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LOG-NORMAL DURATIONS CAN GIVE LONG RANGE 

DEPENDENCE 
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Gennady Samorodnitsky F.D. Smith 

Cornell University University of North Carolina 

Size distributions for internet connections are fit using a novel visualization. While no 
standard distribution is exactly right, both heavy tail Pareto and light tail log-normal dis- 
tributions appear sensible in the tails. As noted by Downey (2000), goodness of fit of the 

log-normal raises interesting questions about the widely accepted view of internet traffic, 
that only heavy tailed duration distributions lead to long range dependence. Some non- 
standard mathematical analysis reveals that both tail distributions are actually consistent 
with long range dependence, because with appropriate choice of parameters a system with 

log-normal durations can have correlation consistent with long range dependence over a 
wide range of lags. 

1. Introduction 

A number of studies of internet traffic suggest that internet flows (trans- 
fers of data from one computer to another one) often have heavy tailed 

duration distributions, and that the aggregated traffic (e.g., the collection 

of all data flowing through a particular point on the internet) exhibits long 

range dependence, see, e.g., Garrett and Willinger (1994) and Paxson and 

Floyd (1995). An elegant mathematical theory, see, e.g., Mandelbrot (1969), 
Cox (1984), Taqqu and Levy (1986) and Heath, Resnick and Samorodnitsky 

(1998), provides a convincing connection between these phenomena. 
A graphical illustration of this behavior is given in Figure 1, where IP 

(Internet Packet) flows are represented as horizontal lines. The heights of 

the lines are random, which allows simple visual separation. Details of the 

data are given below, but a striking feature is that the lengths of the lines 

include many very short flows, and also some very long flows. 

The data shown in Figure 1 were gathered from packet headers, during 

approximately a 40 minute period on a Sunday morning in 2000, at the main 

internet link of the University of North Carolina, Chapel Hill. This time pe- 
riod was chosen as being "off peak," having relatively light traffic. An IP 

"flow" is defined here as the time period between the first and last pack- 
ets transferred between a given pair of IP sending and receiving addresses. 

For more details on the data collection and processing methods, see Smith, 

Hernandez, Jeffay and Ott (2001). 
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Figure 1. Display of real IP flows, showing "mice" (many short connections) and "elephants" 

(few long connections), with random vertical "jitter", for convenient visualization. 

Current popular terminology for the phenomenon of simultaneous occur- 

rence of unusually short and long flows is "mice and elephants". Figure 2 

shows a simulation which demonstrates that this duration distribution is far 

different from the exponential durations that lie at the heart of standard 

queueing theory. In Figure 2, the flow lengths are randomly drawn from the 

exponential distribution with the same mean flow length as in Figure 1 (mean 
= 106 sec), and the start times are the same as those in Figure 1. Note that 

there are far fewer very small flows (mice), and also essentially no very large 

flows (elephants) in Figure 2, with most of the flows being "medium sized", in 

stark contrast to Figure 1. This makes it visually clear that the exponential 

distribution is a very poor approximation to the duration distribution. 

The different duration distributions shown in Figures 1 and 2 lead to 

far different behavior when the flows are aggregated into a traffic stream, 

looking either at the sequences of packet time stamps, or else at binned ag- 

gregates of either packet counts or packet sizes. In particular, the relatively 

homogeneous flow lengths in Figure 2 lead to "short range dependent" ag- 

gregrations, i.e. autocorrelations which decay exponentially fast. It may not 

be surprising that the longer and shorter durations visible in Figure 1 can 

lead to a different type of dependence structure. In the simplest version of 

this, see Section 7 of Cox (1984), an infinite variance (i.e., second moment) 
of the duration distribution implies "long range dependence" in the sense 

that the autocorrelation decays at a polynomial rate. There are a number 

of variations on this theme, where the moment condition on the duration 

distribution is replaced by quantities such as tail indices, and where long 

range dependence is measured in other ways, such as the behavior of the 

spectral density near 0. See Chapter 4 of Beran (1994) for discussion of 

various relations among these. 
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Figure 2. Display of simulated IP flows, with same start times, and same mean duration 
as in Figure 1. Here exponential durations are used, which results in fewer very large, and 
also fewer very small flows. 

As noted above, empirical observation of heavy tailed durations and long 

range dependence, coupled with elegant asymptotic theory connecting them 

together, suggest that there is a compelling case that we have a deep under- 

standing of internet traffic data. However, Downey (2000) has recently called 

the depth of this "understanding" into question by some interesting empirical 

work, which suggests that the log-normal distribution may be more appro- 

priate than classic heavy tailed distributions such as the Pareto. Downey's 
work is somewhat different from the above, because he analyzes distribu- 

tions of computer file sizes, which may be somewhat different from IP flows 

as considered above. However, Downey provides further backing of the log- 
normal distribution by suggesting an intuitive mechanism which results in 

log-normal file size distributions. Since the same intuitive mechanism is 

sensible as well for size distributions of IP flows, the log-normal should be 

viewed as a serious candidate. At first glance this casts serious doubt on 

the above empirical plus theoretical view. The reason is that the log-normal 
has all moments finite, thus failing to have the apparently required infinite 

second moment. But careful consideration reveals a logical gap: the existing 

theory uses only one type of asymptotic analysis. It is possible that a finite 

second moment is consistent with a slow decay of autocorrelations over a 

particular long range of lags. An important goal of this paper is to fill in 

this gap by showing that log-normal distributions and long range dependence 
are consistent with each other, in this sense. 

First an empirical study of size distributions is given in Section 2. An 

important feature of the analysis is a novel visualization, which improves pre- 
vious distributional analyses by providing insight into the level of sampling 

variability. The analysis shows that neither the Pareto, nor the log-normal 
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provides a particularly good fit. Yet both could be regarded as "acceptable 

approximations". The Pareto which gives this fit has shape parameter be- 

tween 1 and 2 (i.e., the first moment is finite, but the second moment is 

infinite) So which is "right"? Is there a "heavy tailed Pareto" leading to long 

range dependence, or is there a "light tailed log-normal" leading to short 

range dependence? 

Second a theoretical analysis, this time based on durations (a crude but 

convenient approximation to the sizes considered in Section 2) is given in 

Section 3, which shows that these two different approximations need not lead 

to divergent conclusions. In particular, it is seen that there are sequences of 

log-normal distributions which can yield long range dependence in the sense 

of polynomially decreasing autocorrelations. The argument is asymptotic in 

nature, however it should be viewed as saying, in accordance with the above, 

that a slow decay of correlations is observed over a certain wide range. 

2. Fitting of size distributions 

The data set in Figure 1 is not ideal for studying tail behavior of dura- 

tion distributions because of boundary effects created by the limited time 

span (about 40 minutes) considered there. In particular, too many flows 

last for essentially the full time span which results in nearly a small point 
mass at the right end, that makes "tail index" difficult to analyze. Hence, we 

replace the duration variable by the surrogate variable of flow size. This 

makes some sense because larger files do require more time to transfer. 

However, we acknowledge that the approximation is crude. Thus, a set 

of ? = 734,814 HTTP response sizes, gathered at the UNC main link in 

1998 is considered in this section, entailing that "duration" is now measured 

in terms of file size, instead of time required for the transfer, as in Figure 1. 

Here "flow" also has a somewhat different meaning because these are only 

the files that are transferred while web browsing, as opposed to all types of 

data, as considered in Figure 1. 

Figure 3 shows a Pareto Q-Q plot analysis of the response size data. 

This is a graphical technique for assessing the goodness of fit of a prob- 

ability distribution to data. See, e.g., Fisher (1983) for an overview of 

related techniques. Here the data quantiles (i.e. sorted data values) are 

plotted as a function of the corresponding theoretical quantiles (the theoret- 

ical inverse cumulative distribution function, evaluated at the points l/(2rc), 

3/(2n),..., (2n 
? 

l)/(2n)). If the data come from exactly the theoretical 

distribution, then the resulting curve (shown as a thick, black solid line) 
would be close to the 45 degree diagonal line (shown as the black dashed 

line), except for some random sampling variability. 
The region shaded by dotted lines is a visual device for understanding the 

magnitude of the sampling variability. It is an overlay of Q-Q plots for 100 
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Figure 3. Pareto Q-Q plot for response size data. Gray envelope gives visual impression 
of variability. Shows reasonable, but not perfect, fit for larger quantiles. 

simulated data sets of size ? = 734,814 from the theoretical distribution. If 

the data comes from the theoretical distribution, then with high probability 

it should lie within the envelope. Large departures from the envelope indicate 

regions in which the theoretical distribution is a poor fit. In Figure 3 it is 

apparent that the fit is very poor for small data values. The dotted envelope 

in Figure 3 is very narrow, especially at the lower end where the 100 curves 

converge into a single thin line. The reason is that for the relatively large 

sample size of ? = 734,814 the natural sampling variability is relatively 

small. 

In Figure 3, both axes are shown on the log scale. This is because for the 

heavy tailed distributions considered here, only a few large values dominate 

the whole picture on the ordinary scale. The theoretical distribution shown 

is the shifted Pareto, with cumulative distribution function 

F(x)=[l-((x + a)/a)'a}l{0tOo)(x), 

where the shape parameter a = 1.24 and the scale parameter s = 1499. 

This shift of the usual Pareto is sensible here since there are many flows with 

quite short durations, so the usual boundary of s is inappropriate. The cor- 

responding complementary cumulative distribution function decreases like 

x~a, as ? ?> oo, so it has an infinite variance, but finite mean. These fitted 

values were estimated by "quantile matching," in particular they make the 

empirical and theoretical 0.99 and 0.999 quantiles the same. The location 

of these two quantiles is shown by two circles in the plot (the thick black 

curve crosses the 45 degree line at these points). Three other quantiles are 

indicated by plus signs, to show which parts of the curve represent which 

parts of the data set. 



338 J. Banning et al. 

5 10 
LogNormal, Q 

Figure 4. Log-normal Q-Q plot for the response size data. Shows fit is not much worse 
than for the Pareto. 

Figure 3 shows that the response size data is not perfectly fit by the 

shifted Pareto(1.24,1499) distribution. The fit is particularly poor for the 

smaller data values. But even above the median, the Q-Q curve bends 

substantially outside of the dotted envelope, which shows the distributional 

shape is also significantly different from the shifted Pareto in that region. 

However, with such a large data set, it would be surprising if any simple 
distribution gave a perfect fit. Also no effort had been made to fit the bulk 

of the distribution, but only the larger values, because these drive the tail 

behavior being studied here. Furthermore, for the purpose of "heavy tail 

durations lead to long range dependence", this level of fit appears to be 

reasonably adequate. 

Figure 4 is a parallel analysis, where the underlying theoretical distribu- 

tion is replaced by the log-normal. Again the parameters of the log-normal, 

? ? 5.28 and s ? 2.46 were chosen by 0.99 and 0.999 quantile matching. 

Figure 4 shows that similar lessons to those for the Pareto shifted (used 
in Figure 3) apply. In particular, the fit is not perfect, and is rather poor for 

small values. But again no effort is made to fit the bulk of the distribution, 
but instead the emphasis is on the "upper tail," where the fit is reasonably 

acceptable. There does seem to be "more overall curvature" than for the 

Pareto, so this distribution does not give quite as good a fit in the bulk of 

the distribution, but still the fit is surprisingly good in view of the above 

stated differences between the Pareto(1.24) (heavy tailed, infinite variance), 
and the log-normal (light tailed, all moments finite). The theoretical results 

shown in Section 3 show that the light tailed log-normal, can be "heavy tailed 

enough over a large enough range" to yield the "long range dependence over 

a broad range of lags" that had previously been associated only with heavy 
tailed duration distributions. 
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Many variations are possible concerning the Q-Q analyses done here. To 

save space, and because the lessons learned are tangential to the main point 

of this paper, these are not shown here. However some graphics can be found 

in the web directory 

http ://www.une.edu/depts/statistics/postscript/ 

papers/marron/NetworkData/LogNorm2LRD/ 

For example, if the 0.99 and 0.999 quantiles are replaced by the 0.9 and 0.999 

quantiles, then it is seen in the file RespSize21ogNormQQall2.ps that the 

log-normal yields a substantially better fit in the body of the distribution, at 

the price of a poorer fit in the upper tail. A wide range of different quantiles 

for the Pareto can be studied from the movie files RespSize2ParQQqlp5. avi, 

RespSize2ParQQqlp9.avi, RespSize2ParQQqlp99.avi, RespSize2ParQQ- 

qlp999.avi and RespSize2ParQQqlp9999.avi. To see that the Weibull 

distribution gives a much worse fit than either the Pareto or log-normal 

considered here, see RespSize2WeibullQQall.ps. 
All data analyzed here were kindly provided by the UNC Computer Sci- 

ence Distributed and Real-Time Systems Group, http : //www. cs. une. edu/ 

Research/dirt/. 

3. Log-Normal durations give long range dependence 

A deliberately simple model for the random process illustrated in Figure 1 

is considered here. This model is not intended to "fit" the data sets viewed 

in Sections 1 or 2. Instead it is only aimed at making the point that long 

range dependence behavior can be consistent with log normal duration dis- 

tributions. Many variations of this simple model are possible (some of which 

would provide a better "fit" to the actual data), and we view the establish- 

ment of similar results in more realistic and general contexts as interesting 

open problems. For simplicity, only continuous time processes are consid- 

ered here. A sequence of such models, indexed by ? = 1,2,... is considered 

because "heavy tails" and "long range dependence" are asymptotic concepts. 
The flow arrival process (the point process of starting times of the horizontal 

line segments in Figure 1) is a homogeneous Poisson process with intensity 

parameter ??. The duration times (the random lengths of the line segments) 

Ln, are independent, identically distributed, with a log-normal (??^?) dis- 

tribution independent of the Poisson arrival process. Aggregation of the 

traffic is represented by Xn?, the number of active flows (line segments) at 

time t. 

One way to express long range dependence is in terms of the rate of decay 
of the autocovariance 

r(t; ??, s?, ??) = cov(Xn,s, Xnjt+e). 
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In particular, polynomial decay in t, r(t) ~ ?-(a_1) (in the sense that 

limt^oc r(t)/t~(Q~l) ? (?,??)) with exponent a - 1 G (0,1), is typically 
viewed as a symptom of long range dependence. This decay is easily ob- 

tained if Ln are Pareto, or asymptotically Pareto, because for the above 

model, the autocovariance is simply and directly related to the tail of the 

duration distribution, as 

(3.1) P(Ln > s) ds, 

as seen for example in Cox (1984) and Resnick and Samorodnitsky (1999). 
The main goal of this section is to find sequences of parameters ??,s?, \n 

for which the sequence of processes Xn? exhibits this behavior in the sense 

that, for a given C > 0, for every sequence Tn such that logTn = o(n1/2), 

(3.2) lim sup 
n^??l<t<Tn 

r(t; ??, <7n, Xn) 

ct-(?- 
= 0. 

This says that the nth model, is effectively long range dependent over the 

long range of lags 1 to Tn. 

Because the log-normal is "light tailed" according to most classical defi- 

nitions (e.g., having all moments finite), the key to (3.2) is to find parame- 
ter sequences over which the Ln duration distribution "looks approximately 

heavy tailed over a wide enough range". This can be done for the log-normal 

by assuming: 

(3.3) ?? = -?, 

Assumption (3.3) means that most of the mass of the log-normal will be 

concentrated near 0, i.e., there will be "many mice" (the short line segments 
in Figure 1). But assumption (3.4) ensures a "few elephants" (the long lines in 

Figure 1). Because of the lightness of the tails of the log-normal distribution, 
a final assumption is needed, to ensure the existence of enough elephants to 

create long range dependence. This comes from an assumption of "increasing 

intensity": 

(3.5) ?? = y/^?ean/2. 

At first glance, assumption (3.5) might seem very strong, however, in an 

environment of exponentially increasing internet traffic, it is worth contem- 

plating. An even less standard restriction entailed by these assumptions is 

that the 3 parameter stochastic process (indexed by ??, s? and ??) is deter- 

mined by only two parameters. But again we stress that this is only a very 
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simple construction intended to make our point about log normal durations 

being possibly consistent with long range dependence, (and not suggested as 

a "good fit to these data sets"). We believe that more complex models could 

give the same behavior, and also be more consistent with the observed data. 

We will show that these assumptions give 

(3.6) lim sup ?-??> ?<?<t? 

r(?; /?m^Vu ??) ^ 

(2p)-1/2?-(a-?)/(a 
_ 

?) 

which is (3.2) for the particular 

1 

= 0, 

C = 

(a-1)(2tt)1/2? 

Rescaling ?? appropriately will give (3.2) for a general C > 0. 

To establish (3.6), note that the integrand of (3.1) can be rewritten as 

P(Ln > s) = ?(???(?? + s??) > s) = P{Z > (log s - 
??)/s?) 

= p(z > y/a?+ 
W-logsJ, 

where ? is a standard Gaussian random variable. A useful bound (leading 
to Mill's ratio) comes from the inequalities, valid for any t > 0, and follow- 

ing from integration by parts (see e.g. problem 4.14.1.C of Grimmett and 

Stirzaker (2001)) 

(3.7) (2p)"1/2(?-1 
- 

?-3)e-*2/2 < P(Z > t) < (2n)-1/2r1e-t2/2. 

Using (3.5), and applying the right hand bound in (3.7) gives, for every 
s > 1, 

X?P(Ln >s)< ?/^?a?/2(2p)-1/2-lT=-e-iV^+V^iogs)*/2 
y/?m + y/a/n log s 

< (2p)-1/28-a?-a(1?6?)?(2?) < (2p)-1/2d-a 

Hence for all ? > 1, 

G(*;??,s?,??) < (2p)-1/2_^_?-(-?). 
a ? 1 
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Similarly using the left hand bound in (3.7), let Sn be an increasing sequence, 

such that log 5n = o(n1/2). For every 1 < s < Sn 

KP(Ln >s)> y/^?ean^2(2n)-l/2exp\~ (v^+ V^logs)2] 

1 1 

fan+ yja/n log 5 (y/cm+ y/^\ogs)3\ 

=(2n)-l/2s-ae-a(]ogs?2/(2n? 

fan y/cm 

[y/ct?+ y/oi/n log 5 (y/cm+ y/a/n\ogs)3\ 

> (2p)-1/25-???, 

where 
aQog Sn)z 

Cn = e 2n 
1 4- log Sn/n anj 

and limn?oo Cn = 1. Consider an increasing sequence Tn, such that logTn = 

o(n1'2). Clearly if Sn = ?2 + ? then logSn = o(n1'2). Hence if 1 < t < Tn 

/t2+n 
(2T?)-l/2s~aCnds 

= (2p)-?2??-?-[G^ 
- 

(t2 + ?)-*""1)], 
a ? 1 

and so 

r(t, ?p?^?, ??) 

(2p)-1/2_1??-(a-?) 

> Cn 1- 
f2 + nN-(a-l) 

Hence, 

lim sup 
n-*?? l<t<Tn 

>Cn(l_2-(^-1)n-^-1)/2). 

r(t] ??? s?? ??) 

(2p)-?/2-1t?-(a-?) 

= 0. 

4. Conclusions 

This paper considered the controversy of whether internet flow distributions 

are heavy tailed or not, with a particular view towards understanding the 

implications for long range dependence. Some data analysis suggested that 

both the heavy tail Pareto and the light tail log-normal give reasonable fits 

in the upper tail, although neither is perfect, and the Pareto is somewhat 

better. This appears contradictory, because the Pareto that fitted had an 

infinite variance, while the log-normal had all moments finite. Some new 

theoretical work revealed that these distributions are not so inconsistent as 
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was previously thought, which is consistent with the above data analysis. In 

particular it is shown here that even (a sequence of suitable parametrizations 

of) the light tailed log-normal distribution can lead to long range dependence. 
A clear lesson is that moments (e.g. finiteness of variance) provide a poor 

way of understanding the type of distributional properties that are important 
to internet traffic. 

Interesting open problems that follow from this work include a corre- 

sponding data analysis for other data sets, and generalizations of the theo- 

retical results. Potential generalizations of the theory include finding other 

parameter sequences for the log-normal giving long range dependence, and 

an investigation of which other light tailed parametric families can yield long 

range dependence. There is also lots of room for improvement of modelling of 

the duration distribution, including mixture and "piece-wise" models, which 

could then yield parallel theoretical results. 

Acknowledgements. The research of J.S. Marron was supported by NSF 

Grant DMS-9971649, and of Gennady Samorodnitsky by NSF grant DMS- 

0071073. 

REFERENCES 

Beran, J. (1994). Statistics for Long-Memory Processes. Monogr. Statist. 

Appi. Probab., vol. 61., Chapman and Hall, New York. 

Cox, D.R. (1984). Long-range dependence: a review. In Statistics: An Ap- 

praisal. Proc. 50th Anniversary Conf. Iowa Statistical Laboratory 

(H.A. David, H.T. David, eds.) pp. 55-74. Iowa State Univ. Press, 
Ames. 

Downey, A.B. (2000). The structural cause of file size distributions, Wellesley 

College Tech. Report CSD-TR25-2000. 

Fisher, N.I. (1983) Graphical methods in nonparametric statistics: a review 

and annotated bibliography, Internat. Statist. Rev. 51, 25-58. 

Garrett, M.W. and Willinger, W. (1994). Analysis, modeling and genera- 
tion of self-similar video traffic. Proc. of the ACM SIGCOMM J94, 

pp. 269-280. ACM Press, New York. 

Grimmett, G. R. and Stirzaker, D. R. (2001). Probability and Random Pro- 

cesses. Oxford Univ. Press, Oxford. 

Heath, D., Resnick, S. and Samorodnitsky, G. (1998). Heavy tails and long 

range dependence in on/off processes and associated fluid models. 

Math. Oper. Res. 23, 145-165. 



344 J. Banning et al. 

Leland, W.E., Taqqu, M.S., Willinger, W. and Wilson, D.V. (1994). On the 

self-similar nature of Ethernet traffic (extended version), IEEE/ACM 
Trans. Networking 2, 1-15. 

Mandelbrot, B.B. (1969). Long-run linearity, locally Gaussian processes, 

?-spectra and infinite variance. Internat. Econom. Rev. 10, 82-113. 

Paxson, V. and Floyd, S. (1995) Wide area traffic: the failure of Poisson 

modeling. IEEE/ACM Trans. Networking 3, 226-244. 

Resnick, S. and Samorodnitsky, G. (1999). Activity periods of an infinite 

server queue and performance of certain heavy tailed fluid queues, 

Queueing Systems Theory Appi. 33, 43-71. 

Smith, F.D., Hernandez, F., Jeffay, K. and Ott, D. (2001). What TCP/IP 

protocol headers can tell us about the Web. Proceedings of ACM 

SIGMETRICS 2001/Performance 2001 (Cambridge MA, June 2001) 

pp. 245-256. ACM Press, New York 

Taqqu, M.S. and Levy, J.B. (1986). Using renewal processes to generate long- 

range dependence and high variability, In Dependence in Probability 
and Statistics (E. Eberlein and M.S. Taqqu, eds.), pp. 73-89. Progr. 
Probab. Statist., vol. 11, Birkh?user, Boston. 

Jan Hannig 

Department of Statistics 

Colorado State University 

Fort Collins, CO 80523-1877 

USA 

Gennady Samorodnitsky 

School of Operations Research 

and Industrial Engineering 

and Department of Statistical 

Science 

Cornell University 

Ithaca, NY 14853 

USA 

J.S. Marron 

School of Operations Research 

and Industrial Engineering 

Cornell University 

Ithaca, NY 14853 

and Department of Statistics 

University of North Carolina 

Chapel Hill, NC 27599-3260 

USA 

F.D. Smith 

Department of Computer Science 

University of North Carolina 

Chapel Hill, NC 27599-3175 

USA 


	Article Contents
	p. [333]
	p. 334
	p. 335
	p. 336
	p. 337
	p. 338
	p. 339
	p. 340
	p. 341
	p. 342
	p. 343
	p. 344

	Issue Table of Contents
	Lecture Notes-Monograph Series, Vol. 42, Mathematical Statistics and Applications: Festschrift for Constance van Eeden (2003), pp. i-xxx+1-496
	Front Matter [pp. i-433]
	Preface [p. xiii]
	Biography [pp. xiv-xviii]
	Bibliography [pp. xix-xxiv]
	The Scientific Family Tree of Constance Van Eeden [pp. xxv-xxix]
	On Minimax Estimation of a Normal Mean Vector for General Quadratic Loss [pp. 3-14]
	Old and New Aspects of Minimax Estimation of a Bounded Parameter [pp. 15-30]
	Some Aspects of Matching Priors [pp. 31-43]
	Improving on the Mle of p for a Binomial(n,p) When p Is around ½ [pp. 45-61]
	Asymptotically Most Accurate Confidence Intervals in the Semiparametric Symmetric Location Model [pp. 65-84]
	Aligned Rank Test for the Bivariate Randomized Block Model [pp. 85-97]
	Testing Symmetry of the Errors of a Linear Model [pp. 99-112]
	Spearman's Rho and Kendall's Tau for Multivariate Data Sets [pp. 113-130]
	Accardi Contra Bell (Cum Mundi): The Impossible Coupling [pp. 133-154]
	Uncertainty, Entropy, Variance and the Effect of Partial Information [pp. 155-167]
	Toetjes Na [pp. 169-183]
	On Random Walks and Diffusions Related to Parrondo's Games [pp. 185-216]
	Derivative in the Mean of a Density and Statistical Applications [pp. 217-230]
	Asymptotics for Robust Sequential Designs in Misspecified Regression Models [pp. 233-247]
	Explicit Solutions in a Smooth Change Problem [pp. 249-260]
	On Threshold-Based Classification Rules [pp. 261-280]
	Two Types of Infectives among Homogeneous IVDU Susceptibles [pp. 281-289]
	Optimal Group Sequential Designs for the Anscombe-Colton Model [pp. 291-315]
	General Saddlepoint Approximation Methods for Smooth Functions of M-Estimates with Bootstrap Applications [pp. 317-331]
	Log-Normal Durations Can Give Long Range Dependence [pp. 333-344]
	On Estimating the Period of a Cyclic Poisson Process [pp. 345-356]
	Some Efficiency Comparisons for Estimators from Quasi-Likelihood and Generalized Estimating Equations [pp. 357-371]
	An Analysis of a Bivariate Time Series in Which the Components Are Sampled at Different Instants: À la recherche du temps perdu [pp. 375-396]
	Tests for Non-Correlation of Two Multivariate Time Series: A Nonparametric Approach [pp. 397-416]
	Affine Invariant Linear Hypotheses for the Multivariate General Linear Model with Varma Error Terms [pp. 417-432]
	Score Tests for Dependent Censoring with Survival Data [pp. 435-461]
	On Local Polynomial Estimation of Hazard Rates and Their Derivatives under Random Censoring [pp. 463-481]
	A Simulation Study of a Minimum Distance Estimator for Finite Mixtures under Censoring [pp. 483-495]
	Back Matter



