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Abstract
The use of likelihood ratios for quantifying the strength 
of forensic evidence in criminal cases is gaining wide-
spread acceptance in many forensic disciplines. 
Although some forensic scientists feel that subjective 
likelihood ratios are a reasonable way of expressing 
expert opinion regarding strength of evidence in crimi-
nal trials, legal requirements of reliability of expert evi-
dence in the United Kingdom, United States and some 
other countries have encouraged researchers to develop 
likelihood ratio systems based on statistical modelling 
using relevant empirical data. Many such systems ex-
hibit exceptional power to discriminate between the 
scenario presented by the prosecution and an alter-
nate scenario implying the innocence of the defendant. 
However, such systems are not necessarily well cali-
brated. Consequently, verbal explanations to triers of 
fact, by forensic experts, of the meaning of the offered 
likelihood ratio may be misleading. In this article, we 
put forth a statistical approach for testing the calibration 
discrepancy of likelihood ratio systems using ground 
truth known empirical data. We provide point estimates 
as well as confidence intervals for the calibration dis-
crepancy. Several examples, previously discussed in 
the literature, are used to illustrate our method. Results 
from a limited simulation study concerning the perfor-
mance of the proposed approach are also provided.
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1  |   INTRODUCTION

The forensic science community is increasingly moving towards providing expert forensic opin-
ion in the form of a numerical summary called a likelihood ratio (LR). This view is supported 
by many recognized advisory bodies in the United Kingdom and in Europe. See, for instance, 
Aitken et al. (2010) and Willis et al. (2015). In the United States, rules concerning admissibil-
ity of expert evidence in legal proceedings are discussed in the US Federal Rules of Evidence, 
Rule 702 (https://www.law.cornell.edu/rules/fre/rule_702, accessed on 06/08/2021) which was 
most recently amended in the year 2000 in response to Daubert v. Merrell Dow Pharmaceuticals, 
Inc., 509 U.S. 579 (1993) thus establishing the Daubert standard. Similar admissibility criteria 
have been adopted in England and Wales. See, in particular, section 19.4 (f), (g), and (h) in the 
Criminal Procedure Rules 2020, UK Statutory Instruments 2020 No. 759 (L. 19) (https://www.leg-
islation.gov.uk/uksi/2020/759/article/19.4, accessed on 06/08/2021). These criteria focus on the 
reliability of the expert testimony, especially opinion testimony, and interpret reliability to mean 
‘trustworthy’, see the Law Commission Report (2011), page 7, para 1.27 (https://assets.publish-
ing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/229043/0829. 
pdf, accessed on 06/08/2021).

Recognizing that LRs are personal (Biedermann, 2013; Franck & Gramacy, 2020; Kadane, 
2020; Lindley, 2013), they are to be regarded as opinion testimony given in numerical form. In 
particular, it is typical for an expert providing an opinion using LR to explain an LR value of x as 
‘the findings are x times more likely under the prosecution proposition than under the defence 
proposition’. However, triers of fact need to be provided whatever information is available that 
can be used by them to judge the reliability of such assessments.

Lindley (1977) considered the problem of deciding whether trace materials such as glass frag-
ments or paint chips, recovered from a crime scene, have come from a known source. He first 
addressed this problem in the case where measurements made on the trace material are univari-
ate. More specifically, suppose X and Y denote the measurements from the crime scene material 
and from a known source respectively. Suppose Hp is the proposition that X comes from the same 
source that produced Y and Hd denotes the complement of Hp. Noting that the posterior odds on 
Hp, after examining the information provided by X and Y, are obtained by multiplying the prior 
odds on Hp by the factor

Good (1950) referred to this factor as a ratio of likelihoods as did Lindley (1977). The notation 
P[X, Y|A] stands for the probability of observing X and Y given that the proposition A is true. 
The quantity in Equation (1) is in fact a Bayes Factor since it is the ratio of the posterior odds for 
Hp to the prior odds for Hp (Kass & Raftery, 1995). In forensic circles this factor is often referred 
to as a likelihood ratio (LR) and we will use that terminology here. The logarithm of LR (to the 
base 10 or to any other base) is interpreted as the weight of evidence in support of Hp provided 
by X and Y.

(1)
P[X ,Y |Hp]

P[X ,Y |Hd]

K E Y W O R D S

Bayes factor, calibration, forensic statistics, generalized fiducial 
inference, likelihood ratio
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Although the notion that LR should be used as the value of evidence appears in Good (1950), 
it seems that much of the recent literature on the development of quantitative methods for fo-
rensic evidence assessment has been inspired by Lindley (1977). In particular, considerable work 
has been done on the assessment of evidential value of DNA samples from crime scenes using 
LRs. Aided by the scientific advances in our understanding of human genetics and in our mea-
surement capabilities of even very minute quantities of DNA, many crime laboratories currently 
report the strength of DNA evidence using LRs.

Another forensic discipline where LR inspired methods have been proposed is that of finger-
print comparisons. Neumann et al. (2012) developed a likelihood ratio model using the minutiae 
configurations on fingermarks. They conducted studies to evaluate the discriminating power of 
their LR model.

Zadora et al. (2013) describe various statistical models for calculation of likelihood ratios in 
situations where the evidence consists of univariate or multivariate measurements. The disci-
plines where their models are found to be useful include paint comparisons, ink comparisons, 
glass fragment comparisons and comparisons of other trace material. LR models are also used in 
forensic speaker identification and identification of illegal chemicals, for example, drugs.

Table 1 provides selected references from each discipline to emphasize the diversity of the 
discipline areas where the LR framework is being used or is being advocated for adoption. In 
some cases the quantitative methods advocated are not LRs in any sense but scores that have good 
power to discriminate between Hp-true scenarios and Hd-true scenarios.

In some disciplines LR assessment is made using algorithms and software. We refer to these as 
LR systems. In other disciplines the LR assessments are sometimes made using subjective proba-
bilities. See, for instance, the discussion on page 16, Willis et al. (2015). In principle, our proposed 
methodology is applicable equally well to either situation. However, ground truth known vali-
dation data are hard to come by in the case of subjectively assessed probabilities and likelihood 
ratios. As a result, the reliability of such evidential value assessments is difficult to judge empir-
ically. The methodology presented here can be readily applied to LR systems such as those used 
in probabilistic genotyping for DNA mixtures, forensic speaker recognition and other disciplines 
where LR systems are being developed.

T A B L E  1   Selected references discussing the use of LR, or systems inspired by LR theory, in various forensic 
disciplines

DNA Single Source & 
Mixtures

Evett and Weir (1998), Butler (2014), Buckleton et al. (2021), Nic Daéid et al. 
(2017)

Fingerprints Neumann et al. (2012), Swofford et al. (2018), Leegwater et al. (2017), Morrison 
and Stoel (2014)

Footwear Park (2018), Park and Carriquiry (2020), Venkatasubramanian et al. (2021a,b)

Glass fragments Lindley (1977), Park (2018), Park and Tyner (2019), Curran et al. (1997a,b), 
Curran et al. (1999), Zadora et al. (2013)

Fiber Evett et al. (1987), Morgan (2014), Causin et al. (2004)

Drugs Bolck et al. (2015)

Speaker recognition Ramos (2007), Enzinger (2016), Morrison et al. (2020)

Handwriting & 
Authorship

Chen et al. (2018), Bozza et al. (2008), Saunders et al. (2010), Martire et al. 
(2018)

Firearms & Toolmarks Bunch and Wevers (2013), Song et al. (2018), Kerkhoff et al. (2013), Dong et al. 
(2019)
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One encounters two kinds of LR assessments in the literature—feature-based LRs and score-
based LRs. Several authors have pointed out the deficiencies of score-based LRs and have ques-
tioned their suitability for use in forensic settings (Bolck et al., 2015; Neumann, 2020; Neumann 
& Ausdemore, 2020; Neumann et al., 2020). In any case, our procedure applies equally well for 
exploring the reliability of either approach.

2  |   LITERATURE REVIEW

Many previous authors have contributed to the topic of calibrated probabilities and calibrated 
likelihood ratios. A key publication discussing the accuracy of probability assessments is by 
DeGroot and Fienberg (1983) where the authors consider the empirical evaluation of prob-
ability assessments using the context of weather forecasters for illustrative purposes. They 
showed that the overall inaccuracy of probability assessments can be decomposed into a com-
ponent due to lack of calibration and a component due to lack of refinement or discrimination 
ability.

Morrison (2013) discussed the use of logistic regression to calibrate uncalibrated LRs. Morrison 
and Poh (2018) proposed the use of shrunk LRs and Bayes factors as a way of avoiding overstate-
ment of strength of evidence. Vergeer et al. (2016) noted that LR values outputted by many LR 
systems are based on extrapolation and discussed a strategy for applying a cap on the reported 
LR values.

Diagnostic checks of calibration accuracy of LRs produced by algorithmic LR systems have 
been around for a long time. For instance, it follows from the definition of a likelihood ratio 
that the expected value (when it exists) of likelihood ratios corresponding to Hd-true instances 
must be one. This fact has led to an empirical diagnostic procedure of checking the sample av-
erage of LR values known to correspond to Hd true scenarios. However, this is only a necessary 
condition but not sufficient and therefore can be misleading in the sense that failure to detect 
lack of calibration using this diagnostic does not imply actual lack of calibration. Vergeer et al. 
(2021) discuss a number of metrics that have been previously considered as diagnostic checks 
of the calibration accuracy of LR systems. In addition, they introduce a new metric, called 
devPAV, to assess calibration accuracy and compare their metric with other metrics in the 
literature with respect to their ability to differentiate between well-calibrated systems and ill-
calibrated systems.

Measures of overall calibration accuracy of LRs were introduced in Brümmer and Du Preez 
(2006) and further investigated in Ramos and Gonzalez-Rodriguez (2013) and Ramos et  al. 
(2018). However, as an anonymous referee has pointed out, these authors did not consider the 
effect of sampling variability in the proposed metrics, thereby leaving the question open as to 
whether the observed deviations from being well calibrated are real or simply a consequence of 
sampling variability based on the particular sample chosen for training models or for checking 
the calibration status of the system.

Morrison et al. (2021) discuss, in the context of forensic voice comparison, but relevant to 
other forensic disciplines as well, the empirical validation of LR systems. They emphasize the 
need for using LR systems that are well calibrated. In Appendix C.2 of their paper they explain 
what is expected from a well-calibrated LR system in terms of the metric Cllr (Brümmer and Du 
Preez, 2006) and also in terms of what a Tippett plot (Meuwly, 2001) should look like. However, 
these requirements are only necessary but not sufficient for a system to be well calibrated. In 
fact, they say ‘For well-calibrated systems, Cllr values lie in the range 0 to approximately 1’. They 



      |  5HANNIG and IYER

then also say ‘A Cllr value less than 1 does not necessarily imply that the system is well calibrated; 
miscalibration may be apparent in the Tippett plot’.

A careful review of the literature reveals that there is a need for statistical methodology that 
can provide a clear answer to the question:

•	 When an LR system produces an LR value equal to x, to what extent might this value be an over-
statement or an understatement of the value of evidence in light of the available empirical valida-
tion data? That is, to what extent can the validation data support the LR produced by the system?

In this paper we provide such a methodology and demonstrate, using published examples, 
how our method can be used to answer the above question and contrast it with what information 
is obtainable from previously proposed metrics.

3  |   GENERAL PROBLEM STATEMENT IN THE CONTEXT 
OF SOURCE IDENTIFICATION

A pair of mutually exclusive and exhaustive propositions (hypotheses) are considered. One 
proposition, denoted Hp (prosecution proposition) states that the person or object of interest 
is the source (or, in some cases, one of the sources) of the crime scene evidential material. The 
other proposition, denoted Hd (defence proposition or alternative proposition) states that the 
person or object of interest is not the source of the crime scene evidential material (but another 
person or another object is). It is envisioned that the trier of fact (TOF) will assess the odds

where E denotes forensic expert's findings and I denotes background information available prior to 
introduction of E (case context and other evidence introduced in court prior to the particular evi-
dence E under discussion). Bayes Rule says

that is, posterior odds is the product of LR =
P[E |Hp, I]
P[E |Hd, I]

 and prior odds. Since prior odds are not 

within the purview of a forensic expert it has come to be accepted that a forensic expert makes, often 
with the assistance of empirically derived statistical models, an assessment of LR and includes it in 
the casework report.

LR assessments by different forensic experts can be, and often are, quite different. This can be 
due to a variety of reasons. Some of these are listed below.

1.	 What features have been extracted from the evidential material? Different LR sys-
tems may be based on different feature sets. For instance, some LR software for analysing 
DNA evidence make use of only peak locations from the electropherograms whereas 
others make use of peak locations as well as peak heights.

2.	 Differences in model choice: Even when statistical models are developed for the same set 
of features, different LR systems may use different statistical models.

P[Hp |E, I]
P[Hd |E, I]

P[Hp |E, I]
P[Hd |E, I]

=
P[E |Hp, I]

P[E |Hd, I]
×
P[Hp |I]
P[Hd |I]
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3.	 Data used during model development: Even when the same set of features and the same 
model families are used, the models implemented in different LR systems may have been 
trained using different sets of data that differ with respect to size and how representative they 
are of any particular application scenario.

The user is then left with the task not only of assessing the adequacy of any candidate model 
being considered for casework use but also of comparing competing models. For a discussion of 
these and other related issues the reader is referred to Lund and Iyer (2017), Gelman and Hennig 
(2017), and Young (2018).

It is well known that the overall performance of an LR system is a function of two compo-
nents: (1) the ability of the system to discriminate between Hp-true scenarios and Hd-true scenar-
ios, and (2) how well calibrated the system is. See, for instance, Brümmer and Du Preez (2006), 
Zadora et al. (2013), and Ramos et al. (2018). Discrimination power of any system, LR or other-
wise, is described conveniently by the receiver operating characteristic (ROC) for that system and 
the associated area under the ROC plot (AUC). In this paper we focus on the question of whether 
or not the LR offered by the expert is calibrated. The expert is saying that E is LR times more likely 
under Hp than under Hd. The expert's assessment is often aided by empirical data but subjective 
assessments of likelihood ratios are also acceptable to many forensic experts and forensic insti-
tutes (Aitken et al., 2010; Willis et al., 2015). In either case, how can one assess, using empirical 
validation data, the reliability of the process applied by the expert to make his/her assessment of 
the value of evidence?

3.1  |  Calibration property of LR systems

We first remind the reader what is meant by the question ‘is the LR system well calibrated?
Let z be equal to 1 if Hp is true and equal to 0 if Hd is true. Suppose the TOF's value for prior 

odds for Hp is θ, that is, the TOF's prior probability that Hp is true is θ/(1 + θ). Suppose the expert 
is using the pdf η to model his/her uncertainties regarding a random variable X (evidence) con-
ditional on z = 1 and the pdf ψ to model uncertainties conditional on z = 0. Having observed a 
realization x of X, and in the absence of information regarding z, an expert is providing the TOF 
his/her likelihood ratio r(x). So

Suppose the TOF uses the expert's LR as the TOF's LR to calculate the posterior probability 
π = P[z = 1|r(X) = r] as

This posterior probability is calibrated, according to the TOF, if and only if the TOF's probability for 
the event z = 1, conditional on r(X) = r, equals π.

Suppose the TOF's uncertainties about r(X) are characterized by g(r) when given z = 1 and f(r) 
when given z = 0. Then the TOF's probability that z = 1 given r(X) = r is equal to

r(x) =
�(x)

�(x)
.

� =
r(x)�

r(x)� + 1
.
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It is easy to see that this is equal to π if and only if g(r)
f (r)

= r. That is, r is calibrated according to the 

TOF if and only if the TOF's LR for r (the expert's LR) is equal to r. We state this in the following 
lemma.

Lemma 1  The expert's LR is calibrated with respect to the TOF's probabilities if and only if the 
TOF's LR of the expert's LR is equal to the expert's LR. That is,

For the record, we also state the following lemma whose proof follows from considering any 
strictly proper scoring rule and calculating its expectation under the TOF's probabilities for X.

Lemma 2  The TOF's posterior probabilities calculated using his/her prior and his/her LR for Hp 
versus Hd (using x) will match the posterior probabilities calculated by the TOF using his/her 
prior and the expert's LR, in every instance, if and only if the TOF's LR and the expert's LR 
agree for every outcome x of X. If not, the TOF's use of the expert's LR is suboptimal from the 
perspective of the TOF.

When algorithms output LR values and we do not get to see the underlying x values (x 
could be any vector of features), the only other information we can obtain are LR values from 
the algorithm under conditions with z = 1 and LR values under conditions with z = 0. In such 
a situation, the TOF does not have a way of comparing his/her LR with the LR from the algo-
rithm. However, the TOF can specify g and f discussed above (derived from empirical data, or 
in any other manner) and hence investigate whether or not Equation (2) holds.

An alternative, frequentist, interpretation of Lemma 1 is as follows. Let us assume that there 
are two streams producing LR values, the stream associated with z = 1 generates values according 
to g(r), while the stream associated with z = 0 generates values according to f(r). The TOF is pre-
sented with LR values randomly selected from one of the streams with odds θ, that is, a fraction 
θ/(θ + 1) of the LRs in front of the TOF are from the source z = 1. If the TOF restricts his/her at-
tention to only LRs equal to r, then the posterior odds for LRs coming from source z = 1 becomes 
rθ if and only if Equation (2) is satisfied. Again, the TOF can investigate whether or not Equation 
(2) holds using empirical data.

3.2  |  Empirical assessment of LR calibration accuracy

Suppose we are interested in the calibration accuracy of a particular LR system. Assume that we 
have likelihood ratios computed using this system, for a collection of samples representative of 
case work for which we know ground truth. That is, some of the likelihood ratios are a result of 
a comparison of a crime sample with a reference sample from a source known to be the same 
source as the one responsible for the crime sample (i.e. Hp true) and other likelihood ratios are 

P[z = 1 |r(X ) = r] =

�

�+1
g(r)

�

�+1
g(r) + 1

�+1
f (r)

=
�g(r)

�g(r) + f (r)
.

(2)
g(r)

f (r)
= r for all r in (0,∞).
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from a comparison of a crime sample with a reference sample from a source known to be differ-
ent from the source responsible for the crime sample (i.e. Hd true). For DNA evidence, a large 
data set of Hp-true samples, that includes single source samples and mixtures of two to five in-
dividuals, is publicly available from the Laboratory for Forensic Technology Development and 
Integration (LFTDI). It is generally referred to as the PROVEDIt data set (Alfonse et al., 2018). 
Efforts are being made to create such publicly available data sets in other forensic disciplines as 
well, see, for example, CSAFE (2017).

Recall that g(t) and f(t) are the densities of likelihood ratios collected under the prosecution 
(z = 1) and defence (z = 0) hypotheses respectively. If the offered likelihood ratios are correctly 
calibrated, Equation (2) should be satisfied.

A commonly used test of the validity of Equation (2) is based on the average value of LR com-
puted under the defence hypothesis (z = 0) (Good, 1950; Taylor et al., 2015):

The last equality follows from the fact that if r < ∞ is in the support of g it has to be in the support of 
f, or else (2) would not hold. The advantage of Equation (3) is that Markov's inequality (Ross, 2014) 
then implies that only a small fraction of LR's arising from Hd-true situations will be large, that is, 
Pf(r(X) ≥ r) ≤ r−1.

In practice, an average of LR values computed for the test data in the Hd-true cases is used to 
estimate Ef(r(X)), and compared to 1 as a diagnostic for LR calibration (Taylor et al., 2015). The 
issue with this approach is that the second moment

is usually very large or even infinite, see Appendix A for an example. This implies that the average 
of tested LR values can change dramatically from sample to sample, depending on whether some 
very large LRs are included. This results in extremely high uncertainty in verifying Equation (3). 
Furthermore, Equation (3) is only a necessary condition for Equation (2) to hold but it is not suffi-
cient. It is therefore a weak diagnostic for checking the calibration of the LR system. For these rea-
sons, a more nuanced approach is needed.

Consider the survival functions Sg(s) = ∫∞s g(t)dt and Sf (s) = ∫∞s f (t)dt. Integration by parts 
shows that the above equation is equivalent to

for any a and b such that 0 < a < b < ∞. Let L(a, b) = Sg(a) − Sg(b), R(a, b) = aSf (a) − bSf (b) + ∫ ba Sf (x)dx , 
and define the interval-specific calibration discrepancy d(a,b)(Sg, Sf), for the interval (a, b) by

(3)
Ef

(
r(X )

)
=∫

∞

0
rf (r)dr=∫

∞

0

g(r)

f (r)
f (r)dr=∫

∞

0
g(r)I{f (r)>0} dr

=1−Pg
(
r(X )=∞

)
.

Ef
(
r(X )2

)
=∫

∞

0
r2f (r)dr=∫

∞

0

(
g(r)

f (r)

)2

f (r)dr

=∫
∞

0

g(r)

f (r)
g(r)I{f (r)>0} dr=Eg

(
r(X )I{r(X )<∞}

)

(4)Sg(a) − Sg(b) = aSf (a) − bSf (b) + ∫
b

a
Sf (x)dx

(5)d(a,b)(Sg , Sf ) = log10(L(a, b)) − log10(R(a, b)),
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with the understanding that if both L(a, b) = R(a, b) = 0 we set d(a,b)(Sg, Sf) = 0. Note that L(a, b) is 
the probability of observing a value of LR in the interval (a, b) in Hp true situations. If the LR system 
is calibrated, this probability should also equal R(a, b). If L(a, b) is smaller than R(a, b) it means that 
the value of evidence is being overstated since the actual number of LRs that fall in the interval (a, b) 
is smaller than what would be expected if g(t) = tf(t) is true. Likewise, if L(a, b) is larger than R(a, b) 
the value of evidence is being understated. The value of d(a,b)(Sg, Sf) quantifies the average degree of 
overstatement or understatement on the interval (a, b) using the logarithmic scale. Negative values 
of d(a,b)(Sg, Sf) imply overstatement of the value of evidence for LR values in the interval (a, b) and 
positive values understate it, for example, d(10,100)(Sg, Sf) = −2 means that, on average, the LR values 
between 10 and 100 have been overstated by 102 in favour of the prosecution hypothesis.

Given any sequence 0 < a1 < ⋯ < ak < ∞, we construct simultaneous confidence inter-
vals for

using method based on generalized fiducial inference (Cui & Hannig, 2019; Hannig et  al., 
2016). If the confidence bounds for a particular interval level discrepancy d(aj−1,aj) excludes 
zero we have evidence that LRs in the interval (aj−1, aj) are not well calibrated, and the bounds 
of the confidence interval quantify how much the LRs in this interval overstate or understate 
the value of evidence, on average, relative to the empirical data.

Details regarding how these intervals are obtained and their theoretical justification are 
provided in Appendix C. In particular, we prove Theorem 1 showing that generalized fiducial 
distribution correctly describes the uncertainty in estimating interval-specific calibration dis-
crepancies. Moreover, the fiducial pointwise and simultaneous confidence intervals for d(Sg, Sf) 
have asymptotically correct coverage and are therefore theoretically justified for examining cali-
bration discrepancy of LRs.

A graphical summary of our quantitative assessment of calibration discrepancy is provided 
in the form of calibration discrepancy plots, for example, Figure 1. On the horizontal axis are the 
reported log-likelihood ratio intervals corresponding to the verbal equivalents as suggested in 
Willis et al. (2015). This default choice of intervals can be changed to accommodate user's needs. 
On the vertical axis we show the calibration discrepancy d(a,b)(Sg, Sf) explained above. The hori-
zontal red line indicates zero discrepancy, that is, perfect calibration. The blue curve is the point 
estimate of the calibration discrepancy obtained as the median of the fiducial distribution. The 
uncertainty in estimating the calibration discrepancy is indicated by the black and cyan lines. 
The black lines are 95% pointwise confidence intervals, and the cyan lines are 95% simultaneous 
confidence bounds. The black lines are useful when a calibration of a single reported LR is being 
assessed, while the cyan lines are relevant for overall assessment of the LR system.

The intervals in the calibration discrepancy plots where the red line is outside the confidence 
bounds correspond to reported likelihood values that are ill calibrated. If the red line is above the 
band, the corresponding reported likelihood ratios are overstated (favouring Hp) by an amount that 
can be read from the calibration discrepancy plot. Similarly, if the red line is below the bounds, 
the corresponding reported likelihood ratios are understated (favouring Hd). For instance, Figure 
1 shows that the reported likelihood ratios in the range of 104 to 105 are overstating the evidence 
by at least a factor of 102. Tight confidence bounds that include zero indicate good calibration, for 
example, the simulation example in Figure 15. A very wide interval that includes zero indicates 
inability to make definitive judgement about calibration of certain ranges of LRs based on the val-
idation data used, for example, reported LRs in the range of 104 to 105 in Figure 9. An interesting 

(6)d(Sg , Sf ) = (d(a1,a2)(Sg , Sf ),…, d(ak−1,ak)(Sg , Sf ))
⊤
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example is in Figure 16 where a lack of calibration is conclusively established, but the magnitude 
of the discrepancy is only about 100.5 ≐ 3 in favour of Hd over the LR ranges available, which many 
users might judge to be of little practical concern.

4  |   EXAMPLES

We consider four examples, three of which are discussed in the book by Zadora et al. (2013). 
The calibration status of the LR systems discussed in these examples has been investigated 
previously and it is well known that some of these systems are poorly calibrated (Zadora et al., 
2013). Our use of these examples is to compare and contrast the type of information available 
from empirical cross-entropy (ECE) plots versus information provided by the proposed calibra-
tion discrepancy plots.

4.1  |  Car paint example

Paint samples were obtained from 36 different cars, see Example 4.4.3.4 in Zadora et al. (2013). 
Each paint sample was divided into three portions and each portion was analysed and their el-
emental compositions were determined. Thus there are three replicate measurements for each 
paint sample of each of eight organic compounds. These compounds are denoted by M2E, MST, 
TOL, BMA, M2P, MMA, I16 and Styrine. Logarithms to the base 10 of the peak areas from py-
rograms of ratios of each of the first seven organic compounds to that of Styrine are used as 

F I G U R E  1   Fiducial calibration discrepancy plot for likelihood ratio system: Car paint data of Example 1
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the response variables (i.e. the procedure has a seven-dimensional response). The reader should 
refer to Zadora et al. (2013) for details.

Zadora et al. (2013) computed same-source likelihood ratios and different-source LRs based 
on the above data in order to assess false-positive and false-negative rates and also for assessing 
the quality of the LRs. They did this using each of the seven response variables individually as 
well as combining them to arrive at a single composite LR by multiplying together the individual 
univariate LRs. We use this composite LR from known same-source comparisons and known 
different-source comparisons to illustrate our method for checking LR calibration discrepancy. 
Zadora et al. (2013) use the empirical cross-entropy approach for assessing LR quality. This is 
also discussed in their book. The data are available from the website supporting the book using 
the following link.

https://media.wiley.com/product_ancillary/06/04709721/DOWNLOAD/BSC_files.zip
This LR system has good discrimination performance with the area under the ROC curve 

equal to 0.982 (see Figure B1 in the appendix). Next, we check how well calibrated this LR system 
is by constructing a generalized fiducial confidence band for d(a,b)(Sg, Sf) for different intervals 
(a, b). The result is shown in Figure 1.

The blue line (step function) represents the pointwise median values of d(a,b)(Sg, Sf) as a func-
tion of the reported log10(LR). The black lines above and below the blue line define the pointwise 
95% fiducial confidence intervals for d(a,b)(Sg,  Sf) as a function of the reported log10(LR). The 
dashed lines in cyan, above and below the blue line, define a 95% simultaneous confidence band 
for d(a,b)(Sg, Sf). The horizontal red line represents perfect calibration, that is, d(a,b)(Sg, Sf) = 0 at 
all reported log10(LR) values.

The median line as well as the confidence bands are described by step functions because we 
chose the following intervals as the intervals of interest.

These intervals are chosen to reflect ‘order of magnitude bins’ and roughly correspond to the 
ENFSI verbal equivalent scale (Willis et  al., 2015). For instance, if the reported LR is 12,000 
(log10(LR) = 4.079), then based on the black lines, the discrepancy is roughly between −3 and −5 
with 95% confidence. That is, the LR is possibly being overstated by a factor whose value is between 
103 and 105, that is, between 1000 and 100,000.

Zadora et al. (2013) (see Chapter 6, section 6.6.2.3) investigate the accuracy of the LR system 
for the car paint example by constructing an ECE plot of the LR values from the validation 
data set (their Figure 6.18). We used the R package comparison (authored by Dr. David Lucy, 
Lancaster University) to recreate that plot which is shown in Figure 2. The figure shows three 
curves. The red curve is the plot of ECE versus log10(Prior Odds), the blue curve is the plot of 
ECE versus LR values adjusted by the PAV algorithm (where PAV stands for pooled adjacent 
violators) that applies a monotonic transformation to the LR values to reduce the calibration 
error. As pointed out by Zadora et al. (2013), the overall accuracy of the LR values is affected by 
discrimination power (investigated using ROC plots) and calibration error. The lack of agree-
ment between the red curve and the blue curve is an indication of severe calibration loss. The 
dotted curve represents a noninformative LR system which always returns a value of 1.

Like the calibration discrepancy plot, the ECE analysis reveals that the car paint LR system 
is poorly calibrated. However, our approach gives a more easy to understand and informative 
answer since it is estimating the degree to which the LR system is overstating or understanding 
the strength of evidence over different LR ranges.

( − 2, − 1), ( − 1, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7).
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4.2  |  Glass fragments example

This example is discussed in the book by Zadora et  al. (2013) (see Chapter 4, section 4.4.6). 
Twelve fragments of glass were obtained from each of 200 glass objects and each fragment was 
subjected to an elemental analysis using scanning electron microscopy electron diffraction (SED-
EDX). Eight elemental concentrations were measured—Na, Mg, Al, Si, K, Ca, Fe and O. Base 
10 logarithms of the ratios of the first seven elemental concentrations to the concentration of 
O (Oxygen) formed the response variables in the analysis. Zadora et al. (2013) used a graphical 
model approach and kernel density estimation for computing the same-source LRs and different-
source LRs. The reader should consult their book for further details. The reader is also referred to 
Chapter 6 of their book for details on using ECE to assess discrimination, calibration, and overall 
accuracy. Here we focus directly on an assessment of how well calibrated this particular LR sys-
tem is. The discrimination potential for this LR system is quite good as described by the ROC plot 
in Figure B2 in the appendix. The area under the empirical ROC curve is 0.958. The distribution 
of log10(LR) values for mated and nonmated cases is shown in the form of violin plots in Figure 
3. Although the distributions are well separated for the most part, we can see that there are some 
very large log10(LR) values for the nonmated cases.

Next we check how well calibrated this system is by examining the fiducial confidence band 
for calibration discrepancy using Figure 4. It appears that the system is understating the evidence 
for log10(LR) values less than 1 (LR values less than 10) whereas it appears to be overstating the 
evidence for log10(LR) values between 1 and 2 (LR between 10 and 100) and between 2 and 3 (LR 
between 100 and 1000). The confidence band ends after log10(LR) equal to 3 because we do not 
have enough data to compute estimates beyond this point without making assumptions about 

F I G U R E  2   Empirical cross-entropy plot for likelihood ratio: Car paint data of Example 1. See also figure 6.18 
in Zadora et al. (2013)
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the tail behaviour of the mated and nonmated log10(LR) distributions. In particular, there are not 
enough data to make any useful statements regarding how well calibrated the system is for values 
of log10(LR) greater than 3.

An ECE plot for the glass LR system validation set is shown in Figure 5. This plot is constructed 
using the R package comparison. The calibration error in this example is not as pronounced 
as in the paint example as the red curve and the blue curve are closer to each other here than in 
the previous example. However, the ECE plot does not provide information regarding regions of 
LR values where evidence is overstated and regions where evidence is understated. The fiducial 
calibration discrepancy plot is able to provide such information.

4.3  |  Comparison of inks

This example is from Chapter 4 (section 4.4.1) of Zadora et al. (2013) where they report results of 
experiments conducted to compare 40 different inks using microspectrophotometry with diode 
detector (MSP-DAD for short). The reader is referred to their book for details. The measured data 
are three chromaticity coordinates, denoted by x, y, z, that sum to one. Ten measurements were 
made for each ink. The authors use these data to illustrate the development of LR models for 
strength of evidence assessments relative to the following competing propositions.

F I G U R E  3   Violin plots for mated and nonmated log10(LR) values for glass data
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F I G U R E  4   Fiducial calibration discrepancy plot for likelihood ratio system: Glass data of Example 2

F I G U R E  5   Empirical cross-entropy plot for glass data graphical model likelihood ratio system. See Zadora 
et al. (2013) Chapter 4, section 4.4.6 for details
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1.	 Hp: The two written notes being compared used the same ink, versus
2.	 Hd: The two written notes being compared used different inks

The authors carried out 40 same-source comparisons and 780 different-source comparisons and 
obtained the corresponding LR values. The area under the empirical ROC curve (see Figure B3 in 
the appendix) for these data is 0.94 which indicates good discrimination power.

Figure 6 shows the fiducial calibration discrepancy plot. The LR system for ink comparisons 
seems to be much better calibrated than the LR systems in the previous examples. The zero dis-
crepancy line (red) is either within the confidence bands or just misses the confidence band over 
the range of log10(LR) values shown in the plot.

Figure 7 shows the ECE plot for the Ink LR system validation set. This plot confirms our 
findings using the fiducial calibration discrepancy plot. Although the effect of sampling variabil-
ity is not shown in the ECE plots, the closeness of the red curve to the blue curve suggests that 
the point estimate of the calibration error is much smaller in this example than in the previous 
examples.

4.4  |  Fingerprint LR system

We now consider data from the larger of the two empirical studies reported by Neumann et al. 
(2012) where the authors investigated the suitability of an LR system for fingerprint comparisons 
using ground truth known scenarios involving different numbers of minutiae available for the 

F I G U R E  6   Fiducial calibration discrepancy plot for ink data
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comparison of a questioned fingermark (Q) to a reference fingerprint (R). The reader is referred 
to their paper for details.

Figure 8 shows boxplots of log10(LR) values grouped by ground truth (Hp-true or Hd-true) 
and by number of minutiae available for comparison. See also figure 5 in Neumann et  al. 
(2012). The Hp-true LR values (red) show an increasing trend as the number of minutiae 
increase but the Hd-true LR values (green) show no trend. The plot also reveals that the dis-
crimination power of this LR system increases with increasing number of minutiae. See also 
Table B1 in the appendix .

Next we construct a fiducial calibration discrepancy plot for the LR system using all available 
Hp-true and Hd-true data, pooled across the entire range of available number of minutiae. This 
is shown in the Figure 9. This plot suggests that the fingerprint LR system is overstating the 
strength of evidence over the LR range of 1/100 to 10,000. Outside of this range we do not have 
enough data to evaluate the calibration discrepancy with any confidence. Thus, although this fin-
gerprint LR system has excellent discrimination power, it would be desirable to reduce its calibra-
tion discrepancy. For instance, one might search for monotonic transformations of the LR output 
from this system that would reduce the calibration discrepancy. As is well known, this process 
will not affect the discrimination power of the system. One such approach has been discussed by 
Morrison (2013) in the context of these fingerprint data.

Figure 10 shows an ECE plot for the fingerprint LR system. This plot supports the finding 
from the fiducial calibration discrepancy plot since there is a noticeable improvement in the 
ECE after applying a monotonic transformation (PAV algorithm, see Chapter 6 of Zadora et al., 
2013). However, as stated earlier, one is unable to deduce the degree of possible understatement 
or overstatement from the ECE plot. Furthermore, the effect of sampling variability on the ECE 
plot and related metrics is not available.

F I G U R E  7   Empirical cross-entropy plot for ink data
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5  |   A SIMULATION EXPERIMENT

We now illustrate how our proposed procedure performs in a typical modelling situation using a 
ground-truth known scenario. Development of LR systems typically begin with features that are 
expected to have information for discriminating between Hp and Hd. The joint distribution of the 
features is modelled using ground-truth known empirical data and one obtains a (fitted) prob-
ability density η for Hp-true cases and ψ for Hd-true cases. If x is the observed feature value (may 
be a vector) then the LR is computed by

To the extent that η and ψ do not correctly describe the feature distributions we can expect a loss in 
calibration. Loss in discrimination power occurs when the feature vector x does not capture all dis-
criminating information (i.e. it is an insufficient statistic) in the unprocessed raw data.

To illustrate this phenomenon of calibration loss we consider the following simple sce-
nario. Suppose we have a one-dimensional feature-value x that is used to discriminate be-
tween Hp and Hd and suppose its true probability functions, under Hp and Hd, respectively, are 
η(x) = Gamma(x; 10, 2) and ψ(x) = Gamma(x; 1, 2) where

LR =
�(x)

�(x)
.

Gamma(x;a, b) =
1

Γ(a)ba
xa−1e−x∕b, x, a, b > 0.

F I G U R E  8   Boxplots of log10 (LR) values for Hp-true (Red) and Hd-true (Green) comparisons
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In practice, the data generating mechanisms are unknown and one searches for suitable distributions 
to describe the observed feature values and uses these fitted distributions to develop likelihood ratios. 
In most applications it is very rare that large quantities of ground-truth known data are available for 
both Hp-true and Hd-true cases. Fitting distributions to data using smaller numbers of samples has 
two consequences: (1) The resulting LR system may suffer a noticeable calibration loss, and (2) the 

F I G U R E  9   Fiducial calibration discrepancy plot for the fingerprint data

F I G U R E  1 0   Empirical cross-entropy plots for Neumann Fingerprint likelihood ratio system
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fiducial calibration discrepancy check will exhibit substantial uncertainty. We illustrate these points 
by using 100 feature values known to have come from Hp-true situations and 5000 feature values 
known to have come from Hd-true situations (it is generally the case that we have access to more 
Hd-true data than Hp-true data). Next, we fit normal distributions to the logarithms (base 10) of the 
feature values. The log10(feature-value) histograms and fitted densities are shown in Figure 11.

Figures 12 and 13, respectively, show the resulting fiducial calibration discrepancy plots when 
likelihood ratios are computed using the true distributions and when using the fitted distribu-
tions. When the true distributions are used to compute likelihood ratios, we note that the point 
estimates of log(discrepancy) (solid blue line) are very close to the red line (perfect calibration) 
whereas, when using the fitted distributions, the blue line deviates noticeably from the red line, 
with the confidence band excluding the red line in some intervals, showing calibration loss (there 
still may be calibration loss where the confidence band includes the red line).

Note that the fiducial calibration discrepancy plot does not provide any information outside 
a certain range where sample values are available from both Hp-true and Hd-true scenarios. This 
is because there is no direct information concerning calibration performance outside this range 
and any statements regarding calibration would be an extrapolation based on assumptions that 
cannot be empirically verified.

One would expect the calibration loss to decrease as the sample size used in modelling in-
creases. To illustrate this phenomenon we use 100,000 Hp-true feature values and 100,000 Hd-true 

F I G U R E  1 1   Histograms of 100 sample feature values from the Hp-true distribution (blue) and 5000 sample 
feature values from the Hd-true distribution (red)
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feature values for model fitting. The log10(feature-value) histograms and the fitted densities of 
their corresponding normal approximation are shown in Figure 14. The fits are far from perfect. 
However, keep in mind that we are using 100,000 samples from each scenario here whereas, in 
most applications, models are fit using far fewer empirical data and this magnitude of lack of fit 
would not be discernible.

Again, we compute likelihood ratios using the true Gamma model first. Figure 15 shows the 
fiducial calibration discrepancy plot for these LRs. We notice that this LR system is well cali-
brated since the confidence interval for log(discrepancy) is tight and includes the zero discrep-
ancy line (in red).

Next, we compute LR using the normal approximations and compute the fiducial calibration 
discrepancies. The results are shown in Figure 16. The plot demonstrates that calibration discrep-
ancy indeed exists although it is not substantial. Reported likelihood ratios appear to understate 
the strength of evidence by a factor between 2 and 3. The point estimates of log(discrepancy) 
in this illustration are nearly the same as what we obtained earlier, when using smaller sample 
sizes, but the confidence bands are tighter as expected.

We also generated ECE plots for this example. Figure 17 shows the ECE plot for the LR sys-
tem which uses the correct feature-value distributions and Figure 18 shows the ECE plot for 
the system based on fitted distributions. We can see that, in either situation, the discrimination 
power is very good but the second system, based on fitted distributions, does exhibit a small, but 
noticeable, calibration discrepancy. This result is consistent with our findings from the fiducial 
calibration discrepancy plots.

F I G U R E  1 2   Fiducial calibration discrepancy plot for the likelihood ratio system using actual feature-value 
distributions with 100 samples from Hp-true and 5000 samples from Hd-true scenarios
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F I G U R E  13  Fiducial calibration discrepancy plot for the likelihood ratio system using fitted feature-value 
distributions with 100 samples from Hp-true and 5000 samples from Hd-true scenarios

F I G U R E  1 4   Logarithms (base 10) of the feature values and corresponding fitted normal distributions
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5.1  |  Repeated sampling verification

In order to examine the trustworthiness of the fiducial confidence intervals for calibration dis-
crepancy, we simulate independent sets of feature values using the Hp and Hd scenarios of the 
previous section. Again, we consider a small data set containing 100 feature values generated 
under Hp-true scenarios and 5000 feature values under Hd-true scenarios. We also use a large 
data set containing 100,000 Hp and Hd-true feature values each. For the small data scenario as 
well as the larger data scenario we produce a fiducial calibration discrepancy plot and record 
whether each of the confidence intervals includes zero.

Tables 2 and 3 contain results for LRs computed using the true gamma distributions and 
estimated normal distributions respectively. We report the coverage, the percentage of intervals 
including zero, and its simulation margin of error for each pointwise (shown in black) and si-
multaneous (shown in cyan) confidence intervals. Only bins that had observed data during sim-
ulation are reported. Because each of the intervals in the fiducial calibration plot is nominally 
a 95% confidence interval, we expect about 95% of the calibration plots to wholly include zero 
when we use the true gamma distribution to produce LRs (Table 2). When LRs are computed 
using the estimated normal distribution (Table 3), they are technically not well calibrated and 
the closer the coverage is to zero, the more power we have to detect the miscalibration.

There is a subtle difficulty caused by the fact that the LR values covered by the calibration dis-
crepancy plots can differ between data sets. Consequently, the coverage of the smallest and largest 
log10(LR) bin is computed based on significantly fewer observations, especially for the small data 
set. This is not an issue when considering the simultaneous interval. We observe that overall the 

F I G U R E  1 5   Calibration discrepancy plot for the simulated example when likelihood ratio values are 
computed from the true feature-value distributions η and ψ using 100,000 samples from each of η and ψ
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fiducial calibration plot is itself well calibrated, and we recommend the simultaneous confidence 
band (shown in cyan) to be used when checking calibration of LR systems.

6  |   DISCUSSION AND CONCLUSIONS

In this paper we considered the problem of quantifying the strength of evidence provided by a set of 
observations (x) in favour of one proposition or hypothesis (Hp) relative to its complementary prop-
osition or hypothesis (Hd  =  Hc

p). We noted that there is widespread acceptance for using the likeli-
hood ratio LR = Pr[x |Hp]∕Pr[x |Hd] as a measure of the strength of the evidence. In many 
applications LR is primarily used to make a decision to either believe Hp is true or to believe Hd is 
true. This is often implemented using a suitable chosen threshold LR0 such that Hp will be believed 
to be true if the computed LR value exceeds LR0. The threshold value is chosen to appropriately bal-
ance the trade-offs between falsely believing Hp to be true and falsely believing Hd to be true. This is 
done by assigning possibly different costs (or penalties) to the false-positive and false-negative er-
rors and minimizing the expected cost, taking into account prior beliefs regarding the probability of 
Hp and Hd. In traditional statistics these are called classification problems or decision problems. In 
such applications what matters is the power of the procedure to discriminate between the two sce-
narios in a manner that leads to minimum expected cost due to misclassification errors.

In forensic science applications, the expert who makes strength of evidence assessments does 
not make any decisions regarding the truth of Hp or of Hd. Rather, he/she will report the assessed 
value of LR. The receiver of this information will then process the expert's report or testimony 
along with other evidence to make decisions regarding the truth of Hp or Hd.

F I G U R E  1 6   Fiducial calibration discrepancy plot for the likelihood ratio system using fitted distributions



24  |      HANNIG and IYER

F I G U R E  1 7   Empirical cross-entropy plots for the likelihood ratio system using actual feature-value 
distributions

F I G U R E  1 8   Empirical cross-entropy plots for the likelihood ratio system using fitted feature-value 
distributions

T A B L E  2   Empirical coverage (in percentage) of the fiducial calibration discrepancy plots for LRs computed 
from the true gamma distributions

log10(LR) (−2, −1) (−1, 0) (0,1) (1,2) (2,3) (3,4) (4,5) Simultaneous

Small 88(4) 95(1) 94(1) 94(1) 94(2) 96(4) 50(71) 96(1)

Large 96(1) 96(1) 95(1) 94(1) 95(1) 92(2) 92(11) 95(1)

Notes: The numbers in parentheses are twice the standard errors. Numbers close to 95% show good coverage.
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Typically, the value of LR will be communicated to the jury or other stakeholders in the fol-
lowing manner:

•	 The evidence is LR times more probable if Hp is true than if Hd is true.

See, for instance, Willis et al. (2015), SWGDAM (2020) and Bright and Coble (2019). Therefore 
it becomes important that the expert's process for assessment of LR be empirically checked to 
determine whether this process is reliable. The problem we addressed in this paper is this:

•	 How can we empirically check how reliable are such statements from experts, or assessments 
by algorithms used by experts? In particular, when an LR system produces an LR value equal 
to x, to what extent might this value be an overstatement or an understatement of the value of 
evidence in light of the available empirical validation data?

To answer this question we developed a measure of discrepancy between reported LRs and the 
empirically supported values for LRs and, using the theory of generalized fiducial inference, pro-
vided an approach for obtaining confidence bands for the calibration discrepancy. We also demon-
strated how to visually display this information in the form of a fiducial calibration discrepancy 
plot. We provided several examples, most of them from the open literature, to illustrate the use 
of our proposed method. Other authors (e.g. Zadora et al., 2013) have discussed assessment of LR 
performance using the notion of ECE with particular attention to discrimination and calibration 
as two separate components contributing to overall performance. We compared our approach with 
this alternative approach of examining ECE plots and noted that, while the ECE approach can 
alert us to lack of calibration when it occurs, it does not directly tell us the extent to which evidence 
is being understated or overstated when the LR system is not well calibrated. Our approach does 
this. Moreover, our approach also takes into account sampling variability whereas the previously 
published methods do not. We therefore believe that fiducial calibration discrepancies and corre-
sponding plots provide valuable additional tools for assessing the calibration status of LR systems.

Although we discussed empirical checking of the calibration performance of LR models in the 
context of source identification it is important to keep in mind that, in actual casework, the ques-
tion of source identification will make sense only after its relevance is demonstrated. This is so 
because there can be many innocent reasons for the presence of evidential material at the crime 
scene originating from the person of interest. For instance, DNA from a person may be found at 
a crime scene but that does not mean that the person of interest was present at the crime scene 
when the crime event occurred. The person may have visited the crime scene either before or 
after the crime event. In such circumstances, relaying to the TOFs a likelihood ratio addressing 
the source of the evidence, in the absence of other supporting evidence that make the source 
question relevant, could be viewed as potentially having a prejudicial effect on the triers of fact. 
Although we did not address such issues in this paper, these and other considerations are of great 

T A B L E  3   Empirical coverage (in percentage) of the fiducial calibration discrepancy plots for LRs computed 
using the estimated normal distributions

log10(LR) (−2, −1) (−1,0) (0,1) Simultaneous

Small 81(3) 91(1) 27(2) 26(3)

Large 0(1) 0(1) 0(1) 0(1)

Notes: The numbers in parentheses are twice the standard errors. Small numbers show good power.
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practical importance to the proper functioning of the criminal justice system since the life and 
liberty of individuals are at stake.
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APPENDIX A

EXAMPLE
We present an example of an LR system that produces likelihood ratios whose distribution has 
infinite variance when Hd is true. Suppose X is a random variable with density

when Hp is true, and density

when Hd is true. The likelihood ratio in favour of Hp when x is observed is

The density of R = R(X) under Hp is

and under Hd is

Note that g(r)
f (r)

= r and Ef [R] = ∫∞1∕3 1

2
√
3r3∕2

= 1. Furthermore, it is easily verified that

Finally we point out that the survival functions corresponding to the densities f and g, respec-
tively, are given by

and

𝜂(x) =
1

4x3∕4
0 < x ≤ 1

𝜓(x) =
3

4x1∕4
0 < x ≤ 1

r = r(x) =
1

3x1∕2
1∕3 ≤ r <∞.

g(r) =
1

2
√
3r3∕2

1∕3 ≤ r <∞

f (r) =
1

2
√
3r5∕2

1∕3 ≤ r <∞.

Ef [R
2] = ∫

∞

1∕3
r2f (r)dr =∞.

Sf (r) =
1

3
√
3r3∕2

1

3
≤ r <∞

Sg(r) =
1

√
3r1∕2

1

3
≤ r <∞.
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APPENDIX B

DISCRIMINATION PERFORMANCE OF THE LR SYSTEM

B.1  |  Car paint data

Figure B1 gives the receiver operating characteristic (ROC) plot of the reported LR values for 
the car paint data. The area under the ROC plot (AUC) is 0.982 indicating strong discriminat-
ing power for the LR system. If an LR value is selected randomly from the mated distribution 
and another LR value is selected randomly from the nonmated distribution then the (estimated) 
probability is 0.982 that the mated LR will be larger than the nonmated LR.

B.1  |  Glass data

The discrimination potential for this LR system is quite good as described by the ROC plot in 
Figure B2. The area under the empirical ROC curve is 0.958.

The unusual shape of the ROC plot here is due to a few nonmated cases that yielded very high 
LR values. The overall discrimination performance would normally be judged to be quite good as 
the AUC value is 0.958. However, this example illustrates why AUC value alone is not sufficient 
to judge performance. It is undesirable to have many nonmated LR values taking on very high 
values. Of course, this will be detected by examining calibration accuracy.

F I G U R E  B 1   Receiver operating characteristic plot for likelihood ratio: Car paint data of Example 1
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F I G U R E  B 2   Receiver operating characteristic plot for likelihood ratio: Glass data of Example 2. See also 
Figure 6.18 in Zadora et al. (2013)

F I G U R E  B 3   Receiver operating characteristic plot for glass data graphical model likelihood ratio system. 
See Zadora et al. (2013) Chapter 4, section 4.4.6 for details
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B.3  |  Ink data

The empirical ROC curve for the LR system for the Ink data is shown in Figure B3. Again, the 
LR system shows good discrimination power. A violin plot shows the distributions of log10(LR) 
values for mated and nonmated cases. See Figure B4.

B.4  |  Fingerprint data

Table B1 shows how the area under the ROC curve (AUC) changes as a function of the number of 
minutiae available for comparison. This confirms the increasing trend in discrimination power 
that was seen in Figure 8 as the number of minutiae increases.

F I G U R E  B 4   Violin Plot for ink data
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APPENDIX C

NONPARAMETRIC FIDUCIAL CONFIDENCE INTERVALS FOR CALIBRATION 
DISCREPANCY: THEORETICAL BACKGROUND
In this section we explain how generalized fiducial inference is used to quantify uncertainty in 
estimating d(Sg, Sf) defined in Equation (6). Following the discussion in Cui and Hannig (2019) 
we derive a generalized fiducial distribution (GFD) for the survival function.

Let S−1(u) = inf{x ∈ ℝ : S(x) ≤ u} be the usual inverse of the survival function. Consider the 
data generating algorithm

where Ui are mutually independent, Uniform(0, 1) random variables. A GFD is obtained by invert-
ing the data generating algorithm, see Hannig et al. (2016) for detailed discussion. In this context, in-
verting a GFD means that after observing x = (xi)i=1,…,n and generating values of u⋆ = (u⋆

i
)i=1,…,n 

from the standard uniform distribution, we need to find all survival functions that satisfy (C1). To be 
more precise, denote the inverse image of Equation (C1)

Notice that Qx(u⋆) ≠ ∅ if the order of u⋆ matches the reverse order of x, in which case Qx(u⋆) con-
tains infinitely many survival functions. For the purposes of this work we will use a representative 
survival function S∗ ∈ Qx(u

⋆) that is a linear spline. To generate fiducial samples S∗r , r = 1, …, m, 
of S*, we sample m independent copies of u⋆

i
, where the distribution of u⋆

i
 is i.i.d Uniform(0,1) con-

ditional on matching the reverse order of x. These fiducial samples than can be used for inference.
To construct confidence intervals for the vector d(Sg, Sf) we first obtain fiducial samples S⋆g,r 

and S⋆
f ,r

, r = 1, …, m, using the observed LRs that were collected under Hp-true and Hd-true sce-
narios respectively. Then we substitute these sampled survival functions into Equation (5). The 
resulting fiducial sample d(S⋆g,r , S

⋆

f ,r
), r = 1, …, m is then used to obtain approximate confi-

dence interval for the unknown d(Sg, Sf) using sets of fiducial probability 1 − α, that is, contain-
ing m(1 − α) fiducial samples d(S⋆g,r , S

⋆

f ,r
).

This approach is justified by the following Bernstein–von Mises type result that guarantees 
that the fiducial pointwise and simultaneous confidence interval for d(Sg, Sf) will have asymptoti-
cally correct coverage and is therefore theoretically justified for examining calibration discrep-
ancy of LRs.

(C1)Xi = S−1(Ui), i = 1,…,n,

(C2)Qx(u
⋆) =

n⋂

i=1

{S∗: S(xi − 𝜖) > u⋆i ≥ S(xi) for any 𝜖 > 0}.

T A B L E  B 1   Area under the ROC curve (AUC) as a function of number of minutiae available for the 
comparison

Number of Minutiae 3 4 5 6 7

AUC 0.9957317 0.9993912 0.9996826 0.9999484 0.9997780

Number of Minutiae 8 9 10 11 12

AUC 0.9999951 0.9999975 0.9999921 1.0000000 0.9999746
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Theorem 1  Let us assume that 1 > Sg(a1) > ⋯ > Sg(ak) > 0 and 1 > Sf(a1) > ⋯ > Sf(ak) > 0 and 
the observed LRs are independent of each other. Denote the number of observed LRs under 
Hp-true and Hd-true scenarios as ng,  nf, the corresponding empirical survival functions as 
Ŝg , Ŝf , and samples from the fiducial survival functions S⋆g , S

⋆

f
 respectively. Finally let 

n = min(ng, nf) and assume limn→∞ n∕nf = pf  and limn→∞ n∕ng = pg. Then as n → ∞

and conditionally on the observed LRs

Proof   In this proof we will work with distribution functions rather than survival functions, 
that is, F(s) = 1 − Sf(s), G(s) = 1 − Sg(s). Donsker's theorem (van der Vaart, 1998) implies 
that

where Bg, Bf are independent mean zero Gaussian process with covariance

It follows from Theorem 2 of Cui and Hannig (2019) that conditionally on the observed LRs

Because of independence the convergence also happens jointly, that is,

To complete the proof we need to use functional delta method (Theorems 20.8, 23.9 of van der Vaart, 
1998).
To this end notice that Equation (5) is equivalent to

The Hadamard's derivative of d(a,b) at (G, F) for U , W ∈ �0 is

√
n(d(Ŝg , Ŝf ) − d(Sg , Sf ))


⟶ N(0, Σg,f ),

√
n(d(S⋆g , S

⋆

f
) − d(�Sg , �Sf ))


⟶ N(0,Σg,f ) a. s.

ng(Ĝ − G)

⟶ Bg , nf (F̂ − F)


⟶ Bf in �[0,∞),

EBg(s)Bg(t) = G(s)(1 − G(t)), EBf (s)Bf (t) = F(s)(1 − F(t)) when s ≤ t.

ng(G
⋆ − �G)


⟶ Bg , nf (F

⋆ − �F)

⟶ Bf in �[0,∞) a.s.

√
n

��
�G

�F

�
−

�
G

F

��

⟶

�
pgBg
pf Bf

�
, and

√
n

��
G⋆

F⋆

�
−

�
�G

�F

��

⟶

�
pgBg
pf Bf

�
a.s.

d(a,b)(G,F) = log10(G(b) − G(a)) − log10

(
bF(b) − aF(a) − ∫

b

a
F(s)ds

)
.
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Consequently,

Similarly, conditionally on the observed LRs

This proves the theorem.

d�
(a,b),G,F

(U ,W ) =
1

log(10)

(
U(b) −U(a)

G(b) − G(a)
−
bW (b) − aW (a) − ∫ 10 W (s)ds

bF(b) − aF(a) − ∫ ba F(s)ds
)
.

√
n(d(�G, �F) − d(G,F))


⟶ (d�

(a1,a2),G,F
(pgBg , pf Bf ),…, d�

(ak−1,ak),G,F
(pgBg , pf Bf ))

⊤.

√
n(d(G⋆,F⋆) − d(�G, �F))


⟶ (d�

(a1,a2),G,F
(pgBg , pf Bf ),…, d�

(ak−1,ak),G,F
(pgBg , pf Bf ))

⊤, a.s.


