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Abstract

This paper presents an approach for making inference on the

parameterg ando of a Gaussian distribution in the presence of resolution
errors. The approach is based on the principle of fiducial inference and
requires a Monte Carlo method for computing uncertainty intervals. A small
simulation study is carried out to evaluate the performance of the proposed
procedure and compare it with some of the existing procedures. The results
indicate that the fiducial procedure is comparable to the best of the
competing procedures for inference pnHowever, unlike some of the
competing procedures, the same Monte Carlo calculations also provide
inference fore and many other related quantities of interest.

(Some figures in this article are in colour only in the electronic version)

1. Introduction independent. Using such a model Lira ander [1] proposed
the use of the formula
One common source of uncertainty in metrological applica-

tions is the one due to limited resolution of instruments. The o = ﬁ + d:
error in theresult that is attributable to limited instrument res- T Yan 12

olution or quantization during analog-to-digital conversion i
sometimes referred to as resolution error or quantization er
We say that an instrument has resolutibr{in appropriate

units) if the absolute difference between the actual value a?/d cannot be independent and provided a method, using a

the instrument reading could be as highig2. That is, if the . / .

. S . Bayesian approach, for calculating the standard uncertainty
instrument reading is then the actual value is known to bemc a quantity using discretized measurement data. Prior to
betweeny — d/2 andy + d/2. No finer information about q y 9 )

the value is available. Early attempts to account for resoluti Lira's work, Elster ] had proposed a Bayesian treatment

0 . : : -
. . 3t this resolution error problem and provided a solution
error took the approach of treating resolution error as a rap-

. ; . R - - hat did not make any distributional assumptions about the
dom quantity having a uniform distribution within the mtervaresolution erors. Lirad] remarked that the Elster solution
(—d/2,d/2). This led to a model of the form )

is computationally unsuitable for routine work and provided

X; = u+aZ +dU,, i=1.....n, (1) anapproximation that is easy to use. Frenkel and Kirkilp [
considered this resolution error problem and provided charts

where 1 is the measurandy is the standard deviation of that can be used to estimate the unknown variarfdeom the

the measurement process under repeatability conditigns, observed variance?. Taraldsen$] and Willink [6] have also

are independent standard Gaussian errdrss instrument presented simple alternative approaches for the problem.

resolution andU; are independent uniform(—1/2,1/2) In this paper we propose a different approach for making

variates. An implicit assumption is that; and U; are inference onthe parametersando of a Gaussian distribution

r150r the standard uncertainty ®f Heres? is the sample variance
S8fthe measured values.
However, Lira P] correctly pointed out thatZ; and
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in the presence of resolution errors. Our approach is basgdl. Example 1
on generalizations dfiducial inference proposed by Fisher

[7] and structural infevence introduced by Fraserg]. The measurement process has a known variance equal to 1, and

paper is organized as follows. In sectianwe review ) P ; . q ’

the measurement model in the presence of resolution Xr'S the random variable representing values that may be
o%served. One might express the relationship between the

guantization errors. The main problem is that of estimatin . -
L . : easured values and the underlying random experimental error
the measurange and obtaining an appropriate uncertaint . 7
rocess by the following equation:

interval. A related problem of importance is the estimatio
of o _alon_g with an uncertainty int_ervg!. This latter estimate X=u+E, A3)
provides information about the variability of the measurement

process in the absence of resolution errors. SecBonwhereE is a random error withv (0, 1) distribution. Each
contains an outline of the fiducial method and gives simplaeasured value is associated with a particular random
illustrations of how the method is implemented. We thesxperimental error. Suppose a single measurementis made and
briefly describe a technical formulation of a generalizeis value is 10. The associated measurement error is denoted
fiducial recipe for deriving uncertainty intervals for parameteisy e. So
in general problems. Sectidruses two examples to illustrate 10=p+e.
the fiducial uncertainty intervals fogr and compares them
with the uncertainty intervals obtained based on the existitfnceu = 10—e. Ifthe value ok were known, then we would
procedures mentioned in this section. Section 5 uses a Mokt®w the measurand exactly, but the value & not known.
Carlo study to examine the coverage properties of the fiduchiévertheless, the fact that we know the distribution from which
uncertainty intervals under a variety of scenarios involvingwas generated helps us determine a set of valugstbht
different values for the measurand, the experimental standare consider plausible. For instance, how plausible is the value
deviation and the instrument resolution, namelys andd, wn = 2 for the measurand? For this to be true we need8.
respectively. Sectiofdiscusses two other related problems oA value of 8 is highly unlikely to have come from#(0, 1)
interest in metrology that can also be solved using the fiducidiktribution. So we conclude that the value= 2 is highly
approach. Finally, we conclude with some summary remarkslikely. How likely is it thaty is between 10 and 127 Far
in section?. to be between 10 and 12,needs to be between 0 and 2 and

we can calculate the probability for this to Bg2) — ®(0),

] ] where ®(z) is the value of the cumulative standard normal

2. Measurement model with resolution error distribution atz. Thus, probabilities associated with can

be transferred to probabilities far. Our knowledge about
If an instrument has a resolutionatinits, the measured value;; pased on the measured value of 10, can be described by
can only be reported as the closest multiple/ofif x is the the distribution of the random variabfe whose distribution
measured value, then there is a unique intdgsuch that s given by that of 10- E. That s,z ~ N(10,1). We say
kd —d/2 < x < kd +d/2 and we defing/(x) = kd. It that the fiducial distribution of: (that is, the distribution of

SupposeX ~ N(u,1l) where u is the measurand, the

follows that @) is N(10, 1).
The fiducial distribution ofu may be used to obtain
x—d/2<yx)<x+d/2 a coverage interval fo. An equal-tails 95% probability

interval for i is
Asin [5], we letthe independent random variabés . . ., X,

represent the measurement process with perfect resolution. P(10— zo975 < t < 10 +z0975) = 0.95,
The reported valueg, .. ., Y, are then given by; = ¥ (X;).
The measurement model is where z, is the 10§ percentile of a standard normal
distribution. This probability interval fofi may be interpreted
Y =y (X)) =v(u+oZ), i=1...,n. (2) asacoverage intervalferand we say thatlO— zpg75 10+

Z0.975) IS @ 95% fiducial coverage interval far. Note that
In this paper we use an extension of the fiducial argumethis is exactly the interval one would get using either the
of Fisher, described by Hanni@][ to obtain the fiducial classical frequentist approach or a Bayesian approach with a
distribution of(u, o) for the measurement model ig)( This non-informative improper prior for.
approach is described in the next section. Earlier works on
generalized confidence intervals and generalized inference 3.2, Example 2
[10-13] are special cases of generalized fiducial inference.

See Hannig] for a detailed discussion of generalized fiducia? the above example, suppose we consider making two
inference. measurements. Lek; and X, be the random variables

denoting the possible values one might obtain for the two
measurements. We can write
3. Generalized fiducial inference
X1 =p+E,
The following three simple examples serve to illustrate the
basic ideas of fiducial inference. X2 =+ Ea. (4)
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Suppose the actual measurements are 10 and 8. We ttienfollowing fiducial distribution fog:
have the following equations relating the measured values, the

~ _ S
measurand and the realized values of experimental errors, say X = ETH*L ®)
e1 andez, namely, a shifted and scaled Studentstribution withn — 1
10=p+es, degrees of freedom. Hereis the mean of the measured
values ands is the sample standard deviation of these
8= +e;. measurements. The coverage interval foturns out to be
the same as the standard Studenirgervals.
Plausible values fqu are related to plausible values(ef, ¢2). The fiducial distribution fog in (5) can also be obtained

What makes this example different from the first example igith a simpler approach based on minimal sufficient statistics
that here wénow e; — e, equals 2. So the universe of possible&X and S2. SinceX ~ N(u, o2/n) and (n — 1)§?/02 ~
values for(es, e) is now limited by this requirement. We know x ?(n — 1), wherey ?(v) stands for the chi-squared distribution
(e1, e) is from a standard bivariate Gaussian distribution but With v degrees of freedom, we have the following two structural
constrained to lie on the ling — e, = 2. So the probabilities equations:

one would associate with are the probabilities one would X=p+ iE,
associate with either 10 ¢; (sinceu = 10— e1) or 8 — e, ;/E
(since u is also equal to 8 e;), knowing that(ey, e;) is §2 — 9 %
a realization from a bivariate standard Gaussian distribution n—1"

subject to the additional condition thef — e; = 2. Hence \neref is standard normal and is chi-squared with — 1
we define the random variabfe to have a distribution that gegrees of freedom random variables. By solving the structural
is equal to the conditional distribution of 0 E; given that equations, we obtain the fiducial distribution foin (5). This
E1 — E; = 2. This is the same distribution as the conditionas the approach used in(] and [11].
distribution of 8— E, given thatE; — E; = 2. A simple One may wonder if the fiducial method will lead to
calculation tells us that the distribution@is N (x, 1/2) where anything different from standard results. The answer is yes. In
X = (x1+x2)/2 = (10+8/2 = 9. Thus, a 95% fiducial fact, except in very simple situations such as those discussed
coverage interval fo is (9 — zoo75/+/2, 9 + zog75/+/2). above, the fiducial method will differ from other methods.
Again, this is the same interval that one would obtain by thEhe theoretical properties of coverage intervals derived from
classical frequentist method or a Bayesian method with a ndislucial distributions are discussed in detail §)13]. Many
informative improper prior. articles have also examined, via statistical simulation, the

Interestingly, this argument is fully generalizable and orféoverage properties of generalized confidence intervals in a
can develop fiducial distributions for model parameters in veKpriety of applications, and as shown irg], these generalized
general problems. The starting point for this process is wHegnfidence intervals are all, in fact, flduc_lal coverage |n'gervals.
we call astructural equation. In example 1, equation3] The next exa}mple devglops thg fiducial reasoning for
constitutes the structural equation. In example 2, equati)ns e model that is the.toplc of Fhls paper, namelly, the
constitute the structural equations. The structural equati gasurement model with resolution errors in addition to
relate the observations with model parameters and erFS‘rndom experimental errors.
processes whose distributions are fully known. For instance
in example 1 we know the distribution & completely. 33. Example 3

In examples 1 and 2 we have assumed that the variamge goal of this example is to illustrate how the fiducial
of the measurement error process is known to be 1. Thisagyument is applied to the measurement error model with
for simplicity only. One can assume that the measuremamtolution error and so we consider a simple situation with only
error process has an unknown variancg In this case, three measurements pf the measurand. Suppoge= 1 is
for example 2, we will start with the following structuralthe resolution (by appropriate choice of uni#scan always
equations: be taken to be 1). Lelts, Yo, Y3 be the random variables

X1 =pu+okEy, representing the three measurements. Suppose the observed

values of these random variables ate= 4, y, = 5 and
y3 = 6. The structural equations are

Yi=v(u+okEy),

Xo=pu+okEs.

More generally, if we have measurements qf, then we can

write Yo =9 (n+okE), (6)
= +
X1=u+ok, Ys =y (u+0Es),
Xo=u+okEy, wherey () is the function defined in sectich

From the observed values we know
35< utoe; <45,

ey

X, = +oE,,
n=HTOEn 45< n+oep; < 5.5, ©)
whereEy, ..., E, are independent, standard Gaussian random

variables. Itis well known that the fiducial argument will yield 55 ntoez <65,
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2 2

1 55=u+c 14 u=4.5 u=5.5 \L
H+0=6.5

n+3c=45 H+30=4.5
o 0 \K\ © 0
3.5:u+36\ 35=p+3c

-1 - -1

n=45 H=55
24 —2
4.0 45 5.0 55 6.0 6.5 7.0 4.0 45 5.0 5.5 6.0 6.5 7.0
u u
Figure 1. Empty region for(i, o) when(ys, 2, y3) = (4,5, 6) and  Figure 2. Solutions for(u, o) when(y1, y», y3) = (4,5, 6) and
(e1, €2, €3) = (3,0, 1), demonstrating that not all values for (e1, €2, e3) = (3,0, —1), demonstrating that some values for
(eq, eo, e3) are allowable. (eq, e5, e3) are allowable.

where ey, e5, e3 are independently realized values from  Ingeneral, itisimpossible to derive an analytic expression
a standard Gaussian distribution. However, knowingr the fiducial distribution of(u, o) in the resolution error
the measured values, these equations imply that certgiddel. However, Markov Chain Monte Carlo (MCMC)
combinations of values fofes, ez, e3) are impossible. For methods 14] are available such that we can obtain random
instance, could the underlying error&s, ez, e3) equal samples of any size from the fiducial distribution. Hence the
(3,0,1)? Plug in these values for the into equations 7). joint fiducial distribution of(i1, o), as well as the marginal
This will imply that« ando must satisfy the inequalities  fiducial distributions ofx ando, can be empirically estimated.
35< u+30 <45, Appropriate pe_rcentiles from the_se empirica! distributions can
be used to estimate the theoretical percentiles for computing

45< u < 5.5, (8) coverage intervals. The description of an MCMC algorithm
that can be used to obtain random samples from the joint
55< u+o0 <65 fiducial distribution of(u, o) is given in the appendix. AR

) L .. [159] program, which takes the recorded data and the minimum
In particular, this 'mp"e$ thatu, o) b(_elongs t_o_ the region N resolution as inputs and calculates various coverage intervals
the_(u, o) plane determmed_by the inequalities B).( This for 1 and/oro, is available from the authors on request.
region turns out to bempty if (e, ez, e3) = (3,0,1). See
figure 1.
So we know, on the strength of the observed values, thoéf'

(e1, €2, €3) = (3,0, 1) is an impossibility. On the other hand,we will briefly describe the generalization of the idea described
(e1, €2, €3) = (3,0, —1) leads to the following inequalities.  ahove to arbitrary statistical models. Létbe a (possibly

Generalized fiducial recipe

35< u+30 <45, discrete) random vector with a distribution .indexed by a
parametef € E. Assume thatthe data-generating mechanism
45< u < 5.5, (9) for X could be expressed in the following form
55<u—o0 <65 X=GW,¥§), (10)

The points in the(u, o) plane that satisfy these inequalitiesvhereG is a function andw is a random variable or vector
belong to the shaded region in figu& In particular, with a completely known distribution independent of any
(e1,e2,e3) = (3,0,—1) is, in fact, a feasible realization parameters. We call equatiof(Qj the structural equation.
for (Eq, E2, E3). Suppos& has been observed and the realized value Ehis
In fact, it is easy to characterize the sebf values of mustcorrespond to some realized valu&bivhich we denote
(e1, e2, e3) in R3which are possible realizations of the randorby w. We do not know the value ab but we do know that
errors given the observed data. Given tli&, E,, E3) it has to be a value such that there is a vayef & which,
belongs to the sef, the inequalities in 7) define a set together withw, results inx = G(w, §,). So, given the data,
Q = Q(E1, E», E3) in the (u, o) plane that is not empty. only those values ol are possible for whick = G(w, &,).
Let (1(Q), 6(Q)) be a randomly chosen element from the séenote this set of values afby S. For any given value ab in
Q. The distribution of 1(Q), 6 (Q)), conditional on the event S, let O (x, w) be the set of values @gfsuch thak = G (w, &).
that (E1, E», E3) belongs to the sef, is defined to be the That is,
generalized fiducial distribution afc, o). o, w)={£:x=Gw,¥&)}. (11)

Metrologia, 44 (2007) 476-483 479



J Hanniget al

Finally, Ieté denote a randomly chosen value fragiix, W). Table 1. Estimates a_nd 95% uncert_ainty intervals fowith
We define a generalized fiducial distribution dfas the Measurements obtained using a micrometer.

conditional distribution of givenW € S. Method Estimate ~ Conf. limits

The ck_\ome of a particular f(_)rm o_f the_ strgctgral _equathn RI 7 484 7441 7526
(10) could influence the generalized fiducial distribution. This Lira and Woger ~ 7.484 7.441 7.526
situation is well recognized in the fiducial literature. However, Lira 7.484 7.440 7.531
it is important to remark that, in many practical applications, Taraldsen 7.484 7.440 7.527
the physical process by which the data were generated is Willink . 7.484 7.441  7.526
known. In this case we can and should choose the structural Bayesia 7.48 744 152

. . Lo Fiduciaf 7.483 7.441 7.525

equation to reflect this process, thus eliminating the problem of
non-unigueness due to the choice of structural equation. Inthe 1 Taken from p].
field of metrology where an unknown measurand is measured 2 Based on 10000 Monte Carlo samples.

using some known processes, one typically knows that random
errors influence the measurement in some pre-specified knotile 2. Estimates and 95% uncertainty intervals fowith
fashion. The resulting measured values are expressed ag"gasurements obtained using a caliper.

equation combining some unknown measured quantities and Method Estimate Conf. limits
errors. This equation can be taken as the structural equation.

RI 7.47 7.44  7.50

Lira and Woger  7.47 740 7.54
4. Examples Lira 7.47 7.45 7.52

Taraldsen 7.47 731 7.63
We use the examples id][to illustrate the proposed fiducial Willink 7.47 744 7.50
intervals foru and compare them with the intervals obtained Bayesian 7.46 743 749
from other procedures. In the first example, ten measurements Fiduciaf 14t 744 151
of some length are obtained using a micrometer with a 1 Taken from pJ.
resolution of 0.001 mm. The measurements (in millimetres) 2 Based on 10 000 Monte Carlo samples.

are 7.489, 7.503, 7.433, 7.549, 7.526, 7.396, 7.543, 7.509,
7.504 and 7'383'. Tablkdisplays the point estimates and th%onservative and the Taraldsen interval is very conservative
95% uncertainty intervals fqu produced by the method that S .

; N . .- when the measurement resolution is not small relative to the
ignores the resolution information (called RI method), Llr?neasurement uncertainty. which is the case in this example
and Woger [1], Lira [2], Taraldsen ], Willink [ 6], Bayesian Y, pie.

and fiducial procedures. The intervals that can be analytica-lll—{/]IS gxplgms why the intervals n table caln.be roughly .
expressed are classified into three groups according to their interval widths:

Taraldsen, Lira and \Wger and the rest. In the extreme case

¥ £ tog75n-15y/+/n (RI), of no spread in the data, that is, all the ten measurements
were 7.5mm, the RI interval degenerates to a single point.
¥ % t09750-1,/5%/n +d?/12 (Lira and \bgep, With a resolution of 0.1mm, the 95% Lira and dkr,

Taraldsen and fiducial intervals af@43, 7.57), (7.37, 7.63)
§ £ (d/2 +to975,-1(5,/v/n +d/~/n — 1)) (Taraldsen and (7.45, 7.55), respectively. Also, the Lira and Willink

o intervals are identical to the Lira andddfer interval.
¥ £ toorsn—1u(y) (Willink),

where 5. Performance evaluation

d2/12 if Ymax = Ymins g g | g | o

2 , _ 52 We conducted a simulation study to evaluate the coverage
u?(y) = max(sy/-n, [Omact ymin)/2 = Y1°/3) properties of the fiducial interval fqr discussed above. The
i )’max._ Ymin = d., simulation parameters for this problem weres, n andd.

Sf/ n  otherwise The value of was fixed at 10. The parameters that were
and where ymax = mMax(vi,...,v.) and ymn = Variedare:(5,100r30)0 (0.01,0.1,0.20r1)and (0.001,
min(yl’ e yn) 0.01 or 01)

Table1 shows that the intervals from the various methods For each combination of, » andd, x;, i = 1,....n,
are almost identical. This is because, when the resolution/¥gre generated fromv (10, o) and rounded according to the
small relative to the spread of the data, the resolution error cgdue ofd. That is,y; = [x;/d]d, where ] indicates the
be safely ignored. nearestinteger, were taken to be the rounded value afsing

In the next example, ten measurements of the sarhesey;, 95% fiducial intervals fop. based on 10000 fiducial
length 1 are taken with a caliper. The measured values (#@mples were computed. Also, with the same generated
millimetres) are 7.5, 7.5, 7.4, 7.5, 7.5, 7.4, 7.5, 7.5 7.5 aift@ta, 95% confidence intervals for were computed using
7.4. The caliper has a resolution of 0.1 mm. Tabigisplays competing methods. The competing methods we considered
the point estimates and the 95% uncertainty intervalsufor here are RI, Lira and \ger, Taraldsen and Willink. This
produced by the same methods listed in tdble process was repeated 10000 times. The percentage of times

The simulation study described in the next sectiothatthe intervals containgd= 10 was recorded. The average
shows that the Lira and Wger interval is moderately lengths for the coverage intervals were also recorded.

480 Metrologia, 44 (2007) 476-483
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Table 3. Coverage probabilities of the fiducial and other intervalsf@orresponding to sample size= 10.

o d RI Liraand Woger Taraldsen  Willink  Fiducial
1.0 0.001 0.9503 0.9503 0.9503 0.9503  0.9504
1.3918 1.3918 1.3943 1.3918 1.3922
1.0 001 0.9508 0.9508 0.9544 0.9508 0.9508
1.3928  1.3928 1.4178 1.3928 1.3931
10 01 0.9513  0.9523 0.9788 0.9513  0.9509
1.3949  1.4014 1.6457 1.3949  1.3950
02 01 0.9503  0.9730 0.9998 0.9503  0.9486
0.2802  0.3105 0.5311 0.2802 0.2801
01 01 0.9574  0.9953 1.0000 0.9574  0.9479
0.1442  0.1959 0.3950 0.1443  0.1436
0.01 0.1 1.0000 1.0000 1.0000 1.0000
0.1306 0.2508 0.1306  0.1000

The simulated coverages of the intervals were found & doing this is by estimating the mean and the standard
be mainly dependent on the ratifyoc. To simplify the deviation of the population. Another, somewhat more useful,
presentation, we only report the results corresponding approach is to provide tolerance intervals for the distribution.
n = 10 and some selected values(ef d) to cover a range With a tolerance interval, one makes a statement of the
of practical values off /o. Table3 contains the results. following type: on the basis of the data, we can claim with

Each cell in table consists of two entries. The first entryl00y% confidence that 1% of the SRMs will have a
(4) is the simulated coverage probabilities of the intervalsesponse value betwedn(X) and H(X) units. The interval
The second entry?) is the average width of the intervals.[L(X), H(X)] is called ag content,y confidence tolerance
Table3indicates that whettis small relative ter, the coverage interval for the distribution of interest. We apply the fiducial
probabilities of all the five intervals are close to the statg@iethod for constructing such tolerance intervals.
value of 95%. However, ad/o increases, both the Lira
and Woger and Taraldsen intervals become more conservatige. Estimation of conformance proportions
especially the Taraldsen interval. In the extreme case of == . ) .
d/o = 0.1/0.01 = 10, the variation of the distribution cannotOftenitis of interest to know what proportion of the population

be estimated from the data and the RI interval degenerated '@y values between specified numbeérand B (A < B).

a single point and is not included in the study. All the othefhiS proportion is referred to as @nformance proportion.

intervals are conservative in this case. Suppose we have alot of material and an associated distribution
Both Willink and fiducial intervals perform well under a°f @ characteristic of interest (say, breaking strength). Suppose

wide range of values af /. The Willink interval is simpler onlylsamples hgvmg \{alues betweepndB are of acceptable

to compute, so if onlys is of interest, then this interval Canquahty. Hence it is of interest to estimate the proportion from

be recommended in practice. If bgthando are of interest, t_he l(_)t whose values_ are betweﬂnand_ B. We apply the .
or, if a tolerance interval or a conformance interval (see tﬁ' ucial method to estimate the proportion and also to provide

next section) is required for the application, then the fiducigjower bound for this proportion with a stated confidence level.
method is recommended. The strength of the fiducial approach

is its ability to obtain the joint fiducial distribution af, o) 6-3. Fiducial solutionsto tolerance and conformance

and use it to make inference on many related problems, reblems

just the construction of uncertainty intervals for Once we have the fiducial distribution dfz, o), either

analytically or empirically, the derivation of tolerance
6. Related problems intervals and bounds for conformance proportion follow in

a straightforward manner. In particular, if the population
In the previous section we were concerned with the estimatiofinterest has the distributioW (i, ¢2), then ag content,
of n ando and constructing coverage intervals for them. We confidence tolerance interval is given B%, H), where
proposed the fiducial method as a way to accomplish this. Oheis the (1 — y)/2 quantile of the fiducial distribution
of the strengths of the fiducial approach is that once a joiof 1 + z1-p),20 and H is the (1 + y)/2 quantile of the
fiducial distribution for(u, o) has been developed, a numbefiducial distribution of x + z144)20. These quantiles are
of related problems can also be solved without much additiormabst conveniently estimated using a Monte Carlo approach.
work. One such related problem is the estimation of specifiddhis involves generating a large number of realizations from
percentiles of the distribution of interest and another is thie fiducial distribution of(«, o), denoted by(fi1, 61), ...,
estimation of the probability content associated with a specifiéd, o), and determining the empiricél — y)/2 quantile
interval. We explain the significance of these problems belo®f i; + z(1-p)26; and (1 +y)/2 quantile offi; + z(1+p)/267,
i=1,..., M. An example is given in the appendix.

The conformance proportion has the theoretical value
equal to® ((B — ) /o) — ®((A — ) /o) denoted by. Then
Suppose it is desired to characterize the distribution ofaal — « lower confidence bound faf is the « quantile of
population of standard reference materials (SRMs). One wa\((B — [1;)/6;) — ®((A — &;)/6;),i =1,..., M.

6.1. Estimation of percentiles
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7. Conclusion (b) calculating

In this paper we have provided an approach for making n= (lm'([l){(af —uh/o"}
inference on the parametersando of a Gaussian distribution

in the presence of resolution errors. Specifically, we have s
provided procedures for constructing uncertainty intervals for r2= (,T,?,).(){(bi —w)/o%,
w ando, tolerance intervals for the distributiovi(i., o2), and
lower confidence bounds for the proportion of conformance.
The approach is based on fiducial inference. Recent research
results P, 13] and many simulation studies, including the one
carried out in this paper, show that fiducial inference is a valid’-
statistical method with good operating characteristics. -

A small scale simulation study showed that the fiducial "andomly from the vertices of the polygon. o
interval for 1« in the resolution error model performs as well 8- Répeat steps 6 and 7 for the desired number of fiducial
as the best of the competing methods. However, unlike the Sa@mPles.
other methods, the fiducial method also provides an uncertainty We implemented the above algorithm infafunctionfir.
interval fore and allows the calculation of tolerance intervald he function has five arguments:
and confidence bounds for conformance probabilities withouy . A vector of measurements.
any additional theoretical effort and with very little additional 2. Resolution value.
computational effort. 3. Number of fiducial samples desired.

We used the resolution error model to illustrate the fiducial4, Number of cycles of the Gibbs sampler for burn in. The
approach in a problem where an analytic expression for the default value is 100.
fiducial distribution is not available. We also described a5, Number of cycles skipped between samples. The default
generalized fiducial recipe based on structural equation(s) value is 10.

defining the datg gene_ration mechanism. The concept c_>f Iﬁ?e output contains the desired number of samples from
structural equation(s) is particularly useful in metrologlca[he fiducial distribution of(xz, o). With this function, the

appllc_atlons since 't_ is closely related to the measuremq_eﬁowing commands may be used for the micrometer example:
equation that describes the measurement process. Having < (7.489. 7.503, 7.433
- c(7. , 7. , 7. s

specified the structural equation(s), the fiducial distribution gf ®icrometer
the parameters of interest can be obtained using the recipe. 7.549, 7.526, 7.396,
7.543, 7.509, 7.504,

7.383)

and

(c) obtaining the new; as a standard normal random
deviate conditional on; € (r1, 1) orz; = ®~1(v*)
wherev* ~ uniform(®(ry), ®(r)).

Based on these updated i = 1,...,n, obtain the

polygon described in step 5. Obtain a fiducial sample

Appendix > d <= 0.001
nsample <- 10000
Mg <- fir(micrometer, d, nsample)

The outputfs consists of two componentsiu and
sigma. We can use the following command to plot the 10 000
realizations of the fiducial distribution:

We describe an algorithm that can be used to obtain randé
samples from the joint fiducial distribution ¢ft, o). Given
measurements,i = 1, ..., n and resolutior, the algorithm
consists of the following steps:

1. Calculatey;, = y; —d/2andb; = y; +d/2,i =1, ...,n,
which are the bounds of the measurements, ag.< _ i L )
u+oz; < b;, whereg; is the realized value from a standard-igure 3 displays this plot. A 95% fiducial interval fqr is

Gaussian distribution. obtained from

> plot(fs$mu, fs$sigma)

2. Generate; ~ uniform(a;, b;),i =1,...,n. > quantile(fs$mu, c(0.025, 0.975))
3. Generate a fiducial sample @ft, o) of a Gaussian 2.5% 97.5%
distribution based on;,i = 1, ..., n. Thatis, 7.441340 7.524986
To obtain a 99% content, 95% confidence tolerance interval
6 =,/(n—Ds2/w, for this example, the following commands may be used:
5 > beta <- 0.99
p=v+—q, > gamma <- 0.95
a > z1 <- gnorm((1-beta)/2)
wherev ands, are mean and standard deviatiorvgfand > z2 <- gnorm((1+beta)/2)
g andw are random deviates from(0, 1) andx?(n —1). > low <- fs$mu + z1 * fs$sigma
4. Obtain the initial values of = (v, —2)/6,i =1,...,n. > quantile(low, (1-gamma)/2)

5. Givena;, b; andz;, find solutions of(u, o) that satisfy 2.5%
a < pt+oz; < b, i =1,...,n. Thisis equivalentto 7.193229
finding the vertices of a polygon determined by thgairs > high <- fs$mu + z2 * fs$sigma

of two parallel linesy; = u +oz; andb; = u +oz;. > quantile(high, (1+gamma)/2)
6. Foreach,i =1,...,n, updateg; by 97.5%
(a) obtaining the polygon with théth pair of lines 7-76826
removed and hence the new solutigps, ¢*), The desired tolerance interval(i8.193229 7.76826.
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