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Abstract

This is a supplementary document for the paper Generalized Fiducial Inference: A

Review and New Results.

A Proof of Theorem 1

Recall the data generating equation (1), and assume that U ∈ Rn is an absolutely continuous

random vector with a joint density fU (u), defined with respect to the Lebesgue measure on

Rn, continuous on its support U . We need the following assumptions.

Assumption A.1. The function G has continuous partial derivatives with respect to all

variables θj , j = 1, . . . , p and ui, i = 1, . . . n.

Assumption A.2. For each y and θ there is at most one u ∈ U so that y = G(u,θ). For the

observed data y there is a θ and u ∈ U so that y = G(u,θ). Additionally, the determinant of

the n× n Jacobian matrix

det

(
d

du
G(u,θ)

)
6= 0

for all θ ∈ Θ and u ∈ U .

Assumption A.3. The n× p Jacobian matrix d
dθG(U ,θ) is of rank p.

For Part (iii) of Theorem 1 we will also need the following assumption.
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Assumption A.4. The entries of the Jacobian matrix d
dθG(u,θ) have continuous partial

derivatives with respect to all variables θj , j = 1, . . . , p and ui, i = 1, . . . n.

The proof of Theorem 1 begins here. We first derive a useful formula for the likelihood

function f(y|θ). Consider the implicit function

y −G(u,θ) = 0. (1)

If for a fixed y and θ there is u solving (1), the implicit function theorem using Assumptions A.1

and A.2 implies that there is a neighborhood of (y,u) on which the function u(y) is uniquely

defined. Moreover the function u(y) is continuously differentiable and simple calculation shows

that on this neighborhood the Jacobian matrix

du(y)

dy
=

(
d

du
G(u,θ)

)−1∣∣∣∣∣
u=G−1(y,θ)

.

Consequently, since by Jacobian transformation theorem

f(y|θ) = fU (G−1(y,θ))

∣∣∣∣det

(
du(y)

dy

)∣∣∣∣ ,
On the other hand, if for a fixed y there is no solution u then f(y|θ) = 0 by definition. In

any case

f(y|θ) =
fU (u)∣∣det
(
d
duG(u,θ)

)∣∣
∣∣∣∣∣
u=G−1(y,θ)

.

Part (i): This is a special case of Part (ii).

Part (ii): For each 1 ≤ i1 < · · · < ip ≤ n define a multi-index i = {i1, . . . , ip} and a

vector yi = (yi1 , . . . , yip). Next define the complement multi-index i{ = {i, i /∈ i} and its

corresponding vector y
i{

. Let us now consider the implicit function u(θ,y
i{

) defined by (1)

with yi held fixed at the observed values.

Fix u = G−1(y,θ). If the determinant of the p× p matrix obtained by keeping only rows

i = (i1, . . . , ip) of the n× p Jacobian matrix

det

(
d

dθ
G(u,θ)

)
i

6= 0, (2)
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then a direct use of implicit function theorem shows that the n× n Jacobian matrix

du(θ,y
i{

)

dθy
i{

=

(
d

du
G(u,θ)

)−1( d
dθ
G(u,θ) ,

dy

dy
i{

)∣∣∣∣∣
u=G−1(y,θ)

,

where the last matrix is obtained by concatenating the columns of the n× p and n× (n− p)

Jacobian matrices on either side of the vertical line. Consequently, the joint density of the

random vector (θ,Y
i{

) evaluated at the observed value y
i{

is

hi(θ,y) = f(y|θ)

∣∣∣∣det

(
d

dθ
G(u,θ)

)
i

∣∣∣∣ .
Hannig (2013) shows that the fiducial density can be computed as proportional to the sum

of the joint densities

r(θ|y) ∝
∑

i=(i1,...,ip)

hi(θ,y),

taken as a function of θ with y fixed at the observed values. There is a caveat that if for some

i (2) is not satisfied, the term corresponding to that i is missing from the sum as it is of a

lower order in the calculation of the fiducial density. Assumption A.3 guarantees that there is

at least one term not missing and the formula is still formally true with zeros substituted for

the missing terms. The statement of Part (ii) follows.

Part (iii) Again, fix the value u = G−1(y,θ). Consider the singular value decomposition

d

dθ
G(u,θ) = A(u,θ)S(u,θ)B(u,θ).

Here A(u,θ) and B(u,θ) are n×n and p×p unitary matrices respectively. S(u,θ) is a matrix

with non-negative singular values on the main diagonal and zeros everywhere else. In fact

Assumption A.3 implies that the singular values are all positive.

Due to Assumption A.4 this equality can be extended to a small neighborhood of (u,θ) so

that the matrix A(u,θ) is unitary entry-wise continuously differentiable on this neighborhood

and S(u,θ) has non-negative entries on diagonal and zeros everywhere else but the entries

might no longer be in a decreasing order.
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Let θ(u) = arg minθ ‖y−G(u,θ)‖2. Fix y at the observed value and define x through an

implicit equation

A>(u,θ(u)){y −G(u,θ(u))} − x = 0 (3)

Notice that it follows from definition of l2 projection that (x1, . . . , xp) = 0. Furthermore if we

set x{ = (xp+1, . . . , xn)> we have ‖y −G(u,θ(u))‖2 = ‖x{‖2.

We now want to find the density of the random vector (θ(u),x{) defined by (3) and

evaluated at x{ = 0. By the implicit function theorem there is a neighborhood of (θ, 0) where

u(θ,x{) is one to one. The n×n Jacobian matrix evaluated at x{ = 0 can be directly computed

after observing that x{ = 0 implies y −G(u,θ(u)) = 0:

du(θ,x{)

dθx{

∣∣∣
x{=0

=

(
d

du
G(u,θ)

)−1
A(u,θ)

(
A>(u,θ)

d

dθ
G(u,θ) ,

dx

dx{

)∣∣∣∣∣
u=G−1(y,θ)

.

Finally denote the first p columns of A(u,θ) by A1(u,θ). Direct calculation shows that

the joint density of (θ(u),x{) evaluated at x{ = 0 is

h2(θ, 0) = f(y|θ)

∣∣∣∣det

(
A>1 (u,θ)(

d

dθ
G(u,θ))

)∣∣∣∣
u=G−1(y,θ)

.

Moreover the properties of singular value decomposition imply that

∣∣∣∣det

(
A>1 (u,θ)(

d

dθ
G(u,θ))

)∣∣∣∣ =

√√√√det

((
d

dθ
G(u,θ)

)>( d
dθ
G(u,θ)

))
.

Finally a straightforward calculation using continuity implies that the limiting GFD in (2)

is r(θ|y) ∝ h2(θ, 0) and the result follows.

Remark A.1. Similar calculation can be done also for the l1 norm. The minimizer θ(u) of

the l1 norm will have some of its p coordinates of the G(u,θ(u)) exactly equal to some p

coordinates of y. Therefore we may formulate an equation similar to (3) with A being a row

permutation of an identity matrix. The final formula will be similar to the l∞ norm with an

additional term depending on KKT conditions indicating if a particular corner of the l1 ball

associated with yi and a particular quadrant is feasible as a minimizer of the l1 norm in (2).
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B Assumptions of Theorem 2

Sonderegger and Hannig (2014) prove their version of the Bernstein-von Mises theorem

using the l∞ version of the Jacobian (4). In particular they have J(y,θ) =
∑
i J0(yi,θ),

where the exact form is given in part (iii) of Theorem 1. We will discuss other Jacobian forms

at the end of this section.

We start by reviewing the standard conditions sufficient to prove asymptotic normality of

the maximum likelihood estimators (Lehmann and Casella, 1998).

Assumption B.1. There are seven parts:

1. The distributions Pθ are distinct.

2. The set {y : f(y|θ) > 0} is independent of the choice of θ.

3. The data Y = {Y1, . . . , Yn} are iid with probability density f(·|θ).

4. There exists an open neighborhood about the true parameter value θ0 such that all

third partial derivatives
(
∂3/∂θi∂θj∂θk

)
f(y|θ) exist in the neighborhood, denoted by

B(θ0, δ).

5. The first and second derivatives of L(θ, y) = log f(y|θ) satisfy

Eθ

[
∂

∂θj
L(θ, y)

]
= 0

and

Ij,k(θ) = Eθ

[
∂

∂θj
L(θ, y) · ∂

∂θk
L(θ, y)

]
= −Eθ

[
∂2

∂θj∂θk
L(θ, y)

]
.

6. The information matrix I(θ) is positive definite for all θ ∈ B(θ0, δ).

7. There exists functions Mjkl(y) such that

sup
θ∈B(θ0,δ)

∣∣∣∣ ∂3

∂θj∂θk∂θl
L(θ, y)

∣∣∣∣ ≤Mj,k,l(y) and Eθ0Mj,k,l(Y ) <∞.

5



Next we state conditions sufficient for the Bayesian posterior distribution to be close to

that of the MLE (van der Vaart, 1998; Ghosh and Ramamoorthi, 2003). The prior π(θ) used

is the limit of Jacobians from Assumption B.4.

Assumption B.2. Let Ln(θ) =
∑
L(θ, Yi).

1. For any δ > 0 there exists ε > 0 such that

Pθ0

{
sup

θ/∈B(θ0,δ)

1

n
(Ln(θ)− Ln(θ0)) ≤ −ε

}
→ 1.

2. π (θ) is positive at θ0.

Finally we state assumptions on the Jacobian function.

Assumption B.3. For any δ > 0

inf
θ/∈B(θ0,δ)

mini=(i1,...,ip) L(θ,Y i)

|Ln(θ)− Ln(θ0)|
Pθ0−→ 0,

where Ln (θ) =
∑n

i=1 log f (xi|θ) and B (θ0, δ) is a neighborhood of diameter δ centered at θ0.

Assumption B.4. There is a normalization cn so that the Jacobian function c−1n J (Y ,θ)
a.s.→

π (θ) as n→∞ uniformly on compacts in θ.

Assumption B.4 can be verified in the one-parameter case using the classical Uniform Strong

Law of Large Numbers (van der Vaart, 1998; Ghosh and Ramamoorthi, 2003).

In the multi-parameter case Jacobian function J(Y ,θ) =
∑
i J0(Y i,θ) is a U -statistic and

the uniform convergence follows from Yeo and Johnson (2001) with cn =
(
n
p

)
. In particular,

Assumption B.4 is implied by Assumption B.5 below.

Assumption B.5. Let j be a multi-index with values in {1, 2, . . . p} and denote a vector yj =

(yi1 , . . . , yik). Next define the complement multi-index j{ = {i, i /∈ j} and its corresponding

vector y
j{

.
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1. There exists a symmetric function g (·) integrable with respect to Pθ0 , and compact space

B̄ (θ0, δ) such that for θ ∈ B̄ (θ0, δ) and y ∈ Rp then |J0 (y;θ)| ≤ g (y).

2. There exists a sequence of measurable sets SpM such that

P
(
Rp − ∪∞M=1S

p
M

)
= 0,

3. For each M and for all j,

Jj
(
yj ;θ

)
= Eθ0

[
J0

(
yj ,Y j{

;θ
)]
.

is equicontinuous in θ ∈ B̄ (θ0, δ) for {yj} ∈ S
j
M where SpM = SjM × S

j{

M .

B.1 Extension to More General Jacobians

Notice that when Y = (Y1, . . . , Yn)> are i.i.d., the l∞ Jacobian satisfies
∫
J0(yi,θ)f(yi|θ)dθ =

1 for all i = (i1 < · · · < ip).

For other version of the Jacobian we need to additionally assume that there are J(y,θ) =∑
i J̃i(y,θ), and a constant C so that

∫
J̃i(y,θ)f(yi|θ)dθ ≤ C for all i = (i1 < · · · < ip′) and

all n big enough.

Finally, we remark that Assumption B.4 becomes relatively easier to verify when considering

the l2 Jacobian from part (ii) of Theorem 1, as one can use the Uniform Law of Large Numbers

instead of uniform convergence of U -statistics.

C Proof of Theorem 3

Proof. Using Skorokhod’s representation theorem we can assume that there is a version of data

so that tn(Y n)→ T almost surely. The theorem is then proved in three steps.

We need to compute

P (θn,0 ∈ Cn(Y n)) = P (ξ0 ∈ Ξn(Y n)) ≥ P (ξ0 ∈ C(T ))− P

(
ξ0 ∈ C(T ) \

∞⋂
k=n

Ξk(Ck(Y k))

)
.
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Since the set C(t) \
⋂∞
k=m Ξn(Cn(Y n)) shrinks monotonically to ∅, ξ0 will be excluded even-

tually almost surely and the last probability in the equation above goes to zero. Analogously

P (θn,0 ∈ Cn(Y n)) ≤ P (ξ0 ∈ C(T )) + P

(
ξ0 ∈

∞⋃
k=n

Ξk(Ck(Y k)) \ C(T )

)
.

By combining these two inequalities we get P (θn,0 ∈ Cn(Y n))→ P (ξ0 ∈ C(T )).

Next, define Vt(ξ) = {v : t = H(v, ξ)}. Notice that Vt(C(t)) = Vt2 defined in the

statement of the Theorem 3. Also by invertibility VT (ξ0) has the same distribution as V in

the limiting data generating equation. Recall that the limiting GFD Rt is the conditional

distribution Qt1(V ?
1) | H2(V

?
2) = t2, where Qt1(v1) = ξ is the solution of t1 = H1(v1, ξ).

Consequently,

P (ξ0 ∈ C(T )) = P (VT (ξ0) ∈ VT 2) = EP ((V 1,V 2) ∈ VT 2 |H2(V 2) = T 2) = E[RT (C(T ))],

where the second equality follows from the fact that conditionally on T 2 = t2 the set Vt2 is a

fixed (non-random) set.

We conclude by showing thatRt(C(t)) = α for almost all T = t. DenoteAm =
⋂∞
m Ξn(Cn(yn))

and Bm =
⋃∞
m Ξn(Cn(yn)). By our assumptions Rt(∂Am) = Rt(∂Bm) = 0 and consequently

we have α ≥ limn→∞Rn,ynΞ−1n (Am) = Rt(Am)→ Rt(C(t)) and α ≤ limn→∞Rn,ynΞ−1n (Bm) =

Rt(Bm)→ Rt(C(t)) by continuity of measure. The statement of the theorem follows.

D Proof of Theorem 4

We will study GFD defined for a finite collection of modelsM. Recall that the data generating

equation is

Y = G(M,θM ,U), M ∈M, θM ∈ ΘM ,

where y is the observations, M is the model considered, θM are the parameters associated

with model M , and U is a random vector of with fully known distribution independent of any

parameters. To derive GFD in this context we will apply definition in (2).
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We start by stating an assumption closely related to identifiability.

Assumption D.1. For any two models M1 6= M2 ∈M,

P

 ⋂
i=1,2

{ min
θMi

,σ2
‖y −G(Mi,θMi ,U)‖ ≤ ε}


= o

(
max
i=1,2

P ( min
θMi

,σ2
‖y −G(Mi,θMi ,U)‖ ≤ ε)

)
, ε→ 0. (4)

A simple calculation applying the inclusion and exclusion formula to (2) gives the following

result.

Lemma D.1. Under Assumption D.1 the marginal fiducial distribution for each M ∈ M is

the limit, as ε→ 0, of the conditional probabilities

r(M |y) = lim
ε→0

P (minθM ,σ2 ‖y −G(M,θM ,U)‖ ≤ ε)
x

∑
M ′∈M

P ( min
θM′ ,σ

2
‖y −G(M ′,θM ′ ,U)‖ ≤ ε).

(5)

We are now ready to prove Theorem 4. In the rest of this section we also suppose the

assumptions of Theorem 1 hold. First notice that the invertibility implies |M | ≤ n, where |M |

is the number of parameters in M . More importantly, as ε→ 0

P

(
min
θM ,σ2

‖y −G(M,θM ,U)‖∞ ≤ ε
)
∼ CM (y)εmin(0,n−|M |),

where CM (y) =
∫
ΘM

fM (y,θM )JM (y,θM ) dθM . Consequently the GFD in (5) assigns positive

probability only to the largest model. To solve this issue we augment for each model the data

generating equation Y = G(M,θM ,U) by

pk = Pk, k = 1, . . . , |M |,

where Pi are i.i.d. continuous random variables with fP (0) = q independent of U , and q is a

constant determined by the penalty. Since these extra generating equations are fully synthetic

we can set the observed value to pi = 0. For the augmented data generating equation we get

P

(
min
θM ,σ2

‖y −G(M,θM ,U)‖∞ ≤ ε, max
i=1,...,|M |

|Pi| ≤ ε
)
∼ CM (y)q|M |εn.
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The statement of Theorem 4 follows.

To conclude we remark that if the original data generating equation satisfied the identifi-

ability assumption, so does the augmented data generating equation. To see this, notice that

if |M1| ≤ |M2| then the left-hand-side of (4) is multiplied by a factor of order ε|M2| while the

terms on the right-hand-side of (4) are multiplied only by a factor of O(ε|M2|).

E Assumptions for Theorem 5

Assumption E.1. This assumption has four parts:

1. Assume that R is partitioned into fixed intervals

(−∞, a1], (a1, a2], . . . , (ak,∞)

denoting a0 = −∞, ak+1 =∞.

The values of Yi are observed only up to the resolution of the grid. In other words, we

do not observe the realized value yi itself, only which of the intervals it falls into; i.e.,

we observe k = (k1, . . . , kn) so that yi ∈ (aki , aki+1] or equivalently y ∈ (ak,ak+1] with

ak = (ak1 , . . . , akn).

2. Assume that k ≥ p. For all j = 0, . . . , k and all θ ∈ Θ we have Pθ (Y ∈ (aj , aj+1)) > 0

and Pθ (Y = aj) = 0.

3. Assume F (y|θ) is continuously differentiable in θ for all y ∈ {a1, . . . , ak}; i.e., all p first

order partial derivatives are continuous.

4. For all j = (j1 < · · · < jp) ⊂ {1, . . . , k} and u1 < · · · < up there is a unique solution θ of

(F (aj1 |θ), . . . , F (ajp |θ)) = (u1, . . . , up), and the Jacobian

det

(
d(F (aj1 |θ), . . . , F (ajp |θ))

dθ

)
6= 0.
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