Standards and Technology and is not subject to
copyright in the United States.

References
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