
Fiducial Generalized Confidence Intervals
Jan HANNIG, Hari IYER, and Paul PATTERSON

Generalized pivotal quantities (GPQs) and generalized confidence intervals (GCIs) have proven to be useful tools for making inferences in
many practical problems. Although GCIs are not guaranteed to have exact frequentist coverage, a number of published and unpublished
simulation studies suggest that the coverage probabilities of such intervals are sufficiently close to their nominal value so as to be useful
in practice. In this article we single out a subclass of generalized pivotal quantities, which we call fiducial generalized pivotal quantities
(FGPQs), and show that under some mild conditions, GCIs constructed using FGPQs have correct frequentist coverage, at least asymptoti-
cally. We describe three general approaches for constructing FGPQs—a recipe based on invertible pivotal relationships, and two extensions
of it—and demonstrate their usefulness by deriving some previously unknown GPQs and GCIs. It is fair to say that nearly every published
GCI can be obtained using one of these recipes. As an interesting byproduct of our investigations, we note that the subfamily of fiducial
generalized pivots has a close connection with fiducial inference proposed by R. A. Fisher. This is why we refer to the proposed generalized
pivots as fiducial generalized pivotal quantities. We demonstrate these concepts using several examples.

KEY WORDS: Asymptotic properties; Common mean problem; Conditional inference; Fiducial inference; Generalized pivot; Structural
inference; Structural method.

1. INTRODUCTION

Tsui and Weerahandi (1989) introduced the concept of
generalized p values and generalized test variables, which
are useful for developing hypothesis tests in situations where
traditional frequentist approaches do not provide useful solu-
tions. Subsequently, Weerahandi (1993) introduced the concept
of a generalized pivotal quantity (GPQ) for a scalar parame-
ter θ , which can be used to construct an interval estimator
for θ in situations where standard pivotal quantity-based ap-
proaches may not be applicable. He referred to such intervals
as generalized confidence intervals (GCIs). Since then, several
GCIs have been constructed in many practical problems (see,
e.g., Weerahandi 1995; Chang and Huang 2000; Hamada and
Weerahandi 2000; McNally, Iyer, and Mathew 2001; Burdick
and Park 2003; Krishnamoorthy and Lu 2003; Krishnamoorthy
and Mathew 2003; Iyer, Wang, and Mathew 2004; Mathew and
Krishnamoorthy 2004; Weerahandi 2004; Burdick, Borror, and
Montgomery 2005; Burdick, Park, Montgomery, and Borror
2005; Daniels, Burdick, and Quiroz 2005; Roy and Matthew
2005). These intervals do not always have exact frequentist cov-
erage. Nevertheless, results of simulation studies reported in the
literature appear to support the claim that coverage probabilities
of GCIs are sufficiently close to their stated value so that they
are in fact useful procedures in practical problems. Despite the
large number of successful applications of GCIs reported in the
literature, it is surprising that there are no published theoretical
results discussing either small-sample properties or asymptotic
behavior of GCIs.

A simple test case for the application of GCIs is the Gaussian
two-sample problem with heterogeneous variances, where one
is interested in a confidence interval for the difference µ1 − µ2

between the two means. This is the well-known Behrens–Fisher
problem for which Behrens (1929) proposed a solution and
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Fisher (1935) gave a justification based on the fiducial argu-
ment. Weerahandi (1993) derived a GPQ for µ1 − µ2 and re-
marked that the resulting interval coincided with the fiducial
solution.

In this article we identify an important subclass of GPQs,
which we call fiducial generalized pivotal quantities (FGPQs)
for reasons that we discuss shortly. We also provide some gen-
eral methods for constructing FGPQs for large classes of prob-
lems. Nearly every published GCI can be obtained using these
methods. More important, and perhaps of greater interest to
practitioners, we also show that, under reasonable assumptions,
GCIs based on FGPQs have asymptotically correct frequen-
tist coverage. This result provides a frequentist justification for
GCIs (and also for generalized tests, although our focus here is
confidence intervals) when the GPQ is chosen appropriately. In
addition, we provide a number of examples to illustrate these
results.

The reason that we chose the term “FGPQ” is that GCIs
based on FGPQs are in fact obtainable using the fiducial ar-
gument of Fisher (1935) within a suitably chosen framework,
such as the pivotal quantity approach of Barnard (1977, 1981,
1982, 1995), the structural inference of Fraser (1966, 1968),
and the functional model basis for fiducial inference discussed
by Dawid and Stone (1982). We establish the connection be-
tween FGPQs and fiducial distributions by showing that, given
a fiducial distribution for a parameter, there is a systematic pro-
cedure for constructing a FGPQ whose distribution is the same
as the fiducial distribution. As a byproduct, this connection of
FGPQs with fiducial inference leads to a frequentist justifica-
tion for fiducial inference in many settings. In fact, FGPQs pro-
vide a natural framework for associating a distribution with a
parameter.

The article is organized as follows. In the next section we
give a brief introduction to GPQs and GCIs and also introduce
the subclass of FGPQs. In Section 3 we prove a theorem to
the effect that under fairly general conditions, GCIs obtained
from FGPQs have correct asymptotic coverage. Some familiar
examples are considered, and the application of the theorem is
illustrated. We also discuss an example where the conditions of
the theorem are not satisfied.

In the Public Domain
Journal of the American Statistical Association

March 2006, Vol. 101, No. 473, Theory and Methods
DOI 10.1198/016214505000000736

254



Hannig, Iyer, and Patterson: Fiducial Generalized Confidence Intervals 255

Section 4 is devoted to some general methods for construct-
ing FGPQs. First, we describe a recipe for constructing FGPQs
and discuss the scope of application of this recipe. This is a re-
formulation, using the notation of this article, of the recipe for
constructing FGPQs given by Iyer and Patterson (2002). The
procedure is illustrated with some examples of GPQs not pre-
viously discussed in the literature. We show that these GPQs
(actually FGPQs) satisfy the conditions of the main theorem,
so that the resulting GCIs are guaranteed to have the correct
frequentist coverage asymptotically. In Section 5 we introduce
two additional methods for constructing FGPQs that extend the
range of problems for which GCIs can be developed. We il-
lustrate the application of these methods with new confidence
intervals for some well-known problems.

In Section 6 we discuss connections between GPQs and
fiducial inference. We also touch on nonuniqueness issues as-
sociated with GCIs and fiducial intervals. We provide some
concluding remarks in Section 7.

2. GENERALIZED PIVOTAL QUANTITIES AND
GENERALIZED CONFIDENCE INTERVALS

2.1 Generalized Pivotal Quantities

The definition that we present for a GPQs is superficially dif-
ferent from Weerahandi’s (1993) definition but is identical in
spirit. Our definition enables us to more clearly explain the con-
nection between ordinary pivotal quantities and GPQs and also
facilitates a mathematically rigorous discussion of the asymp-
totic behavior of the resulting GCIs.

Definition 1. Let S ∈ R
k denote an observable random vector

whose distribution is indexed by a (possibly vector) parameter
ξ ∈ R

p. Suppose that we are interested in making inferences
about θ = π(ξ) ∈ R

q (q ≥ 1). Let S
� represent an independent

copy of S. We use s and s� to denote realized values of S and S
�.

A GPQ for θ , denoted by Rθ (S,S
�, ξ) (or simply Rθ or R

when there is no ambiguity) is a function of (S,S
�, ξ) with the

following properties:

(GPQ1) The conditional distribution of Rθ (S,S
�, ξ), condi-

tional on S = s, is free of ξ .
(GPQ2) For every allowable s ∈ R

k, Rθ (s, s, ξ) depends
on ξ only through θ .

Note that (GPQ2) uses s in both the first and the second
argument positions of Rθ (·, ·, ξ). This is an important aspect
of the definition of GPQ and explains both its similarity to
and difference from an ordinary pivotal quantity. Rθ (S,S

�, ξ)

would indeed be an ordinary pivotal quantity based on (S,S
�)

if in condition (GPQ2) we instead had the requirement that
Rθ (s, s�, ξ) depend on ξ only through θ . The point is that we do
not intend to actually observe a realization of S

� and thus are not
seeking a pivotal quantity for θ based on both S and S

�. How-
ever, heuristic reasoning suggests that under appropriate condi-
tions, S and S

� will be sufficiently close to each other, and hence
we can substitute S in both argument positions in Rθ (·, ·, ξ) and
use the distribution from condition (GPQ1) to make approxi-
mate confidence statements about the quantity Rθ (s, s, ξ), and
hence about θ . Theorem 1 in Section 3 confirms that our heuris-
tic reasoning is indeed valid.

Property (GPQ2) implies that Rθ (s, s, ξ) = f (s, θ) for some
function f . It turns out that the subclass of GPQs for which
f (s, θ) is a function of θ only, say f (s, θ) = f (θ), have a spe-
cial connection with fiducial inference. Generalized confidence
regions obtained using such GPQs are not guaranteed to be in-
tervals unless the function f (θ) is invertible. In this case one
may assume that f (θ) is identically equal to θ without loss in
generality. Such GPQs exist in practically every application that
we have considered. This leads us to single out the following
subclass of GPQs.

Definition 2. A GPQ Rθ (S,S
�, ξ) for a parameter θ is called

a fiducial generalized pivotal quantity (FGPQ) if it satisfies the
following two conditions:

(FGPQ1) The conditional distribution of Rθ (S,S
�, ξ), con-

ditional on S = s, is free of ξ .
(FGPQ2) For every allowable s ∈ R

k, Rθ (s, s, ξ) = θ .

Remark 1. Condition (FGPQ1) of Definition 2 is the same
as condition (GPQ1) of Definition 1, but condition (FGPQ2)
is a stronger version of condition (GPQ2) in the definition of
a GPQ.

In Section 6 we show that if Rθ is a FGPQ for θ , then fre-
quentist probability intervals associated with the distribution
of Rθ have a corresponding interpretation as fiducial proba-
bility intervals associated with the parameter θ . It is for this
reason that we use the term FGPQ to describe members of this
important subclass.

2.2 Some Well-Known Generalized Pivotal Quantities

Example 1: The Behrens–Fisher problem. Consider m iid
observations Xi, i = 1, . . . ,m, from N(µX, σ 2

X) and n iid ob-
servations Yj, j = 1, . . . ,n, from N(µY , σ 2

Y ), where µX,µY , σX ,
and σY are unknown parameters. The problem is to obtain con-
fidence bounds for the difference θ = µX − µY . Let X̄ and Ȳ
denote the sample means and let S2

X and S2
Y denote the sample

variances for the two samples. Then X̄ ∼ N(µX, σ 2
X/m), Ȳ ∼

N(µY , σ 2
Y /n), (m−1)S2

X/σ 2
X ∼ χ2(m−1), and (n−1)S2

Y/σ 2
Y ∼

χ2(n − 1). The statistic S = (X̄, Ȳ,S2
X,S2

Y) is complete and suf-
ficient for ξ = (µX,µY , σX, σY).

A nontrivial exact confidence interval, in the frequentist
sense, is unavailable for this problem (see, e.g., Linnik 1968).
A solution to this problem was put forward by Behrens (1929);
later, Fisher (1935) showed that this solution could be derived
very simply using the fiducial argument. The fiducial distri-
bution of µX − µY is known as the Behrens–Fisher distribu-
tion. Critical values for this distribution have been tabulated by
Sukhatme (1958). The quantiles of this distribution lead to the
lower and upper confidence bounds for µX − µY .

Many other approximate confidence interval procedures
for this problem have been discussed in the literature (see,
e.g., Welch 1947; Satterthwaite 1942, 1946; Cochran 1964;
Graybill and Wang 1980). Weerahandi (1993) derived a GCI
for µX − µY and noted that it is the same as the Behrens–Fisher
solution. He derived the GCI for θ = µX − µY by starting with
the statistics X̄ − Ȳ , S2

X , and S2
Y . He justified this based on in-

variance arguments. The GPQ proposed by Weerahandi is

R = R(S,S
�, ξ)

= (X̄� − Ȳ� − θ)

(
σ 2

XS2
X/(mS�2

X ) + σ 2
Y S2

Y/(nS�2
Y )

σ 2
X/m + σ 2

Y /n

)1/2

,
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where (X̄�, Ȳ�,S�2
X ,S�2

Y ) is an independent copy of (X̄, Ȳ,

S2
X,S2

Y). Although R(S,S
�, ξ) is not itself a FGPQ for θ , R�(S,

S
�, ξ) = (X̄ − Ȳ) − R(S,S

�, ξ) is a FGPQ for θ . Moreover, it
leads to the same confidence interval for θ as does the FGPQ
Rθ defined by

Rθ = (X̄ − Ȳ) −
[
(X̄� − µX)

√
S2

X

S�2
X

− (Ȳ� − µY)

√
S2

Y

S�2
Y

]
.

This latter FGPQ can be derived by a direct application of The-
orem 2 of Section 4.

Example 2: Balanced one-way random-effects model. Con-
sider the one-way random-effects model Xij = µ + Ai + eij,
i = 1, . . . ,a, j = 1, . . . ,n, where Ai ∼ N(0, σ 2

A), eij ∼ N(0, σ 2
e ),

and {Ai} and {eij} are all mutually independent. Define

X̄i· = 1

n

n∑
j=1

Xij,

X̄·· = 1

a

a∑
i=1

X̄i,

S2
B = n

∑a
i=1(X̄i· − X̄··)2

a − 1
,

and

S2
W =

∑a
i=1

∑n
j=1(Xij − X̄i·)2

a(n − 1)
.

Thus S2
B is the between-groups mean square and S2

W is the
within-groups mean square.

Suppose that one is interested in a confidence interval for
θ = σ 2

A . Approximate confidence interval procedures, such as
the Tukey–Williams procedure (Tukey 1951; Williams 1962),
have been proposed for this problem. Weerahandi (1993,
p. 904) pointed out that a confidence bound for σ 2

A may be
obtained by inverting a generalized test (see Weerahandi 1991,
p. 152) of the null hypothesis H0 :σ 2

A = δ versus a one-sided
alternative. It is easily verified that this process results in a con-
fidence statement of the form Rβ < σ 2

A < ∞, where Rβ is the
β-percentile of the conditional distribution of the quantity R
given by

R = S2
B

nS�2
B

(σ 2
e + nσ 2

A) − S2
W

nS�2
W

σ 2
e ,

conditional on S2
B and S2

W , where (S�2
B ,S�2

W ) is an independent
copy of (S2

B,S2
W). Observe that R is a FGPQ for σ 2

A .
Two other FGPQs may be defined that are related to the fore-

going FGPQ but are guaranteed to take on only nonnegative
values. These are |R| and max(0,R). Asymptotically, both of
these modified FGPQs are equivalent to R as long as σ 2

A and σ 2
e

are nonzero. We expect max(0,R) to have better small-sample
properties.

2.3 Fiducial Generalized Pivotal Quantities and
Generalized Test Variables

FGPQs have another useful property. Suppose that θ is a
scalar parameter. If Rθ (S,S

�, ξ) denotes a FGPQ for θ , then

the quantity θ − Rθ (S,S
�, ξ) is automatically a generalized test

variable (Tsui and Weerahandi 1989) for testing the null hy-
pothesis H0 : θ ≤ θ0 versus the alternative θ > θ0, where θ0 is a
user-specified value. Results that we prove in this article con-
cerning coverage properties of GCIs can be restated so that
they become statements about type I error rates of general-
ized tests or about the correctness of generalized p values. We
do not elaborate further on this here, but a detailed treatment
of generalized tests will be the subject of a forthcoming arti-
cle.

3. MAIN RESULT: FREQUENTIST JUSTIFICATION
FOR GENERALIZED CONFIDENCE INTERVALS

As mentioned earlier, the literature abounds with examples
of GCIs, but no theoretical results exist that guarantee satis-
factory performance of these intervals. The only evidence of
their acceptability for practical use is through simulation stud-
ies suggesting that almost all reported GCI methods appear to
have coverage probabilities close to their stated values.

In the next section we state and prove a theorem that appears
to be the first result that guarantees, under some fairly mild con-
ditions, the asymptotic correctness of the coverage probability
of a GCI. Although we do not discuss generalized tests here,
it is worth noting that, as a corollary to the theorem, one can
also establish asymptotic correctness of type I error rates for
generalized tests of hypotheses.

Let us consider a parametric statistical problem where we
observe X1, . . . ,Xn, whose joint distribution belongs to some
family of distributions parameterized by ξ ∈ 	 ⊂ R

p. Let
S = (S1, . . . ,Sk) denote a statistic based on the Xi’s. In theory,
we can consider an independent copy of X�

1, . . . ,X�
n and denote

the statistic based on the X�
i ’s by S

�. Finally, suppose that a
function Rθ (S,S

�, ξ) is available that is a FGPQ for a scalar
parameter θ = π(ξ). We first consider some notation and as-
sumptions.

Assumption A.
1. Assume that there exists t(ξ) ∈ R

k such that

√
n
(
S�

1 − t1(ξ), . . . ,S�
k − tk(ξ)

) D→ N = (N1, . . . ,Nk),

where N has a nondegenerate multivariate normal distrib-
ution.

2. Assuming the existence and continuity of second partial
derivatives with respect to s� of Rθ (s, s�, ξ), we have the
following one-term Taylor expansion with a remainder
term:

Rθ (s,S
�, ξ) = g0,n(s, ξ) +

k∑
j=1

g1,j,n(s, ξ)
(
S�

j − tj(ξ)
)

+ Rn(s,S
�, ξ). (1)

Here

g0,n(s, ξ) = Rθ

(
s, t(ξ), ξ

)
,

g1,j,n(s, ξ) = ∂

∂s�
j
Rθ (s, s�, ξ)

∣∣∣∣
s�=t(ξ)

,
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and

Rn(s, s�, ξ)

=
k∑

i=1

k∑
j=1

(
s�

i − ti(ξ)
)(

s�
j − tj(ξ)

)1

2

∂2

∂s�
i s�

j
Rθ (s, s̃, ξ),

where s̃ lies on the line segment connecting t(ξ) and s�.
Suppose that A ⊂ R

k is an open set containing t(ξ) with
the following properties:

(a) The functions g1,j,n(s, ξ) converge uniformly in
s ∈A to a function g1,j(s, ξ) continuous at s = t(ξ).

(b) For all s ∈ A,
∑k

j=1 |g1,j(s, ξ)| > 0.

(c) There is M < ∞ such that | ∂2

∂s�i s�j
Rθ (s, s�, ξ)| < M

for all n and all (s, s�) ∈A×A.

We are now ready to state and prove the following theorem,
the proof of which is given in Appendix A.

Theorem 1. Suppose that Assumption A holds and that
for each fixed s, n, and γ ∈ (0,1), there exists a real num-
ber Cn(s, γ ) such that

lim
n→∞ Pξ

(
Rθ (s,S

�, ξ) ≤ Cn(s, γ )
) = γ. (2)

Then limn→∞ Pξ (Rθ (S,S, ξ) ≤ Cn(S, γ )) = γ . In partic-
ular, because Rθ (S,S, ξ) = θ , it follows that the interval
−∞ < θ ≤ Cn(S, γ ) is a one-sided confidence interval for θ

with asymptotic coverage probability equal to γ .

Remark 2. The various conditions stated in Assumption A
could be weakened. For example, we do not have to assume
that the limiting random variable N in Assumption A.1 is nor-
mal. The proof of Theorem 1 would then have to be modified
accordingly. (For an exact statement of the more general ver-
sion of Assumption A under which Theorem 1 still holds, see
Hannig 2005.)

Remark 3. Although we have stated the result of Theorem 1
in terms of coverage probability of a GCI, the same result car-
ries over to generalized p values associated with generalized
tests of hypotheses.

Remark 4. The result is easily generalized to the vector pa-
rameter case. We state a vector parameter version of Theorem 1
in Appendix B.

Remark 5. The statement of Theorem 1 holds for each
fixed ξ . Sometimes it is of interest to establish a stronger con-
clusion,

lim
n→∞ sup

ξ∈�0

∣∣Pξ

(
Rθ (S,S, ξ) ≤ Cn(S, γ )

) − γ
∣∣ = 0, (3)

where �0 ⊂ �. A careful review of the proof of Theorem 1
reveals that (3) holds as long as Assumption A holds uniformly
in ξ ∈ �0.

Example 3: Verification of assumptions of Theorem 1. Con-
sider the two examples of Section 2, the Behrens–Fisher prob-
lem and the balanced one-way random model. We may show
that the GPQs in these two examples satisfy the assumptions of
Theorem 1. Hence the resulting GCIs will have asymptotically
correct coverage probabilities. This is, of course, well known
for the Behrens–Fisher problem and may be directly verified

for the one-way random model. However, our purpose here is
to illustrate the application of Theorem 1 by considering some
familiar examples. To save space, we illustrate the process for
the one-way random model. The conditions may be verified for
the Behrens–Fisher problem using analogous arguments.

Proposition 1. In the one-way random model, the (1 −
α)100% GCI for σ 2

A based on the FGPQ discussed in Sec-
tion 2 has asymptotically 100(1 − α)% frequentist coverage as
a → ∞.

Proof. We need to verify the conditions of Theorem 1. The
generalized pivot for σ 2

A given in Section 2 may be expressed as

R(SB,SW ,S�
B,S�

W , σ 2
e , σ 2

α ) = S2
B

nS�2
B

(σ 2
e + nσ 2

α ) − S2
W

nS�2
W

σ 2
e .

We consider n fixed and a → ∞. Combining well-known facts
from the theory of linear models with a simple calculation, we

get
√

a(S−2
B − (σ 2

e + nσ 2
α )−1,S−2

W − σ−2
e )

D→ (N1,N2), where
N1 and N2 are independent nondegenerate Gaussian random
variables. Thus we can set g0,a = (s2

B −s2
W)/n, g1,1,a = s2

B(σ 2
e +

nσ 2
α )/n, g1,2,a = −s2

Wσ 2
e /n, and Rn = 0. The various conditions

of Assumption A are immediately verified, and the proposition
follows from Theorem 1.

In particular, because |R| and max(0,R) are asymptotically
equivalent to R (provided that σ 2

A and σ 2
e are nonzero), we may

conclude that they also will lead to GCIs with correct asymp-
totic coverage.

Next we discuss an example where the conditions of the
proposition do not hold. It is known that neither fiducial inter-
vals nor GCIs have satisfactory frequentist performance in this
example.

Example 4: A situation where conditions of Theorem 1
do not hold. Consider k independent samples Xi1, . . . ,Xin iid
N(µi, σ

2), i = 1, . . . , k. Suppose that we are interested in one-
sided and two-sided confidence intervals for θ = ∑k

i=1 µ2
i =

µTµ, where µ = (µ1, . . . ,µk)
T . Let X

� be an independent
copy of the data vector X. Furthermore, let X̄i· and X̄�

i· denote
the sample means of the ith sample and let S2

ν and S�2
ν be the

pooled estimates of σ 2 with ν = k(n − 1) degrees of freedom,
based on X and X

�, respectively. The obvious generalized pivot
(an FGPQ) for θ , given by

Rθ (X,X
�,µ, σ 2) =

k∑
i=1

(
X̄i· + Sν

S�
ν

(X̄�
i· − µi)

)2

, (4)

does not lead to intervals for θ with good frequentist properties.
This same phenomenon is observed in more general problems
involving quadratic functions of fixed effects in mixed linear
models. For instance, Daniels et al. (2005), in their work on
GCIs for a quadratic function of fixed effects in a two-factor
mixed model, were led to consider alternative GPQs because
they found that the obvious FGPQ did not lead to satisfactory
intervals.

It is easy to see that the assumptions of Theorem 1 are satis-
fied for the FGPQ in (4) if and only if θ > 0. Toward this end,
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notice that

Rθ (X,X
�,µ,σ 2)

=
k∑

i=1

X̄2
i· +

k∑
i=1

2Sν X̄i·
σ

(X̄�
i· − µi) + Rn(X,X

�,µ, σ 2),

where

Rn(X,X
�,µ, σ 2)

=
k∑

i=1

(
S2
ν

S�2
ν

(X̄�
i· − µi)

2 + 2Sν X̄i·(S�−1
ν − σ−1)(X̄�

i· − µi)

)
.

Hence all assumptions of Theorem 1 are satisfied as long
as σ > 0 and θ > 0. But if θ = 0, then Assumption A.2(b)
is clearly violated. Notice that, regardless of the value of θ ,
Rθ > 0 almost surely. Therefore, if θ = 0, then any lower con-
fidence bound based on the distribution of Rθ will be positive,
and hence will miss the true value θ = 0.

This problem also causes difficulties when one attempts to
obtain a fiducial interval for θ . Wilkinson (1977) considered
this example in the context of fiducial inference and noted that
the point µ = 0 is a special point in the space of {µ}. Barnard
(1982) also pointed out difficulties that arise when the fiducial
distribution of µ is used to derive fiducial distributions for func-
tions of µ that are not one-to-one, such as µ2. We consider this
example further in Example 5, where we propose a new FGPQ
that does not suffer the problems at θ = 0 discussed here for the
naive FGPQ given in (4).

4. A STRUCTURAL METHOD FOR CONSTRUCTING
FIDUCIAL GENERALIZED PIVOTAL QUANTITIES

As mentioned earlier, during the past few years, the idea of
GCIs and generalized tests have been used by many authors
to obtain useful inference procedures in nonstandard problems.
Although Weerahandi (1993) provided a few examples illus-
trating the application of GPQs, he did not provide a systematic
approach for finding GPQs. As a matter of fact, Weerahandi
(1993) stated that “the problem of finding an appropriate piv-
otal quantity is a nontrivial task. . . [and] . . . further research is
necessary to develop simple methods of constructing general-
ized pivotals for classes of general problems, and this is beyond
the scope of this article.”

Until recently, a general method for constructing GPQs was
not available in the literature, and each particular problem ap-
peared to require some ingenuity in constructing an appropriate
GPQ or a test variable. Chiang (2001) proposed the method of
surrogate variables for deriving approximate confidence inter-
vals for functions of variance components in balanced mixed
linear models. Iyer and Mathew (2002) pointed out that his in-
tervals are identical to GCIs. Nevertheless, Chiang had indi-
rectly provided a systematic method for computing GCIs for
the class of problems that he considered; however, he did not
extend his method to any other class of problems, and also did
not discuss the connection between his method and either Weer-
ahandi’s GCIs or Fisher’s fiducial intervals.

In an unpublished technical report, Iyer and Patterson (2002)
formulated a method for constructing GPQs and generalized
test variables for a parameter θ = π(ξ) and proved that the
method works for the class of problems where there exists a

k-dimensional pivotal quantity that bears an invertible pivotal
relationship with the parameter ξ (see Definition 4). Nearly
every GCI in the published statistical literature may be ob-
tained using this recipe, and the construction always yields
FGPQs. For instance, Burdick, Borror, and Montgomery (2005)
and Burdick, Park, Montgomery, and Borror (2005) reported
GCIs for parameters of interest in Gage R&R studies using this
recipe. In Theorem 2 we give a reformulation of their construc-
tion using the notation of this article.

Because the method underlying Theorem 2, as well as its
generalizations given in Theorems 3 and 4, is inspired by, and
very much related to, Fraser’s (1961, 1966, 1968) development
of structural inference, we refer to this method as the structural
method for constructing FGPQs.

It is useful to first record the following definitions.

Definition 3. Let S = (S1, . . . ,Sk) ∈ S ⊂ R
k be a k-dimen-

sional statistic whose distribution depends on a p-dimensional
parameter ξ ∈ 	. Suppose that there exist mappings f1, . . . , fq,
with fj : Rk ×R

p → R, such that if Ei = fi(S; ξ), for i = 1, . . . ,q,
then E = (E1, . . . ,Eq) has a joint distribution that is free of ξ .
We say that f(S, ξ) is a pivotal quantity for ξ , where f =
( f1, . . . , fq).

Definition 4. Let f(S, ξ) be a pivotal quantity for ξ as de-
scribed in Definition 3 with q = p. For each s ∈ S , define
E(s) = f(s,	). Suppose that the mapping f(s, ·) :	 → E(s) is
invertible for every s ∈ S . We then say that f(S, ξ) is an in-
vertible pivotal quantity for ξ . In this case we write g(s, ·) =
(g1(s, ·), . . . ,gp(s, ·)) for the inverse mapping, so that whenever
e = f(s, ξ), we have g(s, e) = ξ .

The following theorem gives a recipe for constructing
FGPQs based on the structural method when an invertible piv-
otal quantity exists.

Theorem 2. Let S = (S1, . . . ,Sk) ∈ S ⊂ R
k be a k-dimen-

sional statistic whose distribution depends on a k-dimensional
parameter ξ ∈ 	. Suppose that there exist mappings f1, . . . , fk,
with fj : Rk × R

k → R, such that f = ( f1, . . . , fk) is an invertible
pivotal quantity with inverse mapping g(s, ·). Define

Rθ = Rθ (S,S
�, ξ)

= π
(
g1

(
S, f(S�, ξ)

)
, . . . ,gk

(
S, f(S�, ξ)

))
= π

(
g1(S,E

�), . . . ,gk(S,E
�)

)
,

where E
� = f(S�, ξ) is an independent copy of E. Then Rθ is

a FGPQ for θ = π(ξ). When θ is a scalar parameter, an equal-
tailed two-sided (1 − α)100% GCI for θ is given by Rθ,α/2 ≤
θ ≤ Rθ,1−α/2. Here Rθ,γ = Rθ,γ (s) denotes the 100γ th per-
centile of the distribution of Rθ conditional on S = s. One-
sided generalized confidence bounds are obtained in an obvious
manner.

Proof. Note that, because the distribution of E
� = f(S�, ξ)

does not depend on ξ , the distribution of R(S,S
�, ξ) given

S = s does not depend on ξ . In addition, Rθ (S,S, ξ) = θ by
definition of g and f. Therefore, Rθ satisfies the requirements
for it to be a FGPQ for θ .
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Remark 6. Weerahandi (2004) described an approach termed
the substitution method, discussed also by Peterson, Berger, and
Weerahandi (2003), for constructing generalized test variables
and GPQs in certain classes of problems. This method is essen-
tially the same as the construction given by Iyer and Patterson
(2002).

Remark 7. Because PS[θ ≤ Rθ,γ (S)] = PS[PS�[Rθ (S,S
�,

ξ) ≤ θ |S] ≤ γ ], it follows that a GCI for a parameter θ based
on the GPQ Rθ is frequentist exact if and only if the distribu-
tion of U(S; θ) = PS�[Rθ (S,S

�, ξ) ≤ θ |S] is uniform on [0,1]
for all θ . In particular, U(S; θ) is an ordinary pivotal quantity
for θ . It is also easy to see that U(S; θ) will have a uniform
[0,1] distribution whenever the inequality Rθ ≤ θ can be put
in the form q(S, ξ) ≤ q(S�, ξ) for some function q(·, ·). This
latter sufficient condition is easy to check in many applica-
tions. An interesting example of this was reported by Roy and
Mathew (2005), who for a given constant t obtained a gener-
alized confidence bound for τ = (t − µ)/θ based on a right-
censored sample from a shifted exponential distribution with
density f (x; θ,µ) = (1/θ) exp(−(x −µ)/θ)I[µ,∞)(x). They ob-
served that the resulting GCI had exact frequentist coverage.
One might note that an ordinary pivotal quantity is available in
their problem and is given by the cdf of T = (t − µ̂)/θ̂ , where
µ̂ and θ̂ are the maximum likelihood estimators (MLEs) for
µ and θ .

Remark 8. In the case of models admitting a group struc-
ture where the pivotal mapping corresponds to group multipli-
cation, the invertibility of the pivotal relationship is guaranteed
because of the invertibility of the group operation. As an il-
lustration, consider the complete sufficient statistic (X̄, S) for
the normal family N(µ,σ 2). Consider the mapping (E1,E2) =
f((X̄,S), (µ,σ )) = ((X̄ − µ)/σ,S/σ). First, note that all three
sets E , X , and � can be identified with R × R

+, where R
+ is

the set of all positive real numbers. For (u1,u2) and (v1, v2) in
G = R×R

+, define a binary operation ◦ by (u1,u2)◦ (v1, v2) =
(u1 + u2v1,u2v2). It is easily verified that G is a group with
this binary operation. The identity element is (0,1), and the
inverse of (u1,u2) is (−u1/u2,1/u2). The pivotal relation-
ship may be expressed as (E1,E2) = (−µ/σ,1/σ) ◦ (X̄,S).
The invertibility of this relationship is guaranteed because
(X̄,S) = (−µ/σ,1/σ)−1 ◦ (E1,E2) = (µ,σ ) ◦ (E1,E2) = (µ +
σE1, σE2). (For further discussion of this and other related is-
sues, see Fraser 1961; Dawid and Stone 1982.)

We now discuss several examples that illustrate how the
structural method of Theorem 2 may be applied to obtain
FGPQs in some important applications. The next example is
a continuation of Example 4 where the obvious FGPQ did not
yield satisfactory GCIs.

Example 5: Continuation of Example 4. We continue with
the notation of Example 4. Recall that Xij, j = 1, . . . ,n,
i = 1, . . . , k, are k independent samples where Xij ∼ N(µi, σ

2).
The parameter of interest is θ = ∑k

i=1 µ2
i . This parameter pro-

vides a measure of the extent to which the k normal means
deviate from the null hypothesis that the means are all 0. This
θ appears in the noncentrality parameter of the distribution of
the test statistic for testing this null hypothesis. Note that

√
θ is

the radius of a sphere centered at 0 on whose surface the vector

µ = (µ1, . . . ,µk)
T lies. We consider the problem of obtaining

a lower confidence bound for θ .
For i = 1, . . . , k, let X̄i· = ∑n

j=1 Xij/n, the mean for the ith

sample. We define S2
H = ∑k

i=1 X̄2
i· and S2

W = (
∑k

i=1
∑n

j=1(Xij −
X̄i·)2)/(k(n − 1)). We first observe that S2

W and S2
H are indepen-

dent. In addition, ((n − 1)kS2
W)/σ 2 ∼ χ2

k(n−1) and (nS2
H)/σ 2 ∼

χ2
k,nθ/σ 2 where χ2

k,λ denotes the noncentral chi-squared distrib-
ution with noncentrality parameter λ. We use the definition of
noncentrality as given by Rao (1973) that is consistent with the
definition used by software packages SAS and R. Some authors
define the noncentrality parameter to be half the noncentrality
defined by Rao.

Let Fν(x;λ) denote the value of the noncentral chi-squared
cumulative distribution function (cdf ) with ν degrees of free-
dom (df ) and noncentrality λ evaluated at x. For x > 0, if
Fν(x;λ) = t ∈ (0,1), then we write Qν(t; x) = λ, so that Qν is
the inverse of Fν when Fν is viewed as a function of λ, keep-
ing ν and x fixed. The existence of Qν is guaranteed by the
monotonicity of Fν viewed as a function of λ. In what follows
it is important to notice that if t < Fν(x;0), then Qν(t; x) > 0
is strictly decreasing continuous function, and if t ≥ Fν(x;0),
then Qν(t; x) = 0 by definition. We also write Gν(t;λ) = x
for the inverse of Fν when Fν is viewed as a function of x,
keeping ν and λ fixed. Define E1 = Fk(nS2

H/σ 2;nθ/σ 2) and
E2 = ((n − 1)kS2

W)/σ 2. Clearly, E1 and E2 are independent.
Furthermore, E1 has a uniform distribution on (0,1). Thus it
follows that the statistic S = (S2

W ,S2
H) and the parameter (θ, σ 2)

have an invertible pivotal relationship. Applying the structural
method of Theorem 2, we get the following FGPQ for θ :

Rθ = Rσ 2

n
Qk

(
Fk

(
nS�2

H

σ 2
; nθ

σ 2

)
; nS2

H

Rσ 2

)
,

where Rσ 2 = σ 2 S2
W

S�2
W

. (5)

As usual, S�2
W and S�2

H are independent copies of S2
W and S2

H .
It is a known fact (see Johnson and Kotz 1970, chap. 28), that

if λ → ∞, then the noncentral chi-squared cdf with noncentral-
ity parameter λ approaches the cdf of N(k + λ,2(k + 2λ)). The
error of the approximation is of the order O(λ−1/2) uniformly
in x. Thus one can verify the conditions of Theorem 1 directly
as long as θ > 0.

The more interesting case is θ = 0. Just as before, the con-
ditions of Theorem 1 do not apply. However, this time we can
prove directly that a lower confidence bound on θ derived from
the FGPQ in (5) has the correct asymptotic coverage. Toward
this end, first notice that U = Fk(nS�2

H /σ 2;nθ/σ 2) has uniform
distribution on (0,1). Then fix α and consider a 100(1 − α)%
lower confidence bound L. The true value θ = 0 is included
in the interval [L,∞) if and only if P(Rθ (sH, sW ,S�

H,S�
W ,

ξ) = 0) > α. Notice that S�2
W

P→ σ 2, and therefore P(Rθ (sH, sW ,

S�
H,S�

W , ξ) = 0) > α if and only if nS2
H/S2

W ≤ Cn, where Cn →
Gk(1 − α;0) by Slutsky’s theorem. Thus Pθ (0 ∈ [L,∞)) =
Pθ (nS2

H/S2
W ≤ Cn) → Pθ (nS2

H/σ 2 ≤ Gk(1 − α;0)) = 1 − α,
establishing that the FGPQ of (5) leads to a generalized lower
confidence bound for θ with correct asymptotic coverage.
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We have examined the small-sample performance of the fore-
going generalized confidence bound in a small simulation study
and found the coverage probabilities to be close to the nominal
value. The next example has important applications in industrial
quality control and quality improvement.

Example 6: Proportion conformance. Consider a popula-
tion characteristic whose distribution may be assumed to be
N(µ,σ 2) (µ, σ are unknown). Let θ denote the proportion
of this population contained in the interval (C1,C2), where
C1 < C2 are real numbers (C1 may be negative infinity and
C2 may be positive infinity). In many practical applications it
is of interest to obtain a lower or an upper confidence bound
for θ . In the manufacturing of machine parts, a part is said to
meet specifications provided that its performance characteris-
tic is contained in a prespecified interval (C1,C2) determined
by engineering requirements. One would like to be assured that
θ is large, so a lower confidence bound for θ would be of in-
terest. In environmental applications it is often of interest to
ensure that pollutant levels in soil, water, or air are well below
an amount determined to be safe by the U.S. Environmental
Protection Agency. Here θ may represent the proportion of all
possible water samples in which the concentration of arsenic
exceeds 5 µg/L. One would like to be assured that this propor-
tion is small and so an upper confidence bound for θ would
be of interest. In the case of arsenic concentrations, it may be
more reasonable to use a lognormal model, but the problem
can be restated using the log scale. The problem of comput-
ing confidence bounds for θ has been considered by Chou and
Owen (1984) and also by Wang and Lam (1996). These au-
thors have provided methods for computing approximate lower
confidence bounds for θ . Here we exhibit a FGPQ for θ de-
rived using the structural method of Theorem 2. Suppose that
an iid sample X1, . . . ,Xn is available from the N(µ,σ 2) distri-
bution. The parameter of interest is θ = �(

C2−µ
σ

) − �(
C1−µ

σ
).

Let S = (X̄,S2), where X̄ is the sample mean, S2 = ∑n
i=1(Xi −

X̄)2/(n − 1) is the sample variance, and ξ = (µ,σ 2). Applying

the structural method, we get Rθ = �(
C2−Rµ

Rσ
) − �(

C1−Rµ

Rσ
)

as a FGPQ for θ , where Rσ = σS
S� and Rµ = X̄ − (X̄� − µ) S

S� .
It is straightforward to verify that the assumptions of Theorem 1
are satisfied, and hence the GCIs obtained using the proposed
FGPQ have correct asymptotic coverage. Simulation results
pertaining to small-sample performance of the GCI for propor-
tion conformance have been reported by Patterson, Hannig, and
Iyer (2004b) in an unpublished technical report. They found the
performance of the GCIs satisfactory for use in practical appli-
cations.

The method of this example is generalizable to more complex
situations. Of particular interest is GCIs for the proportion of
conformance in the one-way random-effects model. This has
also been studied in detail by Patterson et al. (2004b).

The next example illustrates a practical problem arising in
pharmaceutical statistics where GCIs provide a useful solution.

Example 7: Average bioequivalence. In bioequivalence stud-
ies comparing a test drug to a reference drug, it is of interest
to compare the mean responses of the two drugs to ensure that
they are (more or less) equally effective. With this in mind, the
U.S. Food and Drug Administration (FDA) requires that the lab

submitting an approval request demonstrate that certain equiv-
alence criteria are satisfied. One such criterion, the average
bioequivalence criterion, requires that the ratio θ = µT/µR be
sufficiently close to 1, where µT denotes the mean response to
the test drug and µR denotes the mean for the reference drug.
A confidence interval for the ratio θ = µT/µR is useful in this
situation. (Readers interested in details may refer to U.S. FDA
2001.)

A key response variable in such studies is the area under the
curve (AUC) relating the plasma drug concentration in a patient
to the elapsed time after the drug is administered. In accordance
with the FDA guidelines, the analysis of AUC is carried out
using the log scale. This is because the distribution of AUC
is typically well modeled by a lognormal distribution. So the
parameter of interest is the ratio of means of two lognormal
distributions. This approach, termed “average bioequivalence,”
involves the calculation of a 90% confidence interval for the
ratio of the averages of test and reference products. To establish
bioequivalence, the calculated confidence interval should fall
within a bioequivalence limit, usually 80–125% for the ratio of
the product averages.

The experimental design of choice in bioequivalence stud-
ies is a two-period crossover design with an adequate washout
period to minimize carryover effects. But a two-group design
(also called a parallel design) is the more appropriate design
when the half-lives of drugs being tested is very long, and this
is recognized in the FDA guidelines. In this example we assume
that a two-group design is used for the bioequivalence study.

Let Yij, j = 1, . . . ,n1, denote independent random variables
such that Xij = ln(Yij) ∼ N(µi, σ

2
i ) for j = 1, . . . ,ni, i = 1,2.

Then θ = exp(µ1 − µ2 + 1
2 (σ 2

1 − σ 2
2 )) is the ratio of the means

of the two lognormal populations. When σ1 = σ2, this expres-
sion simplifies, and we get θ = exp(µ1 − µ2). The problem of
obtaining a confidence interval for θ is straightforward in this
special case; however, the problem does not admit an exact so-
lution in the general case.

Let us define, for i = 1,2, X̄i = ∑ni
j=1 Xij/ni and S2

i =
(
∑ni

j=1(Xij − X̄i)
2)/(ni − 1). The structural method may be ap-

plied, and we obtain the following FGPQ for θ :

Rθ = exp

(
Rµ1 −Rµ2 + 1

2

(
R2

σ1
−R2

σ2

))
,

where Rσ1 = σ1S1/S�
1, Rσ2 = σ2S2/S�

2, Rµ1 = X̄1 − (X̄�
1 −

µ1)S1/S�
1, and Rµ2 = X̄2 − (X̄�

2 − µ2)S2/S�
2. It is straightfor-

ward to check that the conditions of Theorem 1 hold. Hence the
resulting GCI has correct asymptotic coverage.

We have conducted a simulation study to evaluate the perfor-
mance of the GCI for θ in small samples. Results of our study
indicate that the GCI approach may be recommended for prac-
tical applications.

Krishnamoorthy and Mathew (2003) have discussed general-
ized inference for a single lognormal mean, and Krishnamoor-
thy (unpublished work) has considered generalized inference
for the difference between two lognormal means. The general-
ized pivotal quantities proposed by them are the same as what
one would get by applying the structural method of Theorem 2.

In the next section we generalize the recipe of Theorem 2 in
two different ways.
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5. TWO GENERALIZATIONS OF THE STRUCTURAL
METHOD FOR FIDUCIAL GENERALIZED

PIVOTAL QUANTITIES

The recipe given in Theorem 2 is best suited for the case
when a complete sufficient statistic is available for the infer-
ence problem under consideration, although this is not a pre-
requisite. First, in the interest of using all of the information in
the data, we seek inference methods based on sufficient statis-
tics. It is then appropriate to restrict oneself to procedures based
on a minimal sufficient statistic. When this is also complete, the
dimension of the minimal sufficient statistic will equal the di-
mension of the parameter indexing the family of distributions
under consideration. We can now directly apply the structural
method for constructing FGPQs, provided that we can find an
appropriate invertible pivotal relationship between S and ξ .

When the minimal sufficient statistic is not complete, we may
still find a statistic S that has an invertible pivotal relationship
with the parameter ξ . In this case one can apply the structural
method to get an FGPQ. In this situation there will usually be
several choices for the insufficient statistic S with which to con-
struct an invertible pivotal quantity. Some choices can dominate
other choices, but no general guidelines are available to help
with such a choice. The following example helps illustrate this
situation.

Example 8: Common mean problem. Suppose that Xi1, . . . ,

Xini are iid N(µ,σ 2
i ), i = 1, . . . , k. It is of interest to con-

struct a confidence interval for the common mean µ. Let X̄i =
(
∑ni

j=1 Xij)/ni and S2
i = (

∑ni
j=1(Xij − X̄i)

2)/(ni − 1). Clearly,

S = (X̄1, . . . , X̄k,S2
1, . . . ,S2

k) is a minimal sufficient statistic for
(µ,σ 2

1 , . . . , σ 2
k ), but it is not complete.

Many authors have addressed the problem of point estima-
tion as well as confidence interval estimation for µ in this
setting using frequentist approaches based on pivotal quanti-
ties. (For some recent work on this problem, see Jordan and
Krishnamoorthy 1996; Yu, Sun, and Sinha 1999.) Some of the
pivotal quantities considered by these authors include

PQ1 = −2
k∑

i=1

loge(Pi(µ0)),

PQ2 =
k∑

i=1

∣∣∣∣ X̄i − µ

Si/
√

ni

∣∣∣∣, and (6)

PQ3 =
k∑

i=1

(
X̄i − µ

Si/
√

ni

)2

.

In PQ1, Pi(µ0) is the p value for testing H0 :µ = µ0 versus
Ha :µ > µ0 using the Student t test with data from the ith group
only. The statistic PQ1 combines evidence from the k groups
following Fisher’s method for combining p values (see Fisher
1970). The combined evidence against H0 is quantified by the
area to the right of PQ1 under a chi-squared-density with k df.
Values of µ0 that lead to a combined p value greater than α

form a one-sided confidence interval with upper bound equal
to ∞.

Clearly, each Pi(µ) is a pivotal quantity for µ. So any func-
tion of these is also a pivotal quantity for µ. Thus exact con-
fidence regions for µ may be constructed using any one of

these pivotal quantities. More generally, whenever multiple piv-
otal quantities, P1, . . . ,Pm, are available for a parameter θ , any
function of the Pi is again a pivotal quantity for θ . The same ob-
servations holds for GPQs but not necessarily for FGPQs. But
if P1, . . . ,Pm are FGPQs for θ , then certainly any linear func-
tion

∑m
i=1 LiPi, with

∑m
i=1 Li = 1, is a FGPQ for θ . We now

apply the recipe of Theorem 2. Define X̄L = L1X̄1 +· · ·+ LkX̄k.
Let S = (S2

1, . . . ,S2
k , X̄L). We have the following pivotal rela-

tionships:

Ei = (ni − 1)S2
i

σ 2
i

∼ χ2
ni−1, i = 1, . . . , k,

and

Ek+1 = X̄L − µ√∑k
i=1 L2

i σ
2
i /ni

∼ N(0,1).

The conditions needed to apply the structural method of Theo-
rem 2 are satisfied, and we conclude that

Rµ = X̄L − (X̄�
L − µ)

√∑k
i=1 σ 2

i L2
i S2

i /(niS�2
i )√∑k

i=1 σ 2
i L2

i /ni

is a FGPQ regardless of the choice of L1, . . . ,Lk as long as they
sum to unity.

We revisit this common mean problem in Example 9 and
again in Example 11 and introduce two more FGPQs. In Sec-
tion 5 we give the results of a small simulation study comparing
selected approaches from the literature and the FGPQs defined
in this article.

In the remainder of this section we present two systematic ap-
proaches for constructing FGPQs for situations where the min-
imal sufficient statistic is not complete. The first approach is
a two-stage approach for constructing a FGPQ where the struc-
tural method of Theorem 2 is invoked at each stage. The second
approach offers a very general construction and has connections
with fiducial inference and ancillary statistics.

5.1 Two-Stage Construction of a Fiducial
Generalized Pivotal Quality

The first alternative is a two-stage approach, which is out-
lined in the following theorem.

Theorem 3. Let ξ = (ξ1, ξ2) and suppose that the following
conditions hold:

(a) Assuming that ξ2 is known, there is a statistic,
S1 = S1(ξ2), that bears an invertible pivotal relationship with ξ1;
see Definition 4.

(b) There is a statistic S2 such that S2 and ξ2 have an invert-
ible pivotal relationship.

Let Rξ1|ξ2 be a FGPQ for ξ1 obtained based on the pivotal rela-
tionship between S1(ξ2) and ξ1 using the structural method of
Theorem 2. Likewise, let Rξ2 be a FGPQ for ξ2 obtained using
its pivotal relationship with S2. Then Rξ1|Rξ2

is a FGPQ for ξ1.

Proof. This theorem follows directly from Theorem 2.
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Example 9: Two-stage construction of a FGPQ for the com-
mon mean problem. Continuing with the notation of Exam-
ple 8, we have that S = (X̄1, . . . , X̄k,S2

1, . . . ,S2
k) is a minimal

sufficient statistic for (µ,σ 2
1 , . . . , σ 2

k ), but it is not complete.
An independent copy of S is denoted by S

� = (X̄�
1, . . . , X̄�

k ,S�2
1 ,

. . . ,S�2
k ). A realization of S is denoted by s = (x̄1, . . . , x̄k, s2

1,

. . . , s2
k). In Theorem 3, we take ξ1 = µ, ξ2 = (σ 2

1 , . . . , σ 2
k ),

S1(ξ2) = ( n1X̄1
σ 2

1
+ · · · + nkX̄k

σ 2
k

)/( n1
σ 2

1
+ · · · + nk

σ 2
k
), and S2 =

(S2
1, . . . ,S2

k). This leads to the FGPQ given by

Rµ(S,S
�, ξ) =

n1X̄1/Rσ 2
1

+ · · · + nkX̄k/Rσ 2
k

n1/Rσ 2
1

+ · · · + nk/Rσ 2
k

−
(n1X̄�

1/Rσ 2
1

+ · · · + nkX̄�
k/Rσ 2

k

n1/Rσ 2
1

+ · · · + nk/Rσ 2
k

− µ

)
.

Proposition 2. Let all n1, . . . ,nk approach infinity in such a
way that cj = lim nj/(n1 + · · ·+ nk) exists and 0 < cj < 1. Then
the 100(1 − α)% confidence interval for µ based on the FGPQ
Rµ has asymptotically 100(1 − α)% frequentist coverage.

The proof of this proposition is given in Appendix A. Next,
we describe a second alternative construction of FGPQs. This
is a more general approach that in principle is applicable to any
parametric problem, but the properties of the resulting GCIs
are much more difficult to assess. Nonetheless, we can show
that GCIs obtained using this approach have exact frequentist
coverage in some special situations.

5.2 A General Recipe for Constructing Fiducial
Generalized Pivotal Quantities

The two-stage construction is a systematic approach for ob-
taining a FGPQ for a number of problems where the minimal
sufficient statistic is not complete. In many situations it is fairly
straightforward to verify that the conditions of Theorem 1 hold
for the two-stage FGPQ so that the resulting interval will have,
at least asymptotically, the correct frequentist coverage. How-
ever, the two-stage construction is perhaps not general enough;
see Example 11. In this section we provide a general method
for constructing FGPQs and illustrate its application through
examples.

Let S = (S1, . . . ,Sk) ∈ S ⊂ R
k denote a statistic whose dis-

tribution is indexed by ξ ∈ � ⊂ R
p. Let θ = π(ξ) be the pa-

rameter of interest. Estimability considerations suggest that it
is reasonable to restrict ourselves to cases where k ≥ p. When
k = p, the structural method of Theorem 2 is applicable. In this
section we outline a general construction for obtaining FGPQs
in situations where p < k (more statistics than parameters).
We call this the general structural method. This construction
reduces to the structural method of Theorem 2 when p = k.

We make the following assumption.

Assumption B. (a) There exists a mapping f :S × � → R
k

such that E = f(S, ξ) has a continuous cdf that does not depend
on ξ . Let E = f(S × �). Write f = ( f1, . . . , fk), so that Ei =
fi(S, ξ) for i = 1, . . . , k.

(b) Let E0 = (E1, . . . ,Ep) and f0 = ( f1, . . . , fp). We as-
sume that for each fixed s ∈ S , the mapping f0(s, ·) :� → E

defined by e0 = f0(s, ξ) is invertible. Write E0 = f0(s,�).
We denote this inverse mapping from E0 to � by g0(s, ·) =
(g1(s, ·), . . . ,gp(s, ·)); thus we have g0(s, f0(s, ξ)) = ξ for each
s ∈ S .

Remark 9. It is not necessary that E0 consist of the first p el-
ements of E, but we can always achieve this by relabeling if
necessary. Note that condition (a) simply says that f(S, ξ) is a
pivotal quantity for ξ with a continuous cdf, and condition (b)
is a partial invertibility condition similar to what was required
in Definition 4 for a pivotal quantity to be invertible.

Now let Ec = (Ep+1, . . . ,Ek) and fc = ( fp+1, . . . , fk). Sub-
stituting ξ = g0(S,E0) in the equations Ej = fj(S, ξ), j =
p + 1, . . . , k, we get the identity

Ec = fc
(
S,g0(S,E0)

)
. (7)

For any fixed s ∈ S , let M(s) denote the set of e = (e1, . . . ,

ek) ∈ E satisfying

ej = fj
(
s,g0(s, e0)

)
, j = p + 1, . . . , k, (8)

where e0 = (e1, . . . , ep), the first p coordinates of e. Thus
M(s) is a manifold in R

k.
Given S, by virtue of (7), it follows that E must lie on the

manifold M(S). Note that the same manifold may be defin-
able using a different set of equations. We use the notation
B(s, e) = 0 for the equations chosen to define M(s). In some
situations it may be possible to express the equations defin-
ing M(s) in the form a(s) − b(e) = 0 for suitably chosen map-
pings a and b. Clearly, a(S) is an ancillary statistic, because its
distribution is not dependent on ξ .

We now make the following assumption concerning the ran-
dom vector E0.

Assumption C. Conditional on B(s,E), E0 has a jointly con-
tinuous distribution.

The following lemma states the multivariate version of the
probability integral transform.

Lemma 1. Let F1(·|B(s,E)) denote the cdf of E1 given
B(s,E) and Fj(·|E1, . . . ,Ej−1,B(s,E)) denote the cdf of Ej

given E1, . . . ,Ej−1,B(s,E), j = 2, . . . ,p. The conditional joint
distribution of E0 given B(s,E) is completely determined by
the univariate cdf’s F1, . . . ,Fp. Let the random vector U be de-
fined by

U = F
(
E0|B(s,E)

)
= (

F1
(
E1|B(s,E)

)
,F2

(
E2|E1,B(s,E)

)
, . . . ,

Fp
(
Ep|E1, . . . ,Ep−1,B(s,E)

))
. (9)

The distribution of U, conditional on B(s,E), is uniform
on [0,1]p. Hence this is also its unconditional distribution.

We denote the inverse of F(·|B(s,E)) by G(·|B(s,E)). Both
F and G depend on ξ , but for clarity of notation we do not
explicitly display this dependence.

We now state our general construction for FGPQs.
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Theorem 4. Suppose that Assumptions B and C are satisfied.
Let θ = π(ξ) be a scalar parameter. Define

Rθ = Rθ (S,S
�, ξ)

= π
(
g0

(
S,G

(
F
(
f0(S

�, ξ)|B(S,E
�)

)∣∣0)))
.

Then Rθ is an FGPQ for θ .

Proof. This is obvious by construction.

Remark 10. By the definition of F and G, it follows that the
distribution of

G
(
F
(
f0(S

�, ξ)|B(S,E
�)

)∣∣0)
is the same as the distribution of E

�
0 given B(S,E

�) = 0. We use
this fact in the proof of Theorem 5.

Note that the FGPQ defined here will generally depend on
the choice of the defining equations for M(s). An example of
this phenomenon is given later in this section. An obvious ques-
tion now is whether a theorem analogous to Theorem 1 may be
established that would guarantee correct asymptotic coverage
for GCIs based on this general construction of FGPQs. We con-
jecture that such a result exists under fairly general conditions,
but we do not have an actual theorem at this time. This con-
jecture is supported by the examples that we have considered.
In principle, we should be able to use Theorem 1 directly as
long as we can get the conditional cdf in closed form. However,
there are problems caused by the fact that the statistics B often
converge to the edge of their sample space. This causes var-
ious quantities in Assumptions A to be unbounded. We might
be able to overcome this difficulty by paying special attention to
the quantities B(S,E

�) used in the determination of conditional
distributions.

Example 10, discussed shortly, provides an illustration of the
difficulties outlined in the previous paragraph. This example
also illustrates a situation where one would need to use a nor-
malization factor n rather than

√
n; in this connection, see the

technical report of Hannig (2005).

5.3 Exact Coverage of Generalized Confidence
Intervals in Special Cases

For the case where k = p, Remark 7 pointed out that GCIs
can have exact frequentist coverage under certain conditions.
When p = 1 (i.e., when ξ is a scalar parameter), one can show
that a generalized confidence region for ξ has exact frequentist
coverage under certain circumstances even when k > 1. This is
the content of the next theorem, whose proof is based on ideas
given by Dawid and Stone (1982).

Theorem 5. Suppose that ξ is a scalar parameter. Assume
that the manifold M(S) can be defined using an equation of
the form a(s) = b(e), and let R(S,S

�, ξ) denote the FGPQ
obtained using the general construction. Let P[·] denote the
probability measure associated with S and let P�[·] denote
the measure associated with S

�. Let C(S, β) be a set in �

satisfying P�[R(s,S
�, ξ) ∈ C(s, β)] = β . Let A(s, β) denote

the image of C(s, β) under the mapping f0(s, ·). Assume that
A(s1, β) = A(s2, β) whenever a(s1) = a(s2). Then

P[ξ ∈ C(S, β)] = β.

Namely, the generalized confidence region C(S, β) for ξ with
confidence coefficient β has frequentist coverage also equal
to β .

Proof. We have

β = P�[R(s,S
�, ξ) ∈ C(s, β)],

by the definition of C(s, β);
= P�

[
g0(s,E

�
0) ∈ C(s, β)|B(s,E

�) = 0
]
,

by the definition of F and G (see Remark 10);
= P�

[
E

�
0 ∈ A(s, β)|a(s) = b(E�)

]
,

by assumption about the form of B(s, e);
= P

[
E0 ∈ A(s, β)|a(s) = b(E)

]
,

because E is an independent copy of E
�;

= P
[
E0 ∈ A(s, β)|a(s) = a(S)

]
,

because b(E) = a(S) is an identity;
= P

[
f0(S, ξ) ∈A(S, β)|a(s) = a(S)

]
,

by definition of E0 and assumption about A(S, β);
= P

[
ξ ∈ C(S, β)|a(s) = a(S)

]
,

because g0(S,E0) = ξ and g0(S,A(S, β)) = C(S, β).

Therefore, it follows that P[ξ ∈ C(S, β)] = β .

We now illustrate the general construction of this section us-
ing two examples. We also use the first example to demonstrate
that different choices of equations for defining M(S) may re-
sult in different (nonequivalent) FGPQs. But in this example
they turn out to be asymptotically equivalent, thus leading us
to conjecture that under certain conditions, different choices
of B(s,E) may lead to asymptotically equivalent GCIs. The
second example is an application of the foregoing general con-
struction to the common mean problem, which yields an FGPQ
different from that obtained from the two-stage construction
discussed earlier.

Example 10: Nonuniqueness of FGPQ arising due to dif-
ferent choices of B(S,E). Suppose that E = (EM,Em) and
S = (XM,Xm). We assume that Xi = θEi, i = M,m, 0 < θ ∈ R,
EM and Em are distributed as the maximum and the minimum of
n iid uniform[1,2] random variates. We wish to obtain a FGPQ
for θ . We now show that two different FGPQs arise from two
different choices of defining equations for M(S), but the result-
ing GCIs both have asymptotically correct coverage.

Take f(S, θ) = (EM,Em) = E, where EM = XM/θ and
Em = Xm/θ . Clearly, the distribution of E is free of θ . Let
E0 = EM , so that f0(S, ξ) = XM/θ . The mapping g0 may
be defined by θ = g0(S,E0) = XM/EM . Substituting this in
the relation Em = Xm/θ gives the identity EM/Em = XM/Xm.
Let s = (xM, xm) and e = (eM, em) denote realizations of
S and E. Write a(s) = xM/xm and u(e) = eM/em. The mani-
fold (curve) M(s) on which e must lie may be described by
the equation B(s, e) = a(s)−u(e) = 0. The same manifold may
also be described using the condition B(s, e) = eM − aem = 0,
where a = xM/xm. It is easy to check that one gets nonequiva-
lent FGPQs depending on the choice of B for defining M(s).
We state only the results here omitting the detailed calculations.
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• FGPQ using B(s, e) = eM/em − a. Applying the general
construction, we get the following generalized upper con-
fidence bound for θ :

θ ≤
[

Xn
M

α2n + (1 − α)An

]1/n

,

where A = XM/Xm. This is the same upper confidence
bound obtained by considering the conditional distribu-
tion of the pivot XM/θ conditional on the ancillary statistic
A = XM/Xm. Thus by Theorem 5, this interval has correct
frequentist coverage 1 − α, conditionally on A, and hence
also unconditionally.

• FGPQ using B(s, e) = eM − aem. Here the general con-
struction leads to the upper confidence bound given by

θ <

[
Xn−1

M

α2n−1 + (1 − α)An−1

]1/(n−1)

,

where A = XM/Xm. Unlike the earlier fiducial interval,
which was based on conditioning on an ancillary statis-
tic, this fiducial interval does not have exact frequentist
coverage. Although it is based on the pivotal quantity

W = (XM/θ)n−1

α2n−1 + (1 − α)An−1
,

it uses an incorrect percentile of the distribution of the
pivot. This is seen by noting that the fiducial interval is ob-
tained from the probability statement Pr[W > 1] = 1 − α,
but the value 1 used as the α-percentile of W is incorrect.
Instead, using the exact probability statement

Pr

[
W >

[α + (A/2)n(1 − α)](n−1)/n

[α + (A/2)n−1(1 − α)]
]

would lead to an exact frequentist confidence interval. This
observation also helps us demonstrate that the fiducial in-
terval has the correct frequentist coverage asymptotically,
because as n → ∞

[α + (A/2)n(1 − α)](n−1)/n

[α + (A/2)n−1(1 − α)] → 1,

and W converges in distribution to a nondegenerate limit.

The issue of nonuniqueness observed in this example is re-
lated to the Borel paradox described by, for example, Casella
and Berger (2002, sec. 4.9.3). (For a more in-depth discussion
of the various types of nonuniqueness associated with condi-
tional distributions, see Hannig 1996.)

Example 11: FGPQ for the common mean problem using
the general construction. For a less trivial illustration of the
general construction for FGPQ, we once again consider the
common mean problem, the subject of Examples 8 and 9.
The FGPQ for µ in Example 9, obtained using the two-stage
construction method, is by no means unique. An application of
the general construction yields a different FGPQ for µ.

Consider the invertible pivotal relationship given by X̄i =
µ+

√
σ 2

i /niEi, (ni −1)S2
i = σ 2

i Ek+i, for i = 1, . . . , k, where for
i = 1, . . . , k, Ei ∼ N(0,1), Ek+i ∼ χ2

ni−1, and Ei, i = 1, . . . ,2k

are jointly independent. Let S = (X̄1, . . . , X̄k,S2
1, . . . ,S2

k) and
E = (E1, . . . ,E2k). Let s = (x̄1, . . . , x̄k, s2

1, . . . , s2
k) denote a re-

alization of S, and let e be the corresponding realization of E.

Then e must take values on the manifold M(s) defined by the
k − 1 equations

0 = ei√
ek+i/(ni − 1)

√
s2

i

ni
− ek√

e2k/(nk − 1)

√
s2

k

nk
− (x̄i − x̄k)

= ti

√
s2

i

ni
− tk

√
s2

k

nk
− (x̄i − x̄k) for i = 1, . . . , k − 1,

where ti, i = 1, . . . , k, are realizations of independent Student t
random variables with ni −1 degrees of freedom. For i = 1, . . . ,

k − 1, define Bi = Ti

√
s2

i /ni − Tk

√
s2

k/nk − (x̄i − x̄k). A fidu-
cial distribution for µ may be defined as the conditional distrib-
ution of µ = x̄k − Tk

√
s2

k/nk given B1 = B2 = · · · = Bk−1 = 0
(see, e.g., Fisher 1961a,b). Let B = (B1, . . . ,Bk−1) and b =
(b1, . . . ,bk−1). First, we note that the joint probability density
function (pdf ) of B1, . . . ,Bk−1,µ is given by

fB1,...,Bk−1,µ(e1, . . . , ek−1, ek)

= K

((
1 + (x̄1 − ek − e1)

2

σ̂ 2
1

)n1/2

· · ·

×
(

1 + (x̄k−1 − ek − ek−1)
2

σ̂ 2
k−1

)nk−1/2

×
(

1 + (x̄k − ek)
2

σ̂ 2
k

)nk/2)−1

,

where K is the normalizing constant and σ̂ 2
i = (ni − 1)s2

i /ni is
the MLE of σ 2

i . Hence the conditional pdf of µ given Bi = bi

for i = 1, . . . , k − 1, is

fµ|b1,...,bk−1(t) = C

[(
1 + (x̄1 − t − b1)

2

σ̂ 2
1

)n1/2

· · ·

×
(

1 + (x̄k−1 − t − bk−1)
2

σ̂ 2
k−1

)nk−1/2

×
(

1 + (x̄k − t)2

σ̂ 2
k

)nk/2]−1

,

where

C−1 =
∫ ∞

−∞
dt

[(
1 + (x̄1 − t − b1)

2

σ̂ 2
1

)n1/2

· · ·

×
(

1 + (x̄k−1 − t − bk−1)
2

σ̂ 2
k−1

)nk−1/2

×
(

1 + (x̄k − t)2

σ̂ 2
k

)nk/2]−1

.

Setting bi = 0 for i = 1, . . . , k − 1, yields the required fiducial
pdf for µ. This is given by

f (t) = C

[(
1 + (x̄1 − t)2

σ̂ 2
1

)n1/2

· · ·
(

1 + (x̄k−1 − t)2

σ̂ 2
k−1

)nk−1/2

×
(

1 + (x̄k − t)2

σ̂ 2
k

)nk/2]−1

. (10)
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A FGPQ Rµ corresponding to this fiducial density may be
obtained using the general construction. However, it is quite
convenient to use the fiducial framework when deriving the ac-
tual GCI. The FGPQ in this example does not appear to satisfy
the conditions of Theorem 1, but we can still prove directly that
confidence intervals based on Rµ are asymptotically correct.
This is the message of the next proposition, the proof of which
is given in Appendix A.

Proposition 3. Let all n1, . . . ,nk approach infinity in such
a way that cj = lim nj/(n1 + · · · + nk) exists and 0 < cj < 1.
Then the 100(1 − α)% confidence interval for µ based on the
FGPQ Rµ corresponding to the fiducial density in (10) has as-
ymptotically 100(1 − α)% frequentist coverage.

The unpublished technical report of Patterson et al. (2004a)
gives the results of a detailed simulation study comparing three
different procedures for constructing confidence intervals for
the common mean problem: Fisher’s method [PQ1 in (6)],
GCI using the two-stage FGPQ, and the GCI using the general
FGPQ construction. Fisher’s method was chosen based on the
results of Yu et al. (1999), which indicate that Fisher’s method
performs as well as or better than competing procedures in most
situations.

Table 1 gives a representative subset of the results from
Patterson et al. (2004a). We report the case of k = 3 (three labo-
ratories) for selected sample sizes and standard deviations. The
first row for each scenario gives the empirical coverage proba-
bility for the upper confidence bound corresponding to a stated
coverage of .95. The second row gives the empirical expected
value of the absolute distance of the upper bound from the true
parameter value for each of the three methods. Smaller values
of the expected absolute distance imply greater efficiency of the
method. In Table 1 this expected absolute distance is referred to
as “expected length.”

Fisher’s method is an exact method, but the two GCI meth-
ods are only asymptotically exact. Nevertheless, we see that the
small-sample performance of the two GCI methods are quite
satisfactory, and they appear to be more efficient than Fisher’s
method. We also see that the GCI using the general construc-
tion performs slightly better than the two-stage GCI in terms of
confidence interval expected length.

6. CONNECTION BETWEEN A FIDUCIAL
GENERALIZED PIVOTAL QUANTITY FOR A

PARAMETER AND ITS FIDUCIAL DISTRIBUTION

Fraser (1961) considered fiducial inference for a normal
mean µ with unit variance and outlined a method for provid-
ing a frequency interpretation for the fiducial distribution of µ.
He stated the following:
Let µ� designate possible values for the parameter relative to an observed x̄;. . . .
The statistical problem admits free translation on the x̄ axis. Consider a very
large number of samples from normal distributions with the specifications of
this example. In each case translate the sample mean. . . . The parameter values
will be correspondingly translated. Simple mathematics then shows that the fre-
quency distribution of these translated means µ� is normal with center at x̄ and
with unit scale parameter. There is thus a frequency distribution of parameter
values µ� that might have produced the observed x̄.

What Fraser proposed in his 1961 article could be written, in
the notation of GPQs, as

Rµ = Rµ(S,S
�, ξ) = X̄ − (X̄� − µ). (11)

This becomes clear by noting that when Fraser considers
“a very large number of samples with the specifications of this
example,” he is actually considering the random variable X̄�,
which is an independent copy of X̄. His translated means are
produced by translating X̄ by an amount equal to E� = X̄� − µ.
Viewed thusly, Fraser’s µ� is exactly the Rµ defined in (11).
When he describes the distribution of µ�, he is essentially de-
scribing the distribution of Rµ and the frequency interpretation
for the fiducial distribution of a parameter is then automatic.

Table 1. Empirical Coverages and Expected Lengths for Fisher’s Exact Upper Confidence Bound
and Two Generalized Upper Bounds

n1 n2 n3 σ1 σ2 σ3 Two-stage General FGPQ Fisher

7 20 12 1.00 1.00 1.00 .9375 .9390 .9510
(.2791) (.2769) (.3025)

7 20 12 1.00 .10 16.00 .9450 .9440 .9510
(.1231) (.1216) (.1546)

10 10 10 1.00 1.00 1.00 .9345 .9340 .9480
(.3203) (.3189) (.3460)

50 50 50 1.00 1.00 1.00 .9470 .9447 .9490
(.1398) (.1393) (.1473)

50 50 50 1.00 .10 10.00 .9460 .9455 .9490
(.0728) (.0724) (.0866)

40 30 50 1.00 .10 10.00 .9485 .9483 .9493
(.0930) (.0925) (.1095)

40 30 50 1.00 10.00 .10 .9490 .9485 .9517
(.0731) (.0726) (.0957)

7 20 8 1.00 .25 1.00 .9435 .9443 .9485
(.1812) (.1785) (.2048)

100 80 90 1.00 .25 .25 .9517 .9503 .9527
(.0602) (.0598) (.0643)

100 80 90 1.00 16.00 .20 .9517 .9505 .9527
(.0717) (.0712) (.0849)

100 100 100 1.00 1.00 1.00 .9530 .9527 .9525
(.0974) (.0969) (.1020)

NOTE: In each of the last three columns, two numbers are reported for each combination of sample sizes and standard deviations. The first of these numbers
is the empirical coverage probability, corresponding to a claimed coverage of .95. The second number, given in parentheses, is the empirical average absolute
distance from the upper confidence bound to the true mean.
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In general, FGPQs allow us to associate a distribution with
a parameter θ akin to a fiducial distribution for θ . For ex-
ample, when considering an upper confidence bound for a
scalar parameter θ based on Rθ , we find C(s,1 − α) such that
P(Rθ (s,S

�, ξ) < C(s,1 − α)) = 1 − α, and the 100(1 − α)%
one-sided generalized upper confidence bound is taken to be
C(s,1 − α). This coincides exactly with the fiducial upper con-
fidence bound provided that we construct the Rθ (s,S

�, ξ) in
such a way that its distribution is the same as the fiducial dis-
tribution of θ . Our general construction for FGPQs shows that
this is always possible. For this reason, we have singled out this
subclass of GPQs and called them fiducial GPQs (FGPQs).

It is important to realize the strong connection that exists be-
tween GCIs and fiducial intervals, if for no other reason than
to avoid reinventing interval procedures under a different name.
For instance, some of the GCIs derived in the recent literature
had already been derived using the fiducial argument during the
1950s and 1960s, or even earlier. In fact, the GCI for the differ-
ence between two normal means in the Behrens–Fisher problem
turned out to coincide with the fiducial interval, as observed by
Weerahandi (1991) himself. This comes as no surprise when
the connection between GCIs and fiducial intervals is acknowl-
edged. Likewise, Bross (1950) derived approximate percentiles
for the fiducial distribution of σ 2

α in the one-way random model
(Example 2), and later Healy (1963) derived exact expressions
for these percentiles. The resulting fiducial intervals coincide
with the GCIs for σ 2

A proposed by Weerahandi (1993), which
again comes as no surprise.

Methods for constructing FGPQs discussed in Theorems
2 and 4 were motivated by discussions in the literature pertain-
ing to development of fiducial distributions for parameters (see,
e.g., Fisher 1935, 1939, 1970; Fraser 1961, 1966; Dawid and
Stone 1982). In particular, Dawid and Stone (1982) provided
a thorough investigation of the frequentist properties of fidu-
cial intervals. Both Fraser (1961, 1966) and Dawid and Stone
(1982) developed structural/fiducial distributions for parame-
ters by conditioning on ancillary statistics when the dimension
of the sufficient statistic exceeded the number of parameters.
Their work implies that once a choice was made for the equa-
tions defining the manifold M(s) and an invertible pivotal rela-
tionship chosen (when one is available), a fiducial distribution
for ξ , given a realized value s of S, may be defined as the con-
ditional distribution of g0(s,E) given that B(s,E) = 0. As was
the case for the construction of a FGPQ in Theorem 4, the fidu-
cial distribution of ξ can, and often will, depend on the choice
of the defining equations B(s,E) = 0 for M(s).

It is not too difficult to see that once the invertible pivotal re-
lationship (9) and the defining equations B(s,E) = 0 for M(s)
have been selected, there is a one-to-one correspondence be-
tween a FGPQ constructed according to Theorem 4 and the
fiducial distribution obtained from the chosen invertible rela-
tionship by conditioning on B(s,E). In particular, the distribu-
tion of g(S,G(E|0)) in Theorem 4 is the same as the fiducial
distribution of ξ obtained by conditioning on B(s,E) using (9).
Thus GCIs obtained using Theorem 4 may also be obtained us-
ing the fiducial argument.

Throughout its long history, fiducial inference has been crit-
icized on many grounds, one of which is the nonuniqueness of
fiducial intervals in most problems. This nonuniqueness may

arise from the particular invertible pivotal representation cho-
sen or from the particular choice of an ancillary statistic or both.
In this article we have demonstrated that the same nonunique-
ness issues also arise for GCIs. What is noteworthy is that our
main result regarding the asymptotic behavior of GCIs applies
to any one of the several possible generalized pivots as long as
the conditions of the theorem hold. We have given some exam-
ples that demonstrate this point.

We have also given an example where the conditions of the
theorem do not hold. The parameter of interest in that ex-
ample is the sum of squares of the means of several normal
populations—an example previously considered by Wilkinson
(1977) and Stein (1959) to demonstrate the failure of fiducial
inference in certain problems. However, for this example, we
propose an alternate construction of a GCI that has the correct
asymptotic coverage.

Finally, although we have not elaborated on this, it is well
known that many of the standard frequentist intervals, as well
as fiducial intervals and GCIs, can be derived within a Bayesian
framework with the appropriate choice of priors. This is not
surprising, given the well-known complete-class results for
Bayesian rules of inference. In such cases, asymptotic fre-
quentist properties of Bayesian procedures may be invoked to
demonstrate the asymptotic frequentist properties of GCIs and
fiducial intervals. In specific instances, the challenge is to show
that an appropriate prior exists that will lead to a particular GCI
being considered. In some cases this is not even true. Grundy
(1956) presented a class of one-parameter family of distribu-
tions for which the fiducial distribution of the parameter is not
obtainable as the posterior distribution, no matter what prior is
chosen. Hence there is some merit to demonstrating asymptotic
frequentist properties of GCIs without relying on its Bayesian
connections. It is noteworthy that Grundy’s example satisfies
the conditions of Theorem 1. This is no surprise, because it is
exact by Theorem 5.

7. CONCLUDING REMARKS

In this article we have established an important result con-
cerning GCIs introduced by Weerahandi (1993). Specifically,
we have shown that under fairly mild conditions, GCIs have
correct asymptotic frequentist coverage. To our knowledge, this
is the first general result concerning the asymptotic behavior
of GCIs. This result in turn implies corresponding asymptotic
frequentist coverage properties for fiducial intervals by virtue
of their connection with GCIs. This also appears to be the first
result of this kind for fiducial intervals, which were originally
proposed by Fisher (1935) and subsequently refined by Fraser
(1966), who called them “structural intervals.”

We have also provided general methods for construct-
ing GPQs. The pivotal quantities derived by our constructions
have certain additional useful properties; for instance, they au-
tomatically lead to generalized test variables and generalized
tests. In addition, the distribution of the generalized pivot con-
structed by our recipes can be made to coincide with any fidu-
cial distribution for the parameter in question. We feel that
GPQs that have this property are appropriately termed FGPQs.

Although much of this article discusses the scalar parameter
case, with a few appropriate additional assumptions, our the-
orem concerning the asymptotic behavior of generalized piv-
ots extends to the vector case; see Appendix B. Although this
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article does not discuss tests in detail, it is worth emphasiz-
ing that Theorem 1 can be used in most common applications
to verify that generalized tests for scalar parameters (Tsui and
Weerahandi 1989) will have asymptotically correct type I error
rates. Multivariate versions appear to be straightforward exten-
sions of our work. A key issue that remains unresolved is the
determination of a set of sufficient conditions under which the
FGPQs obtained by the general construction will lead to confi-
dence intervals with correct asymptotic coverage.

Finally, there is substantial overlap between the two concepts
of fiducial inference and generalized inference. Nonuniqueness
issues aside, for large classes of problems, both concepts allow
development of inference procedures that have asymptotically
correct frequentist behavior and small-sample performance that
is often adequate for applications. FGPQs provide a framework
for associating a distribution with a parameter in a general para-
metric setup.

APPENDIX A: PROOFS

Proof of Theorem 1

Define

H(s) =
k∑

j=1

g1,j(s, ξ)Nj. (A.1)

Assumptions A.1 and A.2(b) imply that for all s ∈A, H(s) a is nonde-
generate normal random variable. Denote its γ quantile by CH(s, γ ).

We first prove that for all s ∈A,

Cn(s, γ ) = g0,n(s, ξ) + CH(s, γ )√
n

+ o

(
1√
n

)
. (A.2)

Rewriting (2), we get

Pξ

(√
n
(
Rθ (s,S

�, ξ) − g0,n(s, ξ)
) ≤ √

n
(
Cn(s, γ ) − g0,n(s, ξ)

))
= γ + o(1). (A.3)

First, observe that Assumption A.2(c) implies that for all s ∈A,

√
nRn(s,S

�, ξ)
Pξ→ 0 (A.4)

Next, observe that Slutsky’s theorem, Assumption A.1, (1), (A.1),
and (A.4) imply that

√
n
(
Rθ (s,S

�, ξ) − g0,n(s, ξ)
) D→ H(s). (A.5)

By definition, Pξ (H(s) ≤ CH(s, γ )) = γ . Therefore, by (A.3)
and (A.5),

√
n
(
Cn(s, γ ) − g0,n(s, ξ)

) → CH(s, γ ), (A.6)

and (A.2) follows. Moreover, the continuity of the functions g1,j im-
plies that CH(s, γ ) is continuous at s = t(ξ).

Now we can finish the proof. Combining (1), (A.2), (A.3), and (A.6),
we have, for all ε > 0 small enough to guarantee {s|‖s − t(ξ)‖ <

ε} ⊂A,

Pξ

(
‖S − t(ξ)‖ < ε,

k∑
j=1

g1,j,n(S, ξ)
√

n
(
Sj − tj(ξ)

) + √
nRn(S,S, ξ)

≤ CH(S, γ ) + o(1)

)

≤ Pξ

(
Rθ (S,S, ξ) ≤ Cn(S, γ )

)

≤ Pξ

(
‖S − t(ξ)‖ < ε,

k∑
j=1

g1,j,n(S, ξ)
√

n
(
Sj − tj(ξ)

) + √
nRn(S,S, ξ)

≤ CH(S, γ ) + o(1)

)

+ Pξ

(‖S − t(ξ)‖ ≥ ε
)
.

Notice that Assumption A.2(c) also implies that
√

nRn(S,S, ξ)
Pξ→ 0,

and, by Slutsky’s theorem, we get

k∑
j=1

g1,j,n(S, ξ)
√

n
(
Sj − tj(ξ)

) D→ H(t(ξ)).

Thus, by the definition of convergence in distribution and probability,
we observe, after some algebra, that Pξ (Rθ (S,S, ξ) ≤ Cn(S, γ )) →
Pξ (H(t(ξ)) ≤ CH(t(ξ), γ )) = γ . This concludes the proof.

Proof of Proposition 2

Again, we need to verify the conditions of Theorem 1 for each fixed
value of µ,σ 2

1 , . . . , σ 2
k . First, set n = ∑k

l=1 nl. It is well known that in
this case,

√
n
(
X̄�

1 − µ, . . . , X̄�
k − µ,S�2

1 − σ 2
1 , . . . ,S�2

k − σ 2
k
) D→ (N1, . . . ,N2k),

where N1, . . . ,N2k are independent Gaussian random variables. The
generalized pivot may be written as

Rµ(S,S
�,µ,σ 2

1 , . . . , σ 2
k )

=
∑k

j=1 njX̄j/S2
j∑k

i=1 ni/S2
i

−
k∑

j=1

(nj/S2
j )(X̄�

j − µ)∑k
i=1 ni/S2

i

+
k∑

j=1

(nj/S2
j )

∑
l �=j nl(X̄j − X̄l)/S2

l

(
∑k

i=1 ni/S2
i )2σ 2

j

(
S�2

j − σ 2
j
) + Rn.

Assumption A requires that various conditions hold on an open
neighborhood A of the true parameter (µ1, . . . ,µk, σ

2
1 , . . . , σ 2

k ). To
define this neighborhood, consider 0 < m < M such that |µ| < M
and m < σ 2

j < M for all j, and define A = {(X̄1, . . . , X̄k,S2
1, . . . ,S2

k)|
|X̄j| < M,m < S2

j < M, j = 1, . . . , k}.
The exact calculations are standard, though tedious. To demonstrate

the types of arguments required, we first show that

nj/S2
j∑k

i=1 ni/S2
i

=
nj/(S2

j
∑k

l=1 nl)∑k
i=1 ni/(S2

i
∑k

l=1 nl)
→

cj/S2
j∑k

i=1 ci/S2
i

(A.7)

uniformly. Toward that end, observe that
∣∣∣∣∣

k∑
i=1

(
ni

S2
i
∑k

l=1 nl
− ci

S2
i

)∣∣∣∣∣ ≤ 1

m

k∑
i=1

∣∣∣∣∣
ni∑k

l=1 nl
− ci

∣∣∣∣∣ → 0,

because both the numerator and the denominator converge uniformly
for (X̄1, . . . , X̄k,S2

1, . . . ,S2
k) ∈ A. Also on A, the limit of the denomi-

nator is uniformly bounded away from 0, and the limit of the numerator
is uniformly bounded away from 0, the uniform convergence in (A.7)
follows by standard arguments. Note also that in (A.7), the quantity in
the limit is nonzero.
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Similar, but somewhat more complicated calculations show that

(nj/S2
j )

∑
l �=j nl(X̄j − X̄l)/S2

l

(
∑k

i=1 ni/S2
i )2σ 2

j

→
(cj/S2

j )
∑

l �=j cl(X̄j − X̄l)/S2
l

(
∑k

i=1 ci/S2
i )2σ 2

j

uniformly on A. So g1,j satisfy conditions 2(a) and 2(b) of Assump-
tion A. Finally, routine, though tedious, calculations show that the sec-
ond partial derivatives of Rµ(S,S

�,µ,σ 2
1 , . . . , σ 2

k ) are bounded on
the neighborhood A. The statement then follows from Theorem 1.

Proof of Proposition 3

Assume that ni/n → ci ∈ (0,1), where n = ∑
ni. We have

√
n(Sn −

m)
D→ DZ, where m = (µ, . . . ,µ,σ 2

1 , . . . , σ 2
k ), Z = (Z1, . . . ,Z2k) are

iid N(0,1) variables and D is a diagonal matrix given by

D = diag

(
σ1√
c1

, . . . ,
σk√
ck

,
σ 2

1

√
2√

c1
, . . . ,

σ 2
k

√
2√

ck

)
.

By Skorokhod’s theorem (see Billingsley 1995), we can find a se-
quence S̄n independent of S

∗ such that S̄n has the same distribution
as S and

√
n(S̄n − m) → DZ almost surely.

Close examination of the density in (10) shows that, conditionally
on S̄n,

√
n
(
Rµ(S̄n,S

�, ξ) − µ
) → N

(∑k
j=1 Zj

√
cj/σj∑k

j=1 cj/σ
2
j

,
1∑k

j=1 cj/σ
2
j

)
a.s.

If C(s,n) is chosen so that limn→∞ Pξ (Rµ(s,S
�, ξ) ≤ C(s,

n)) = α, then we can prove in a similar way as in the proof of Theo-
rem 1,

C(S̄n,n) = µ + 1√
n

(∑k
j=1 Zj

√cj/σj∑k
j=1 cj/σ

2
j

+ zα

(
∑k

j=1 cj/σ
2
j )1/2

)

+ o

(
1√
n

)
, (A.8)

where zα is the α quantile of the standard normal distribution. Finally,
because the distribution of S̄ and S are the same, (A.8) implies that

P
(
µ < C(S,n)

) = P
(
µ < C(S̄,n)

)

→ P

(
0 <

∑k
j=1 Zj

√cj/σj∑k
j=1 cj/σ

2
j

+ zα

(
∑k

j=1 cj/σ
2
j )1/2

)

= α.

Therefore, just as in Theorem 1, we can conclude that the confidence
intervals based on the FGPQ will have asymptotically correct cover-
age.

APPENDIX B: MULTIVARIATE VERSION
OF THEOREM 1

In what follows we need the following notation.

Definition B.1. Open sets An converge to an open set A (i.e.,
An → A) if (lim An)◦ = A. Here lim An = B exists if IAn → IB, IA is
the indicator function of A and B◦ is the interior of B.

Let us consider a parametric statistical problem where we observe
X1, . . . ,Xn, whose joint distribution belongs to some family of contin-
uous distributions parameterized by ξ ∈ 	 ⊂ R

p. Let S = (S1, . . . ,Sk)

denote a statistic based on the Xi’s. In theory, we can consider an in-
dependent copy of X�

1, . . . ,X�
n and denote the statistic based on X�

i ’s
by S

�. Finally, suppose that a vector-valued function Rθ (S,S
�, ξ) =

(Rθ,1(S,S
�, ξ), . . . ,Rθ,d(S,S

�, ξ)) is available that is a FGPQ for a
parameter θ = π(ξ) ∈ R

d,d ≤ k.
In addition, assume that the following holds.

Assumption A′.
1. Assume that there exists t(ξ) ∈ R

k such that

√
n
(
S�

1 − t1(ξ), . . . ,S�
k − tk(ξ)

) D→ N = (N1, . . . ,Nk)
�,

where N has a nondegenerate distribution multivariate normal
distribution.

2. Assuming existence and continuity of second partial derivatives
with respect to s� of Rθ,l(s, s�, ξ), we have the following one-
term Taylor expansion with a remainder term:

Rθ,l(s, s�, ξ) = g0,l,n(s, ξ) +
k∑

j=1

g1,l,j,n(s, ξ)
(
s�j − tj(ξ)

)

+ Rl,n(s, s�, ξ). (B.1)

Here

g0,l,n(s, ξ) = Rθ,l
(
s, t(ξ), ξ

)
and

g1,l,j,n(s, ξ) = ∂

∂s�j
Rθ,l(s, s�, ξ)

∣∣∣∣
s�=t(ξ)

.

Suppose that A ⊂ R
k is an open set containing t(ξ) with the fol-

lowing properties:
(a) The functions g1,l,j,n(s, ξ) converge uniformly in s ∈ A to

a function g1,l,j(s, ξ) continuous at s = t(ξ).
(b) The matrix

J(s) =



g1,1,1(s, ξ) · · · g1,1,k(s, ξ)

...
. . .

...

g1,d,1(s, ξ) · · · g1,d,k(s, ξ)




is of rank d for all s ∈ A.
(c) For each l = 1, . . . ,d, the remainder

√
nRl,n(s,S

�,

ξ)
Pξ→ 0 uniformly in s on the open neighborhood A of t(ξ).

3. We consider a collection of open regions, C(X, γ ) ⊂ R
d with

λ(∂C(X, γ )) = 0 (i.e., the boundary has zero Lebesgue mea-
sure), indexed by continuous random variables X and γ ∈ (0,1)

satisfying the following:
(a) P(X ∈ C(X, γ )) = γ .
(b) C(aX + b, γ ) = aC(X, γ ) + b.

(c) If X has nondegenerate normal distribution, Xn
D→ X, and

γn → γ , then C(Xn, γn) → C(X, γ ).

Recall that Rθ (S,S
�, ξ) has a distribution that is independent of the

parameters. This allows us to state the following theorem.

Theorem B.1. Suppose that Assumption A′ holds and that γn →
γ ∈ (0,1). Then

lim
n→∞ Pξ

(
θ =Rθ (S,S, ξ) ∈ Cn

(
Rθ (S,S

�, ξ), γn
)) = γ.

In particular, Cn(Rθ (S,S
�, ξ), γ ) is a confidence region for θ with as-

ymptotic coverage probability equal to γ .

Remark B.1. If d = 1, then an example of C(X, γ ) = (−∞,

q(X, γ )), where q(X, γ ) is the γ -quantile of the distribution of X.
If d > 1, then we can consider many different regions, for example, a
cubical equal-tailed region.

Remark B.2. The various conditions stated in Assumption A′ could
be weakened. For example, we do not have to assume that the limit-
ing random variable H is normal. Assumption A′.3 and the proof of
Theorem B.1 would then have to be modified accordingly.

[Received November 2004. Revised May 2005.]
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