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Abstract

ON PURELY DISCONTINUOUS MARTINGALES
By

Jan Hannig

Even though the general theory of stochastic processes is a rather well developed field,
there is surprisingly little knowledge about the analytical properties of filtrations.
In this dissertation we explore connections between purely discontinuous martingales
and their filtrations. We are particularly interested in describing the conditions under
which there are no non-constant continuous martingales adapted to our filtration.
General martingale theory shows that every martingale can be decomposed into
continuous and purely discontinuous parts. In the first part of this dissertation we
give a necessary condition on a filtration JF; implied when the continuous part of the
decomposition is 0 a.s. for any JF; martingale. In the second part of the dissertation
we give examples showing that our condition is not sufficient. We also prove various

sufficient conditions.
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List of Notation

We will use standard notation introduced in many probability textbooks (e.g. [13],

[34], [16]). The following is a list of some notation used in this dissertation:

P(X =Y < o00) probability of the set {w € 2: X(w) =Y (w) < o0}

\V F" the smallest filtration (resp. o-algebra) containing all F™
A\ F" the biggest filtration (resp. o-algebra) contained in all F"
X l;gl X, for a cadlag process

AX jump process (X; — X; )

[T] graph of the stopping time 7

aVb maximum of {a, b}

aNb minimum of {a, b}

Xy X and Y are independent

XlgyY X and Y are conditionally independent given H

P'~P PP<Pand P> P

P =p-P measure P’ defined by P'(A) = [, pdP

N set of all natural numbers

R, [0, 00)

vil



Introduction

Even though the general theory of stochastic processes is a rather well developed field,
there is surprisingly little knowledge about the analytical properties of filtrations. In
this dissertation we explore connections between purely discontinuous martingales
and their filtrations. We are particularly interested in describing conditions under
which there are no non-constant continuous martingales adapted to our filtration.

We assume throughout the whole dissertation that the filtrations satisfy the usual
conditions (right continuity and completeness). When we define a filtration we always
augment the filtration to the one satisfying the usual conditions without implicitly
stating it. Similarly, all martingales are assumed to be in their cadlag version.

In the rest of this chapter we explore the historical background and motivation
of our problem. Then we give a list of important definitions, theorems, and notation
used in this dissertation.

Chapter 1 contains the main theorem of this dissertation. Under the assumption
of quasi-left-continuity we prove that if a filtration F; is purely discontinuous (i.e.

any F;-adapted martingale is purely discontinuous), then

Fo=c{An{r <t}; AcF., teT},



where T is a countable collection of totally inaccessible stopping times that exhaust
all possible jumps of martingales adapted to F;. The intuitive meaning of this theo-
rem is that the information contained in our filtration came only from jumps of the
martingales. The main difficulty we had to overcome in the proof of this theorem was
related to the fact that we allowed infinitely many jumps on finite intervals.

Chapter 2 contains several examples showing that the behavior of a purely dis-
continuous filtration can be sometimes non-intuitive. In particular we show that the
necessary condition proved in Chapter 1 is not sufficient. We also show that a subfil-
tration of a purely discontinuous filtration does not have to be purely discontinuous.

In Chapter 3 we prove that a filtration is purely discontinuous if and only if our
probability measure is an extreme point in the set of all probabilities that preserve
all compensators. The proof of this theorem is almost identical to the proof of the
characterization theorem for the weak representation property. The main drawback
of this condition is that it is usually very hard to verify.

Finally, Chapter 4 contains several sufficient conditions for a filtration to be purely
discontinuous. These conditions, derived as analytical properties of the filtration, are
easier to verify than the condition of Chapter 3. We also give several examples
of purely discontinuous filtrations, the most important of them being a filtration
generated by a purely discontinuous Levy process. The last theorem of this chapter
deals with discrete time sequences and gives a result on an equivalent change of
the probability measure under which the sequence becomes quasi-Markov. We hope
to apply this theorem to get another sufficient condition for purely discontinuous

filtrations in the future.



The main problem that still remains open is to find a necessary and sufficient

condition using the analytical properties of the filtration.

0.1 Historical Remarks

Martingales are one of the most important objects in the modern theory of probability.
The term martingale (originally denoting part of horse’s harness and later used for a
special gambling system) was introduced into the probability theory in the first half of
20th century as a natural generalization of sums of independent random variables, by
Bernstein (1927, 1937), Lévy (1937), and Ville (1939). The basic regularity theorems
for continuous time martingales first appear in a paper by Doob (1951).

Increasing sequences of o-algebra have been already used by Doob around 1940.
They were also used in the work of It6 (1944, 1946) and others. In their full generality,
filtrations first appear in the famous book, Stochastic Processes, by Doob (1953). The
idea of systematically extending to the stopping times results that are valid for fixed
times was inspired by the strong Markov property, first mentioned by Doob (1942)
in a paper on Markov chains. We also owe a lot of useful results on stopping times
to the school of Dynkin. Systematic study of stopping times and their associated
o-algebras was initiated by a paper of Chung and Doob (1965).

Predictability is a very clear concept in discrete time but it is somewhat unin-
tuitive in continuous time. Predictable stopping times appear implicitly in works of
Blumethal and Hunt (1957-1958). The theory of predictable and optional o-algebras

was developed into the modern theory of stochastic processes by Meyer (1966), Del-



lacherie (1972) and others. Let us note that this theory was motivated by Markov
processes. The importance of predictable o-algebra became clear after Doléans (1967)
had proved the equivalence between natural and predictable increasing processes,
thereby establishing the ultimate version of Doob-Meyer decomposition.

A compensator of a stopping time can be defined as the predictable part of Doob-
Meyer’s decomposition of the process 1(,<;. Compensators for more general objects,
such as random measures, were obtained by Jacod (1975). The compensators for
random measures can be derived using the theory of dual predictable projections.

In 1976, Yoeurp proved the existence of an orthogonal decomposition of martin-
gales into continuous and purely discontinuous parts. Meyer (1976) then proved that
the purely discontinuous part is a sum of compensated jumps. The term, purely
discontinuous martingale, is misleading. It does not refer to a piecewise constant
process. In fact there is a purely discontinuous martingale that has non-constant
continuous trajectories with non-zero probability. Rather the term, purely discon-
tinuous martingale, denotes the “non-continuous” part of the orthogonal decompo-
sition. Incidentally, any purely discontinuous martingale is orthogonal (in the sense
of quadratic variation) to all continuous martingales. In particular, any martingale
with locally bounded variation is purely discontinuous.

The main object of my dissertation is to characterize filtrations for which the
continuous part of the decomposition is constant almost surely. The problem was
motivated by an effort to generalize a notion of jumping filtration to admit any
purely discontinuous martingale.

A filtration F; is called jumping if it is generated by an increasing step process.
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Equivalently,

Fe=oc{An{n <t}; AeF,, keN}

where 7, — oo is an increasing sequence' of stopping times (the times of jumps of the
step process). The main feature of this filtration is that it is constant on [7g, Tx41).
A well known example of a jumping filtration is the natural filtration of a Poisson
process.

Many interesting analytical properties of jumping filtrations were studied in a se-
ries of papers by He and Wang in the early 1980s. An excellent summary of the results
on jumping filtrations can be found in their book, Semimartingales and Stochastic
Calculus (1992). An important characterization that directly motivated my research
is due to Jacod and Skorokhod (1994). They prove, in full generality, that a filtra-
tion is jumping if and only if any adapted martingale is a process of locally bounded
variation. Thus, jumping filtrations support no non-constant continuous martingales.

The limiting feature of jumping filtrations is that they allow only for a finitely
many jumps on finite intervals. It is well-known that there exist purely discontinu-
ous martingales that have infinitely many jumps on finite intervals. We will call this
phenomena accumulation of jumps. An example of such a martingale is a Gamma
process (a particular purely discontinuous Levy process). The main theorem of this
dissertation gives a necessary condition for a filtration to support only purely dis-
continuous martingales. This condition is very similar to the definition of jumping

filtration. We are able to accommodate all types of purely discontinuous processes

Tt is possible that P(r, = 00) > 0.



by allowing for the accumulation of jumps.

Sufficient conditions for a filtration to be purely discontinuous (i.e. support no
non-constant continuous martingale) are closely related to the weak predictable repre-
sentation property for martingales. A process X has weak predictable representation

property if any local martingale can be written in the form

M=My+H-X+Wxj,

where X°¢ is the continuous part of X, fi is the compensated random measure associ-
ated with jumps of X, and the integrators are predictable. Hence if X¢ = 0 then any
martingale is a stochastic integral with respect to the compensated jump measure i
and therefore it is purely discontinuous.

Random measures and the associated integrals were introduced by It6 (1951).
They were studied by Skorokhod (1965) in the case when the compensator is deter-
ministic. The general theory was developed by Jacod (1976). The notion of pre-
dictable representation property is due to Jacod (1977), where he also proved that
the process X has a weak predictable representation property if and only if the prob-
ability measure P is an extreme point in a certain set of probability measures. We

apply the techniques used to prove this theorem in Chapter 3.



0.2 Theory of Stochastic Processes — Overview

The purpose of this section is to give a reader an overview of the main definitions

and results that were used in this dissertation.

0.2.1 Filtrations, stopping times, martingales

Let (Q,F, P) be a probability space. Unless stated otherwise, all objects will be
defined on this probability space. A filtration (F;)icr, is a family of increasing sub-
o-algebras of the o-algebra F. Denote Foo = /., Fi-

A filtration is right-continuous if, for any t, F, = (,., F,. A filtration is P-
complete if Fy contains all P-null sets. We assume throughout this dissertation that
the filtrations at hand are right-continuous and complete (called the usual conditions).

A random variable T is a stopping time if

{T <t}yeHF, forallt>D0.

A stopping time T is predictable if there is an non-decreasing sequence of stopping
times T,, — T, such that T,, < T on the set {T" > 0}. The sequence T, is called an
announcing sequence. Stopping time T is totally inaccessible if P(T = H < 00) =0
for any predictable stopping time H.

Let T be a stopping time. Define o-algebras

Fr={AeFo: An{r<tte R}, Fr-=c{An{r>t}: AcF}.



Clearly Fr_ C Fr, and o-algebra Fr is, intuitively, the knowledge at time 7". Simi-
larly, Fr_ is the knowledge immediately preceding time 7'. It can be shown that if
T, | T then Fr = A\ Fr,. Similarly, if T is a predictable stopping time and T, is its
announcing sequence then Fr_ =\/ Fr,

A filtration F is quasi-left-continuous if Fr_ = Fr for any predictable stopping
time 7'.

A process M, is adapted if M; is F; measurable. An adapted process is called a
martingale if E[M,|Fs] = M; for any s < t. Similarly, an adapted process is called
a submartingale if E[M;|Fs] > Ms. Notice that the notion of martingale depends
on the underlying filtration. It is possible to have a process that is adapted to two
different filtrations, but is a martingale with respect to one and is not a martingale

with respect to the other. However, the following is clearly true.

Proposition 0.1. Let X be a martingale for the filtration cF;. Let G; be a subfiltra-

tion of cFy (i.e. Gy C F;), such that X is adapted to G;. Then X is a martingale for

Gi.

A process M, is a local martingale if there is an increasing sequence of stopping
times 7, 1 oo such that M;,p, is a martingale for each n. Such a sequence of
stopping times is called localizing sequence. A local martingale does not have to be a

martingale. Locally bounded variation, locally integrable, etc. are defined similarly.

Proposition 0.2. Let M; be a submartingale. Then My has a cadlag (right contin-

uous, left limits) version if and only if the function t — EX, is right continuous.

For a proof see [34] Theorem 6.27. (Remember that the filtration is assumed to

8



satisfy the usual conditions.)

We assume that all martingales are in their cadlag version.

Proposition 0.3. If M, is a continuous local martingale of locally finite variation,

then M = M, a.s.

For a proof see [34] Proposition 15.2.

Proposition 0.4. Filtration F is quasi-left-continuous if and only if AM, =0 a.s.

for any martingale M and any predictable stopping time .

For a proof see [34] Proposition 22.19.

The last notion we introduce in this section is predictable o-algebra. Let P be
a o-algebra in R, x ) generated by all continuous adapted processes. The sets in
P are called predictable sets, and the P measurable functions on R, x 2 are called

predictable processes.

Lemma 0.5. For any stopping time 7 and predictable process X;, the random vari-
able X; 1100y 18 Fr_-measurable. Conversely, if  is a real F,_-measurable random

variable, then there exists a predictable process X; such that {1 <oy = X;1{7 <00}

For a proof see [16] Corollary 3.23.
The predictable processes play a very important role as compensators and inte-

grands of stochastic integrals.

Proposition 0.6. A local martingale is predictable if and only if it is continuous.

For a proof see [34] Proposition 22.16.



0.2.2 Decomposition theorems

Theorem 0.7. (Doob-Meyer) A process X is a local submartingale if and only if
X =M + A, where M is a local martingale and A is a locally integrable, increasing,

predictable process. In that case M and A are a.s. unique.

For a proof see [34] Theorem 22.5.

This theorem is very profound and we will use it to define both compensators and
predictable square characteristics of martingales.

Suppose 7 is a stopping time. The process X; = 1«4 is a submartingale. Thus
there is a predictable increasing process Cy such that X; —C} is a local martingale. (It
can be shown X; — C; is a martingale and C} is an integrable process.) The process

Cy is called a compensator of 7.

Proposition 0.8. Let 7 be a stopping time with compensator Cy. Then 7 is totally

inaccessible if and only if C; is continuous.

For a proof see [34] Corollary 22.18.

We say that a martingale M; is square integrable if sup, EM}? < oc. Denote by M?
the collection of all square integrable martingales. It is not difficult to see that square
integrable martingales are also uniformly integrable. Also, the space M2, endowed
with inner product (M, N) = EMy Ny, is a Hilbert space. We say that M and N
are weakly orthogonal if (M, N) = 0.

If M is a locally square integrable martingale, then the process M7 is a local sub-
martingale. Let (M), denote the predictable quadratic variation, the predictable part
of the Doob Meyer decomposition of M?. If M, N are both locally square integrable,

10



then the predictable covariation is

(M,N)=—((M+N)—(M—-N)).

A~ =

The process (M, N) is a predictable process of locally integrable variation. Moreover,
MN — (M,N) is a locally square integrable martingale. We say that M, N are
orthogonal if (M, N) = 0.

We say that a martingale is purely discontinuous if it is a sum of compensated

jumps. (It is not necessarily a process of bounded variation.)

Theorem 0.9. (Yeurp, Meyer) Suppose M is a local martingale. Then M can be
uniquely decomposed as

M = My + M¢+ M¢,

where M€ is a continuous local martingale starting at 0, and M? is a purely discontin-

uous martingale. Furthermore, if M 1is locally square integrable then <MC, Md> = 0.

For a proof see [16] Chapter 7. (We have pooled several theorems from that

chapter to get Theorem 0.9.)

Proposition 0.10. Let M be a local martingale. Then for all t > 0

z:(AMs)2 <00 a.s.

s<t

For a proof see [16] Lemma 7.27.

Let M, N be local martingales. Proposition 0.10 and the fact that any continuous

11



process starting at 0 is locally bounded allow us to define quadratic covariation by
[M, N] = MoNo + (M€, N°) + > AM,AN,.
It is easy to see that [M, N] is an adapted process of finite variation, and if (M, N)

exists then [M, N] — (M, N) is a local martingale.

Theorem 0.11. Suppose Fu is countably generated. Then, there exists a sequence
of orthogonal square integrable martingales &, such that for any square integrable

martingale M starting at 0 there is a sequence of predictable processes H,, such that

M = Z/Hndgn. (1)

(The limit in (1) is considered in M?. The integrals are considered as stochastic
integrals®.) For the proof, see [7] VII1.46 — VIIL.52, and use the fact that the space

L*(F) is separable and therefore has a countable basis.

0.2.3 Jumping filtration

We say that a filtration F is jumping if there is a sequence of stopping times 7,

increasing a.s. to oo such that

F,=F,, as. ontheset {r, <t< 7}

2The theory of stochastic integration is an essential part of the theory of stochastic processes.
However, since it is not an essential part of this dissertation we omit it. An interested reader can
find it for example in [7], [16], or any other book on theory of stochastic processes.

12



Equivalently,

Fi=oc{An{n <t}; AeF,, keN}L

Theorem 0.12. (Jacod, Skorokhod) A filtration is jumping if and only if all its mar-

tingales are a.s. of locally bounded variation.
For the proof see [29].

Proposition 0.13. Let T be a non-negative random variable and define Fy = o{{r <
s} i s < t}3. Then 7 is totally inaccessible if and only if the distribution of T is
continuous on [0,00) (with a possible atom {T = oo} ). In this case the filtration F is

quasi-left-continuous.

For a proof see [16] Example 5.70.

0.2.4 Miscellaneous

Define a graph of a stopping time 7 as

7] = {(t,w) € [0,00) x Q: t =7(w)}.

We say that H is a thin process if there is a sequence of stopping times {7,} such

that

H # 0] = (J[r]-

neN

Let (AM); = M; — M, denote the jump process of any cadlag process M.

3Remember that we assume that F is automatically augmented to satisfy the usual conditions.

13



Theorem 0.14. In order that a thin process H be the jump process AM of a local

martingale M it is necessary and sufficient that

1. E[H,|F._] =0 a.s. for any predictable stopping time T.

2. \/> i H? is an increasing locally integrable process.

Additionally, M exists as a martingale of locally integrable variation if and only if 2.

is replaced by the condition: Y., |H| is an increasing locally integrable process.

For a proof see [16] Theorem 7.42 and Corollary 7.43.
A semimartingale is a right-continuous adapted process admitting a decomposition

M+ A, where M is a local martingale and A is a process of locally integrable variation.

Theorem 0.15. (Doléans’ exponential) For any semimartingale X with Xy = 0, the

equation Z =1+ Z_ - X has the a.s. unique solution

For a proof see [34] Theorem 23.8.

Theorem 0.16. (General Girsanov’s Theorem) Assume that P' < P, define Z; =
E[‘fi—lg | Fi], and consider a local P-martingale M such that the process [M,Z] has
locally integrable variation and P-compensator (M, Z). Then M=M- Z% (M, Z)
is a local P'-martingale. Moreover, if M is continuous then M' is continuous, and

(M) calculated under P equals (M') calculated under P’ a.s. with respect to P'.

For a proof see [34] Theorem 23.9, [16] Corollary 12.15, and Corollary 12.16.

14



Let (, be a discrete time stationary sequence and let G be its shift-invariant o-

algebra. Denote © the shift operator.

Theorem 0.17. (Birkhoff) Consider a measurable function f : RY — R such that

E|f(Q)|P < oo for somep > 1. Then

n Y f(OF) = E[f(Q)|6] a.s. and in LP.

k<n

For a proof see [34] Theorem 9.6.

We say that X is conditionally independent of Y given H (X Iy Y) if

P[(X € AN (Y € B)|H] = P[(X € A)| H].P[(Y € B)| H].

Proposition 0.18. We have X Uy Y if and only if

P[X € A|H,Y] = P|X € A| H].

For a proof see [34] Proposition 5.6.
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Chapter 1

Main Theorem

In this chapter we state and prove the main theorem of this dissertation.

Unless stated otherwise we always assume that the filtration JF; is complete, right-
continuous, quasi-left-continuous, 7y = {0}, Q} a.s., and the o-algebra F, is countably
generated. All martingales are considered to be in cadlag version.

Let us introduce the following definitions.

Definition 1.1. A filtration is called purely discontinuous if any continuous adapted

martingale is constant a.s.

Definition 1.2. Let 7" be a countable collection of stopping times. Then we define
S; = inf{v(w); v(w) > 7(w),v € T},
where 7 is a stopping time, and

Aj(w) = sup{7r(w); 7(w) < t, 7 €T},

16



where ¢t is a deterministic time.

Note that S, is a stopping time, while A; is not. The random variables S; and A;
will be often referred to as “first jump after 77 and “last jump before ¢’ respectively.
This comes from the observation that if the set T is the set of all possible jumps
of adapted martingales then any F;, martingale does not have jumps on the interval
(1,S;) and has at least one jump on [S;, S;+¢) for all e > 0. An analogous statement
is true for A;.

Now we can state the main theorem of this dissertation.

Theorem 1.1. Let F; be a purely discontinuous filtration. Then

Fo=c{An{r <t}; AeF, €T}, (1.1)

where T is a countable collection of totally inaccessible stopping times with disjoint

graphs.

The intuitive meaning of this theorem is that the information contained in our
filtration came only from jumps of the martingales. To prove it we will need the

following lemma.

Lemma 1.2. The following is true under the assumptions of Theorem 1.1: Let H <
S be two stopping times. If any F; martingale is continuous on the interval (H,S)
then Fy = Fg on {H <t < S} (i.e. for every A € F; there is A" € Fy such that

AN{H<t< S}=AN{H <t < S} as.).

17



Proof. The proof of the lemma is due to Jacod and Skorokhod [29]. We corrected a
little typo and checked that it works in our situation.
Fix t and choose A € F;. Define the martingale N4 = P[AN{H <t < S}|F,],

and the point process X; = lys<snr<s} wWith compensator Y. Notice that
B=AN{H <t< S} € Fs_ NF. (1.2)

Hence the martingale

M, = N;' = Ny

is null on [0, H] and a constant on [S A ¢,00). Assumptions of the lemma imply

[AM] C [S]. Calculate
AMg = AN{ = —=N§ 154 (1.3)

The last equality in (1.3) follows from the following facts: ANZ = 0 on the set

{S >t} and the NZ = 0 on the set {S < t}. Hence
M, :/ H,d(X -Y), (1.4)
0
where H, = —N; 1{;5, is a bounded predictable process. Formula (1.4) then implies:

sAL
N4 = N# +/ N, dY, as. if H<t<S.
0

18



Now observe that Y; = 0 for s < H and therefore N* = N#AE(Y ) 0 if H <t < S,
where £(y) denotes the Doléans’ exponential of Y (see Theorem 0.15). Since A was

an arbitrary set we get N = NE(Y),,, if H <t < S. This implies

NANY = NPNj a.s. on {H <t < S}. (1.5)

Define an Fy measurable set A’ = {N{} = Nj > 0}. The relation (1.5), N/ =
1Aﬁ{H§t<S}a and NtQ = 1{H§t<S} 1mply that AN {H S t < S} =A'nN {H S t <

S} a.s. O

Proof of Theorem 1.1. First we construct the set T'. Let M be a fixed square inte-

grable martingale with M (0) = 0. Define stopping times

0 =0, ¢ =inf{t > 7' ;|AM| € (ﬁ’n—l]}.

Set Thr = {70; 7 # o0 a.s.}. The definition of 7' assures that if 7,v € T, are two
different stopping times, then the set {7 = v < oo} = ().
Since the filtration is quasi-left-continuous, the stopping times 7;' are totally in-

accessible. It is known that (see Theorem 0.9)

M=>" AMl;<y —Cs, (1.6)

7T

where the right-hand-side of (1.6) is a compensated sum of jumps and the compen-

sators C, are continuous functions of finite variation.
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Since F, is countably generated, we can find a countable set of square integrable
martingales {n,} such that (n,,7,) = 0 and each M € M? starting at 0 can be
written as M =Y [ V,dn, (see Theorem 0.11). We define T = U, Ty,

Because 7 is countable, we can order the elements of T to form a sequence {m.}-
The jumping process N; = > 27"1;. <4 is bounded. Therefore the martingale
M, = N, — C; is square integrable and the compensator C; is continuous. Thus
[AM] = [AN] = U, c7l7]. Define T' = T);. Clearly T contains stopping times with
mutually disjoint graphs and J_,.7[7'] = U, ep[T]-

Let G, =o{AN{r <t};A € F,,7 € T}. It is easy to see that G C F. To prove
Theorem 1.1 we need to prove {F;} = {G;}.

To begin with we prove that for any totally inaccessible F; stopping time v the
filtrations G, = F, on the set {v < co}.

If v € T, the assertion follows from the definition. Let us assume that v ¢ T.
The F; martingale X; = 1¢,<;y — C is square integrable, hence X = > f Vadn, a.s..
It follows that AX = >V, - An, a.s.. From this we get [v] = U ey {m = v} N][7].

Thus for any finite ¢ € R, and for any A € F,

Anfo<tt= | An{r=vin{r <t} eq.
{reT}

It follows that v is a stopping time with respect to G, and G, = F, on the set
{v < oo}. This restriction arises from the definition of G, = \/ G = c{AN {1 <
oo Ae F,reT}.

The following simple observations are valid for any sequence of stopping times

20



{m}. ¥ F,, =G, on {1, <oo}and 7, | 7, then

F- :/\TTn :/\Qm =G, on U{Tn < oo} = {1 < o0}

Similarly if 7,, T 7, then

F- :\/TTn :\/Qm =G, on ﬂ{Tn < oo} = {1 < o0}

The latter statement is true because the filtrations are quasi-left-continuous.

Recall that in the Definition 1.2 we have defined:

S: = inf{vgpsry;v e T,

and

Ai(w) = sup{7r(w); T(w) < t,7 € T}.

The random variable S, is a stopping time, while A; is not. However A; is a G,

measurable random variable. This follows from the relation:

{A; < s} ={S; >t} € G.

Since T is a countable set, it follows from the previous statements that Fg_ = Gg.
on the set {S, < oo}. Similarly, if ¢ is a predictable stopping time and the set

{¢ = A, <t} has a non-zero probability, F- = G, on the set containing {¢( = A;}.
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To prove the latter note that Fy = Gy is a trivial o-algebra. We assume without
loss of generality that ¢ > 0 a.s., and (, < ( is a sequence announcing (. It follows
from the definition of A, that S;, (w) < A;(w) <t on the set {¢ = A;}. The sequence
Se, is nondecreasing, so we can define S = lim S;,. Noticing that S is a G, stopping
time we deduce that Fg = Gg on the set {S < co}. The statement is implied by the
fact that {¢ = A} C {( =95 < 0}.

To finish the proof it will be enough to prove F;, = G,, for a fixed ¢,. I will do it
separately on three different G,, measurable sets.

Following for a moment the proof of Proposition 22.4 in [34] let

p=supP (U{Ato =10 < oo}) :

n

where the supremum extends over all possible sequences of predictable stopping times.
Combining sequences such that the probability on the right-hand-side approaches p
we construct a sequence of predictable stopping times for which the supremum is
attained. Let {7P} be this sequence. (Note that if p = 0 this sequence is empty.)

Define the following sets:

Bl — {Ato — t[)} U {Sto — t[)}

B, = (U{Ato = u {4, :Tna}> \ By

n ThaeT

By =Q\ (B, UB,)

These sets are G;, measurable. This is clearly true for B;. The set By is G;, measurable
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because all the stopping times involved in its definition can be taken to be G; stopping
times.

It follows from the previous discussion that F;, = G;, on the set Bj.

Denote the sequence of stopping times that was involved in definition of B, by
{vn}. We have established, that we can choose this sequence so that P(v, = A;, <
o) > 0, and F,, = G, on the set {v, < co} D {v, = A;,}. (The statement is true
for both totally inaccessible and predictable stopping times.) As mentioned before no
F: martingale has jumps between times v, and S, for any fixed n. It follows from

Lemma 1.2 that if B € F,, there is B’ € F,,, = G,,, such that

Bn{v, <t< S, }=B'n{v,<t<8S,}eq,.

Finally B, C |, {v, <t < S,,} implies F;, = G, on Bs.

To overcome problems associated with B; we will enlarge our filtrations. Define

A;, on the set Bs,

i
I

oc  otherwise.

Note that A is G,, measurable random variable, and P(A = 7) = 0 for all ; stopping

times 7. We further define!

’Hs:a{flgx;xgs}, ﬁs:FSV’HS, G, =G,V H,.

! The filtrations are enlarged to satisfy the usual conditions where necessary.

23



The filtration was augmented just enough to make the random variable A a stop-
ping time. First we prove that it is a totally inaccessible stopping time.

Let 7 be a F, stopping time. I will prove that there is a F; stopping time 7/, such
that 7 = 7' on the set {r < A}. Denote C; = {r > s} N{A > s} = {TAA > s}.
Since {/Nl > s} is an atom in H,, there is D, € F, such that Cy, = D, N {/Nl > s}. We

define

D,=J () De.

q1>5 q2<q1
01€Q ¢2€Q

The right-continuity of the filtrations involved gives D, € F;, and the definition of C
gives Oy = D,N{A > s}. Define 7/(w) = sup{t : w € D,}. Tt is a F; stopping time
and 7 = 7' on the set {7 < A}. The fact that A is a totally inaccessible F; stopping
time follows directly.

In a similar way we prove that for any 7 € T, F,_ = F,_. Namely, let t < ¢, and
B € F,

Bn{r>t}=Bn{t<r<th)U(BN{ty<1}) € Fr_,

since B € F, C Fy, and {t <7 <ty} C {A >t}
As a next step we want to prove that F; = G; on the set {A < oco}. For any
BeF.,teT

Bﬂ{T<A}:UBﬂ{T§q<A}EQ~4_.
qeQ
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Calculate on the set {A < oo}

Fi_=o{Bn{A>t}, BeF}
—o{BNn{A>71>t}, 7€T,BcF}

=o{Dn{A>t}, DeF }

C QL.

Since on the same set J’EA, = QNA, C QNA C ﬁg, it is enough to prove ~7'~—AL =F; To

do it we will use a rather unusual feature of our enlargement. Notice

{A<s}={A<tIn{A, <s} fors<t<t.

However {A; < s} € F;. This implies that the o-algebra F;, was augmented only by

1 set. More precisely

Fi=FVvo{A<t}) as. (1.7)

Let Z be the set of all non-negative, integrable, F,, measurable random variables,

and Z € Z. Simple algebra and equation (1.7) show that the martingale

0 = BIZ|F) = € ()1 i<y + & (Ol s, (1.8)
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where
E[Z1;54|F]
P[A < t|F)]

E[Z1 (| F]

o and (1) = P[A>{F]

& () =

Observe that the process E[Z1;.,|%] is a submartingale and the function ¢ —
E[Z1 i<y is continuous, hence there is a cadldg modification of E[Z1, ;.,,|F]. Thus
we can assume without loss of generality that the processes &7 (t) and &7 (t) are F;

adapted cadlag processes. This immediately implies that

1=0(n?, Ze2)=0((l(A-), Z€ Z)C Fy_,

since any F, adapted cddldg process is a.s. continuous at the time A.

Lemma 1.2 implies that F; is constant on any interval [s, Sy), e.g. for any ¢ > s
and B € F; we have B’ € F; such that BN {S; > t} = B'N{S; > t}. A similar
statement is true for o-algebra H, and consequently? for F,.

To finish the proof we will closely follow the proof that appears in section 2
(page 22) of [29]. Let M, be any uniformly integrable F;, martingale such that M,
is 0 on [0, A] and constant on [ty,00). To prove that M, is 0 on [0,00), we define
M7 = Mins, — Myns. Note that {Ss < to} C {Ss < fl}, and therefore the martingale
M7 = 0 on the set {S; < to}, so MJ = M/1y,<s,;. The statement established in
the previous paragraph implies that for any ¢ > s there is a F, measurable random
variable N; such that N; = M} on the set {s <t < S,;}. Call G a regular version of the

law of the pair (S, Mg, ) conditional on F,, and G"(t) = G((t, 0] x RN [tg, 0] x R)).

2Using (1.8) we can actually prove that the filtration F, is quasi-left-continuous.
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If ¢t > s, we have the following string of a.s. equalities (see [29] for justification):

N,G"(t) = B[Nl <5y lio<s.y | Fs] = EIM 1 po<s.y1ji<s,y | Fl

— EI:MtS]'{t<SS}

Fs) = E[M$ 1<s,y

£ = / t Loy G(du, dz). (L9)

The functions G”(t) and [ z 1{,54G(du, dz) (taken as a function of t) are a.s. constant
on the interval [0,¢y). The fact that the second function is constant follows from
G ((t,t9) x (R\ {0})) = 0 a.s. To conclude that M; = 0 a.s. on the interval [0, t]
notice that the set {G"(0) = 0} is F, measurable, and more important {G"(0) = 0} C
{S, < to}. (The continuity of M?® at the point t, is implied by F,_ D> F,_ = F, = F;.)
Since s was arbitrary, we get M; = 0 for ¢ € [0,%y]. From here we finally obtain

Fiy=Fi=G;i C Gy, on the set {A < oo} = Bs. O

The following two examples demonstrate that it is indeed possible to have P(B)
or P(Bj;) bigger then 0. The filtration defined in each example is purely discontinuous.
We postpone the proof thereof untill the last chapter. (Example 1.1 is covered by

Corollary 4.3 and Example 1.2 is covered by Example 4.3.)

Example 1.1. Let 7,, be sequence of independent random variables with exponential
distribution (A = 1). Define F; = o{{1, < s}; s < t} (i.e. F is the filtration
generated by the sequence of processes {1{r,<;}). It is easy to see that F; is a
quasi-left-continuous filtration satisfying the conclusion of Theorem 1.1, and for any
te(0,1), Ay =S, =t. Thus P(By) = 1.

See Figure 1.1 for a simulated sample path of the compensated sum of jumps
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Figure 1.1: Simulated sample path of a martingale with accumulation of jumps ev-
erywhere (2 different resolutions).
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>0 (Lrn<y — CF) . The simulations were performed using MATHEMATICA 4.0
on iMac DVD owned by the author. To draw the picture we used first 1000 terms of

the sum.

Ezxample 1.2. Let B(t) be a Brownian motion and W, be its natural filtration. Let
Zy = inf{s >t : B(s) =0}, and D; = sup{s < t: B(s) = 0}. Note that D; < t <
Zya.s.. It follows easily from the strong Markov property of Brownian motion that
for any W-stopping time v we have P(v = D;) = 0.

Denote the natural filtration of the process sign(B;) by F;. We will prove in the
Example 4.3 that this filtration is purely discontinuous and the set T = {Z, : ¢ € Q}

is the set of all totally inaccessible F;-stopping times®. Thus A; = D; and P(B3) = 1.

?In the sense that for any totally inaccessible stopping time 7, [7] C U, cr[v].
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Chapter 2

Examples

In this chapter we will present several examples that constitute a negative answer to
some rather interesting questions. First we will prove that the necessary condition
(1.1) in Theorem 1.1 is not a sufficient condition. Then we will go on and prove
that a subfiltration of a purely discontinuous filtration does not have to be purely
discontinuous.

In the previous chapter we have proved a necessary condition for filtration to
be purely discontinuous. However, as the following examples show the condition is
not sufficient. Namely we find filtrations that are defined in agreement with the

formula (1.1) of the main theorem, but are not purely discontinuous.

Ezample 2.1. Let {II?} be a sequence of independent Poisson processes with inten-
sities A, = n, W; be a Brownian motion independent of {II?'}, and 0 < g < 1 be an
increasing, continuously differentiable function. Denote the k-th jump of II" by 7.
Define F; as the smallest o-algebra for which the processes {g(W:n)1(n<yy} are all
adapted. Then F; satisfies the conclusion of Theorem 1.1 with 7' = {7, n,k € N},
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and W; is an adapted continuous martingale.

Proof. Since the Poisson processes involved are mutually independent the stopping
times in 7" have disjoint graphs. It is a well-known fact that times of jumps of
Poisson process are totally inaccessible with respect to its natural filtration. Since
the processes II" and W are mutually independent, the compensator of 7} calculated
under the natural filtration of I1" is equal to a compensator calculated under F;.
Hence the compensator is continuous and the stopping time 7' is totally inaccessible
with respect to the filtration F;.

Define 7" = 37| i Lirp<t<rp, }- Then 7,, and g(W,») are F;-measurable random

variables. We need to prove that 7 — t a.s. Calculate

m—1
{t—m" >t | J{mn - >eyu{m <t}
k=0
m m 4 m
P <t) < P(|7h — —| > — —1) < = ,
(Tm ) = (|Tm n | n ) — (% _ t)Z (m _ nt)Z

Pt—1">¢e)<me ™+ ——— =ne "+ ——. (2.1)

Since the right-hand side of (2.1) is summable, we conclude by Borel-Cantelli’s lemma
that P(t — 7" > £, i. 0.) = 0. Hence 7" — t a.s., and consequently g(W,») —
g(Wy) a.s.. Thus W, is an F; adapted process. Finally the independence of IT" and

W ensures that W is a Brownian motion with respect to the filtration F;. O
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Figure 2.1: Simulated times of jumps for Poisson processes with different .

We will prove in the last chapter that the o-algebra generated by the sequence
of independent Poisson processes is purely discontinuous (see Theorem 4.2). That
means that we “smuggled in” the continuous martingale into the filtration using the
size of jumps. A natural question arises whether filtrations generated by jumps only
are purely discontinuous.

The next example shows that there is a filtration generated by jumps of size 1

that still supports continuous martingale.

Example 2.2. Let Uy be a sequence of independent random variables with uniform
distribution on (0,1). Let W be a Brownian motion independent of the sequence
{Uk}. Denote W, the natural filtration of W. There is a strictly increasing continuous

process Gy, 0 < G < 1 that generated W,. Define!

T = G(},}(w) (w), (2.2)

!The symbol G,!(w) is the inverse function to the function Ge(w). If Ug(w) > Geo(w), then
Tk (w) = 00.
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and
Fi=o{{n<s}: s<t keN}. (2.3)

Then F; satisfies the conclusion of Theorem 1.1, but W, is an adapted continuous

martingale.

Proof. First we find the suitable G. Let

where g(t) = L arctan(t) + 3. This process is an increasing, W, adapted, continuous

process, and 0 < Gy < 1 a.s. The continuity of the entities involved implies

G, — G 1

t
= - (W “tg(W).
et [ eamy = e m)

Hence W is adapted to the natural filtration of G.
It follows from formula (2.2) that {7} is a stationary sequence of random variables

and Wy, is its shift invariant o-algebra. Moreover
Thus the well-known ergodic theorem (see Theorem 0.17) implies

1
ﬁ Z l{TkSt} — E[l{ngt} | Woo] = Gt a.s.
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We proved that W, is F; adapted. However, we still have to check that W; is a
martingale with respect to this bigger o-algebra.

Fix t < s and denote G, = G, Then 7, At = G MU At = CNJ{I(Uk) A t.
However G' and G~ are W, x B[0,t] measurable, whence 7;, A ¢ is independent of
W, — W,. Thus W is a Brownian motion under the filtration F.

To finish the proof notice that the random variables 7, have continuous distribu-
tion, 71 Iy, f(72,73,...) for any measurable function f, and deduce that 7, are

totally inaccessible stopping times. O

The following simple example shows that a subfiltration of a purely discontinuous

filtration is not necessarily purely discontinuous.

Example 2.3. Let W, be a Brownian motion and 7 be a random variable uniformly
distributed on (0, 1) independent of W. Denote H; the smallest filtration that makes

both W; and 1(,<; adapted. Define filtration

ft:U{Aﬂ{TSt} : AEHl} (25)

and a process X; = Wiy — Woyaay. Let G; denote the natural filtration of X.
Then F; is a purely discontinuous filtration, X is a continuous G;-martingale, and

G, C F, for each t.

Proof. The filtration F, was generated by one jump. It is a purely discontinuous
filtration by Theorem 0.12. The process X is a continuous martingale with respect

to both H; and G; by Proposition 0.1. Finally, G, C F;, because X; is H; measurable
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for any ¢ > 0, and X; =0 for t < 7. I

Notice that X; is an F;-adapted process, but it is not an F;-martingale. This was

accomplished by “moving the information” in the filtration #; forward.
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Chapter 3

Necessary and Sufficient Condition

In this chapter we prove a general necessary and sufficient condition for a filtration
to be purely discontinuous. Our condition is similar to the condition discovered by
J. Jacod and M. Yor (1977), [31], that claims that a martingale M has a strong
representation property if and only if the original probability is an extreme point in
the set of all probability measures that keep M a martingale. The big drawback of
our condition is that it is usually very hard to verify.

Denote C{’ﬁ the compensator of {1{;<;;, where 7 is a totally inaccessible stopping

time and £ is a bounded F, measurable random variable.

Theorem 3.1. Let F; be a quasi-left-continuous filtration. Put

P' is a probability on F such that
=< P:

C;’6 is a compensator of Elgr<yy under P’

Then F s purely discontinuous and Fy is a trivial o-algebra if and only if P is an
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extreme point of .

The proof is a an adaptation of the proof of a result similar to the theorem

mentioned in the first paragraph of this chapter (Theorem 13.21 from [16]).

Proof. Assume that P is an extreme point of I'. Let ¢ be bounded F; measurable
random variable with £ = 0 and N be a bounded continuous martingale with

Ny = 0. Denote M = ( + N. Assume without loss of generality that
M| < 1.

Define

Moo Moo

Since EMy = 0, Py, P, are probability measures equivalent to P and

1 1
P=-P +-P,.
SRAIDEE:

For arbitrary but fixed 7 and § denote X; = &l <y — C’Z’f. The Girsanov’s

Theorem (see Theorem 0.16) implies that the P semimartingale

, 1
X=X = —(2,X), (3.1)

where Z = (1 + My /2), is a P, martingale. However, (Z, X) = 0 and therefore
P, €T'. Hence P, = P and subsequently M = 0.
Assume that P is not an extreme point of I', namely P = AP, + (1 — \)P, for
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some suitable P, P, € I'. Clearly P, << P. Define

dP
Z = d—Pl, Z, = E[Z | F).

If AZ # 0 we can find a totally inaccessible stopping time 7 # oo such that [r] C
[AZ # 0], and AZ; is bounded. The process X; = AZ 1<y — 777 is a martingale

and the Girsanov’s theorem implies that

X':X—Zi.<z,x>

is a P; martingale. However the predictable process of bounded variation - - (Z, X)

is not a constant P a.s., and therefore the compensator of AZ 1<, under P is not

CPA% Thus AZ = 0. O

Notice that the proof really used only probabilities absolutely continuous with

respect to P. Hence we can reformulate the theorem in the following way.

Corollary 3.2. Let F; be a quasi-left-continuous filtration. Put

/ / P' << P is a probability on Fu such that
=< P:

C’Z’g is a compensator of {1ir<y under P’

Then F is purely discontinuous if and only if I' = {P}.

Remark 3.1. As noted earlier the condition of Theorem 3.1 is rather difficult to verify.
However it can be verified in the case of o-algebra generated by a purely discontinuous
Levy process. It is a known fact that the probability measure is uniquely determined
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by the predictable characteristics of the Levy process and all the compensators are

uniquely determined by the Levy measure.
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Chapter 4

Sufficient Conditions

In this chapter we will investigate various sufficient conditions for purely discontinuous
filtrations as well as some auxiliary results. These conditions will be easier to verify
than the condition of Theorem 3.1.

We will refer to the following sets of assumptions corresponding to the conclusion

of Theorem 1.1.

Assumptions.

Al. Let 7, > 0 be a sequence of random variables with disjoint graphs, &, be a

sequence of random variables, and F; be the filtration generated by processes

{&nlim< }-

A2. We assume Al and &, = 1.

R1. In addition to A1 we assume that the filtration F; is quasi-left-continuous, the

stopping times 7, that generated the filtration are all totally inaccessible, and
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if 7’ is a totally inaccessible stopping time, then

™ < JIm). (4.1)

R2. We assume R1 and &, = 1.

Clearly, if a filtration satisfies assumption A2 (resp. R2) it also satisfies assump-

tion Al (resp. R1). We will also use the following notation.

Definition 4.1. Let filtration F; satisfy Assumption Al we define FF as filtration
defined by processes {&, 14, <1, n < k}, and F* as filtration defined by processes
{gnl{mgt}a n > k}

We say that the filtration JF; is tail-free if the o-algebra

Fr= () #

keN

is trivial for ¢ = oo.

The following examples show that in the assumption R1 the quasi-left-continuity

and the relation (4.1) does not hold automatically and should be assumed.

Example 4.1. Let W be a Brownian motion starting at 1. Define
Z,=inf{t : W, =0, t>q}.

It is a well-known fact that Plg < Z, < oo] = 1. Let {g,}32, = QN (0,00), qo = 0.
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Since the random variables {Z,} do not have disjoint graphs, define

oo on A=UrlidZ, = Zy )

N
Il

gn
Z,, on Q\A.
Denote by F; the filtration generated by the processes {1{qut}}- Then the properties
of Brownian motion assure that Z, are totally inaccessible stopping times. We have
defined Zq in such a way that Zq = 7y for any rational ¢ > 0. Furthermore 7, was

not involved in the definition of the filtration F;. However,

Z() = inf Zq
qeQn(0,1)

is a totally inaccessible stopping time with respect to the filtration F;.

Example 4.2. Let {ex} be a sequence of i.i.d. exponential (A = 1) variables defined
on a probability space (1, F1, P1). Let (Q2 = {0,1}, F» = {0, {0}, {1},{0,1}}, P» =
(1/2,1/2)) be another probability space. Define the probability space (€2, F, P) as
the product space of £2; and €2,. Also define random variables
00 for wy =1,
T (Wi, we) = (4.2)
er(wi) +1 for wy =0,
and filtration F, = o{{m < s} : s <t, k € N}. Clearly the filtration F; is of the
form of Assumption R2, perhaps short of being quasi-left-continuous. We will indeed
prove it is not quasi-left-continuous.
Notice that the o-algebra F; is trivial for s < 1. Hence F;_ is also trivial.
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However, the right-continuity of the filtration implies that the set

A= U{m < st =2 x {0}

1<s keN

is F; measurable, and P(A) = 1/2. Thus F,_ # F;.

Remark 4.1. In the previous example we have used the fact that S; = 1. It is not
difficult to prove that if a filtration satisfies Assumption R1 minus the quasi-left-
continuity and for a predictable stopping time 7 the stopping time S, > 7 a.s., then

Fo_=F,.

We now proceed to the first theorem of this section.

Theorem 4.1. Let filtration F; satisfy assumption Al. Additionally, for each k there

is ng, such that for any & € FE |

Elg| 7] = ElE] 7. (4.3)

Then the filtration F; is purely discontinuous.

We say that a filtration is quasi-Markov if it satisfies the assumptions of Theo-

rem 4.1.

Proof. Let & be a continuous, square integrable JF;-martingale satisfying & = 0.

There is a sequence &F of square integrable F¥ -measurable random variables such
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that

ek e (4.4)

Define &8 = E[¢"|F] = E[¢"™|F]. The last equality is the assumption of the
theorem.
The filtration F}* is generated by a finite number of stopping times and it is

jumping. The Theorem 0.12 implies that £F is a compensated sum of jumps, whence

(€", &) =0. (4.5)

This and equation 4.4 imply £ =0 a.s. O

The Assumption 1 in Theorem 4.1 was used only to establish the fact that the
filtrations F;* are purely discontinuous. Thus we have already proved the following

theorem.

Theorem 4.2. Let F]' be an increasing sequence of purely discontinuous filtrations.

And F = \/ F". Assume that for each k there is ny, such that for any & € F¥ ,

El¢| ] = E[E[F™]. (4.6)

Then the filtration F is purely discontinuous.

We will now state two interesting examples.

44



Corollary 4.3. Let 7, > 0 be a sequence of independent, non-atomic random vari-

ables, and F; be the filtration generated by the processes {1, < t}. Then
1. 1, are totally inaccessible stopping times with respect to Fy.
2. Any F; adapted continuous martingale is constant a.s.

Proof. To prove statement 1 it is enough to prove that the compensator of 1, <4 is
continuous. Define ft(k) as filtration defined by process {17, <4}, and F &) as filtration

defined by processes {&,1¢r,<¢}, n # k}. Calculate

Elser,<tylane = P(B)Elfscr,<ila,

for A e F™ and B € ™. Thus

Ells<r,<ty | Fol = Ellfscr,<ey | FLV). (4.7)

Therefore the compensator of 1, <4 is the same in both filtrations F; and ]—"t(n), hence
it is continuous (see Proposition 0.13).

We now proceed to the proof of the part 2. Let & be a bounded F7 measurable
random variable. Clearly & = f(7,...,7,), for a suitable measurable function f. For

seR, Aec F" and B € F" calculate

E €l = P(B)E€1, = P(B)ELE[E |F2)14] = B[ |F)1ars).
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Monotone class argument implies

My = E§| F] = E[¢| F]. (4.8)

This establishes the quasi-Markov property and the corollary follows. O

The next example is very important. It deals with filtration generated by a Levy
process. The literature of Levy processes is very well developed (see [3], [16], [30]).
Natural filtration F; of a Levy process X has been proved to be quasi-left-con-
tinuous([16] Theorem 13.47). In fact the very notion of quasi-left-continuity has
been inspired by Levy processes. Another well-known fact is that X has a week
representation property with respect to F; ([16] Theorem 13.48). The Corollary 4.4
is an immediate consequence of this fact. However, we have decided to present a

proof that does not use this fact.

Corollary 4.4. Let X be a purely discontinuous process with independent increments
without fized discontinuities (sometimes called a Levy process) and F; be its natural

filtration. Then any F; adapted local continuous martingale is constant a.s.

Proof. We can assume without loss of generality that X is a martingale and AX €
[—1,1]. Define X*) to be a compensated sum of jumps of X whose size belongs to
[~1/k,—1/(k+ 1)) N (1/(k + 1),1/k]. The processes X*) are mutually independent
processes with independent increments (see [34] Lemma 13.6).

Define 7 as the natural filtration of X®, F» = \/"  FO and F» = Vs, F.

The fact that the F; is a natural filtration of X and the relation X = > X® imply
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that F = \/ F®. Notice that the filtration F™ is jumping and therefore purely
discontinuous by the Theorem 0.12.

Since the o-algebras F™ and F are independent, we can calculate
G = E[C"[A] = EIC" | F, (4.9)

for any integrable F -measurable random variable (. The rest of the proof follows

from Theorem 4.2. O

Before proceeding to the last example of this section we need to state one well-

known result.

Lemma 4.5. Let X be a purely discontinuous martingale and F; be its natural filtra-

tion. Then iof X has a weak representation property then JF, is purely discontinuous.

Recall that X has a weak representation property if for any martingale M; with

My = 0, there are two suitable predictable processes! H;, H, such that

Mtc: /Hlch, Mtd :/ HQ(ZE,S)[L(dS,dI),
0 [0,t] xR

where M¢ (resp. M?) are the continuous (resp. purely discontinuous parts) of M,
X¢ is the continuous part of X and /i is the compensated jump measure of X. Since

X¢ =0 the lemma is just a simple consequence of the definition.

Example 4.3. Let B be a Brownian motion and F be the natural filtration of the

process sign(B;). Then F; is purely discontinuous.

!The second process is defined on R x R, x Q and is B x P measurable.
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Proof. Denote M; = E[B;|F;]. M, is called the Azéma Martingale. The following

properties of the Azéma martingale are known: (For a reference see [38], section IV.6.)

o If A, =sup{s <t: Bs; =0} then

M, = sign(B;) g@—Ag. (4.10)

e M, is a purely discontinuous martingale with respect to F;.

e The natural filtration of M, is F;.

2

e The square characteristics (M), = —=t.

For simulated? sample path of the Azéma Martingale see Figure 4.1.

M. Emery in [15] (page 79) proved that M, satisfies the chaotic decomposition
property that is a special case of strong representation property. Since strong rep-
resentation property implies weak representation property (take Hy(t,x) = Hyx), we
conclude that F; is purely discontinuous. Note that the set of possible jumps T of

the Theorem 1.1 corresponds to the 0 of the Brownian motion B. O

We conclude this chapter with results on change of the probability measure.

Lemma 4.6. Let (0, F, P) be a probability space and P' ~ P. Then the filtration

Fyi is purely discontinuous under P if and only if it is purely discontinuous under P.

Proof. Let X be a continuous martingale under P. Denote

dP’
dP
2The simulations were performed using MATHEMATICA 4.0 on iMac DVD owned by the author.

Z, = E[>— | F) (4.11)
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Figure 4.1: Simulated sample paths of Brownian motion and the associated Azéma

martingale.
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(The calculation in (4.11) is done under P.) Girsanov’s theorem (see Theorem 0.16)

implies that the process

, 1
X=X ——-(X,2) (4.12)

is a local martingale under P’ and (X), = (X'),. The process -~ - (X, Z) is a
continuous process of bounded variation. Thus X' is a non-constant continuous local

martingale under P’. The statement of the lemma follows. O
Remark 4.2. There is no disagreement with Theorem 3.1, because compensators cal-
culated under P are not necessarily equal to the compensators calculated under P’.

We will now investigate a particular change of measure. We need to do a few
calculations and introduce some notation prior to stating next theorem.

Consider the assumption R2. Assume that for any [ < k the distribution of
Ty ..., Tk glven ]:"fo is equivalent to the the measure P"*, which is the unconditional
distribution of 7y, ..., 7%, with the density bounded away from 0 and co. Formally we

assume the following: For any measurable bounded f,

E[f(Tl,...,Tk,Tk+1,...) |ﬁcl>€o]

:/f(’/'l,...,Tk,’/'k+1,...)pl’k(’/'l,...,Tk,’/'k+1,...)Pl’k(dTl,...,di), (413)

where 0 < ¢, < phk < C)r < 00 is a measurable function such that

/pl,k(Tla ey Tl Th+1, - - -)Pl’k(d’fl, .. .,d’/‘k) =1.
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For n > k denote phf = E[p"* | F]. Since pL* is a positive discrete time martin-

gale, the martingale convergence theorem implies that

ik — phF g, (4.14)

We can choose versions of the conditional expectations in the definition of pL* so

that the convergence in (4.14) is everywhere. Define

~1.k
- Pn
P (Testy ooy o) = /pf;k(n, . T)PY(dn, . dry)  and plf =S
Tn
Since 0 < pL* < Oy, the dominated convergence theorem implies that
lim ’I“fz’k = /pl’k(’/'l, coe s Thy Tht1y - - - )Pl’k(d’/'l, ey di) =1.
n—oo
Hence ph*¥ — p"* and therefore
ok
lim —— =1 a.s. (4.15)

Let €, | 0 be a summable sequence. Choose a sequence ny in such a way that

ngo=1andif k > 1

pnk'— 1,k

o[

Ng—1,Mk 1
NE+1

>€k:| < Ek- (416)

ol



Borel-Cantelli’s lemma implies that

pnkf 1,k

dr

-1

TNp—1,Nk
NE+1

> €k i.O.] = 0.

Thus

e pnkf 151k

ST 1‘ < Cj(oj) < 00,

N 41

k=1
whence

e Pl

H ST converges a.s. (4.17)

nk+1

The theory of infinite products assures that we can find a modification of p such that
0<p<oo.

To simplify the notation we will use the following relabeling:

Te = (T _1r- -5 Tnp),
k(= Mg 1,7
P¥(d7y) = P™ 2" (drp, s ..., dTy, ),
k __ Tn ~k __ Tn ~00 00
Fro— e FE o e Fooo F

— Nk—1,Nk g Nk
Pk =P P = o
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Using the new notation the relation (4.13) transcribes to

E[f (e, Tost, ... ) | F¥] :/f(?k,FkH,...)pk(Fk,FkH,...)Pk(dFk). (4.18)

Pe(Th s Ty 15-00)
P (ThrTht1) -~

Similarly p = ]2,
We want to change a probability measure in such a way that under the new
measure the conditional distribution of 7 given W depends only on 7;,;. Let us

state the following theorem.

Theorem 4.7. Assume R2, equations (4.13), (4.17), and use the notation above.
Suppose there is a probability measure P’', such that for any bounded measurable

f and for any k
E,[f(’f_!k,’i_"k+1,...) |ﬁk] — /f(fk,?k+1,...)pAk(’T_"k,’/'—"k+1)Pk(d7?k), (419)

and F> is a trivial o-algebra under both P and P'. Then P ~ P' and dP = p - dP'.
If dP' = % - dP is a probability measure (it is automatically equivalent to P since

0 < p < o0), then the formula (4.19) is valid.
We will first prove the following version of conditional Fatou lemma.
Lemma 4.8. Suppose X,, > 0, Y = liminf X,, is integrable, and F1 D Fo D ... is a

decreasing sequence of o-algebras. Denote Foo = (), Fn. Then

liminf E[X,, | F,] > Elliminf X, | F] a.s.
n—oo

n—o0
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Proof. Let Y, = inf;>, X}. Since 0 <Y, < X,,, Y, is integrable and ¥,, T Y. For

Zn=Y =Y, and n >k, E[Z, | F,| < E[Z | F,]. Hence

0 <limsup E[Z, | F,] < E[Z) | Fso] = E[0| Fxl a.s.

n— 00

However

0 =limsup E[Z, | F,] = E]Y | F] — liminf E]Y,, | F,,] a.s
n—0o0

n— 00

whence

liminf E[X,, | F,] > hmlnfE[Y | Fu] = Elliminf X, | F] a.s
n—00

n—00

O

Proof of Theorem 4.7. Let & = fi(71),...,&x = fn(7n) be bounded random vari-

ables. Calculate using (4.18) and (4.19):

E&\&y &y = B - EyEBl6 | FY = E&y - -@E’[@% Fa
— EB& - EnE 2 i3 |fl] Fa
=FE&-- 'fNE'[&prAl [32 |-7:2]

— EE[¢ gNle FN

— BB gNle Fa

for any n > N.

o4



By Fatou lemma, Lemma 4.8, and the fact that F is trivial we get

E(&i& - &n) 2 BE'G -+ &n ( i

H@) AM|F]) = E'(€ - -Enp A M),

i=1

for all M > 0. It follows that

E'p<1 and E(&i&--&n) = E'(&- - &np). (4.20)

The very same calculations with P and P’ exchanged yield
1 , 1
E;§1 and E§1§2"'§N2E§1"'§N;-

Thus P ~ P" and P = p- P'. The proof of the first part of the theorem is complete.

Assume P = p- P'. We will first prove

k—1 .
E'g(7, Torry...) = E' (H %) 9Ty Fosts -, (4.21)
j=1"7

for any k£ and measurable bounded function g.

Notice that p; and pj are Fk=1adapted and calculate

~

~ 00
E'g(f"k,f’kﬂ,. . ) = Eg(’]__‘ka?kJrl, N )E[% |F1] H&

i=o Pi
:Eg(Fkaﬁc-i-l;) (H %) /pAl(ﬁ,FQ)Pk(dﬂ)
i=2
0 ﬁ
:Eg(’/'_"k,’f)k+1,...) —Z.

i Pi
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We proved

k—1
E'g(7y, Forn,...) = E (H &> 9T, Tt ). (4.22)

i Pi

The equation (4.19) is valid if and only if

E'f (o Forsse. s, = E'ls,., / FGoFort o pelFo Fo ) PEAR), (4.23)

for every Sii1 € F*. However the same calculations as above yield:

E'f(’/_"k, Thtts - - - )1Sk+1
k o
=F (H j) Lsy iy /f(ﬁc,ﬁcﬂa )Ty Thor) P (dT)
i=1 "t

- B, / FFo Forts ) pe(Fos Forr) PE(7).

The last equality follows from the formula (4.21), and the fact that the random

variable 1s, | [ f(Te, Tht1, - - )P (Th, Ti1) PF(dT%) is Fk-adapted. O

The assumption that the density p* is bounded away from 0 and oo is technical
and could be somewhat relaxed by assuming that certain entities are integrable.

We have proved that the sequence (7,73, ...) is a discrete time Markov process.
Particularly:

Tiy ooy Th—1 Hﬁc Tk+15 Tk+2y - - -

26



Bibliography

[10]

[11]

[12]

[13]

BERNSTEIN, S.N. (1927) Sur I'extension du théorme limite du calcul des prob-
abilités aux sommes de quantités dépendentes. Math. Ann., 97, 1-59.

BERNSTEIN, S.N. (1937) On some variations of the Chebyshev inequality (Rus-
sian). Dokl. Acad. Nauk SSSR, 17, 95-124.

BERTOIN, J. (1996) Lévy Processes. Cambridge University Press, Cambridge.

BLUMENTHAL, R.M. (1957) An extended Markov property. Trans. Amer. Math.
Soc., 82, 52-72.

CHungG, K.L.; Doos, J.L. (1965) Fields, optionality and measurability. Amer.
J. Math., 87, 397-424.

DELLACHERIE, C.; MEYER, P.A. (1978) Probabilities and potential. North-
Holland Mathematics Studies, 29. North-Holland Publishing Co., Amsterdam—
New York.

DELLACHERIE, C.; MEYER, P.A. (1982) Probabilities and potential. B. Theory
of martingales. North-Holland Mathematics Studies, 72. North-Holland Publish-
ing Co., Amsterdam—New York.

DELLACHERIE, C. (1972) Capacités et Processus Stochastiques. Springer-Verlag,
Berlin.

DoLEANS, C. (1967) Processus croissants naturel et processus croissants tres
bien measurable. C.R. Acad. Sci. Paris, 264, 874-876.

Doos, J.L. (1942) Topics in the theory of Markoff chains. Trans. Amer. Math.
Soc., 52, 36—64.

Doos, J.L. (1951) Continuous parameter martingales. Proceedings of 2nd
Berkeley Symp. Math. Stat. Probab., 269-277.

DooB, J.L. (1953) Stochastic Processes. Willey, New York.

DURRETT, R. (1995) Probability: Theory and Examples, 2nd ed. Duxbury Press,
Wadsworth, Belmont, CA.

o7



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

DyYNKIN, E.B. (1965) Markov Processes. Grundlehren der mathematischen Wis-
senschaften, Springer-Verlag, Berlin. (Russian edition, 1962).

EMERY, M. (1989) On the Azéma Martingales. Séminaire de Probabilités,
XXIII, 66-87, Lect. Notes in Math., 1372. Springer-Verlag, Berlin.

HE, S.W.; WANG, J.G.; YAN, J.A. (1992) Semimartingale theory and stochas-
tic calculus. CRC Press, Boca Raton, FL.

HE, S.W. (1983) Some remark on single jump processes. Séminaire de Proba-
bilités, XVII, 347-348, Lect. Notes in Math., 986. Springer-Verlag, Berlin.

HE, S.W. (1983) The representation of Poisson functionals. Séminaire de Prob-
abilités, XVII, 349-352, Lect. Notes in Math., 986. Springer-Verlag, Berlin.

HE, S.W.; Wang, J.G. (1982) The total continuity of natural filtrations and
the strong property of predictable representation of jump processes and processes
with independent increments. Séminaire de Probabilités, X VI, 348-354, Lect.
Notes in Math., 920. Springer-Verlag, Berlin.

He, S'W.; Wang, J.G. (1984) Two results on jump precesses. Séminaire
de Probabilités, XVIII, 256267, Lect. Notes in Math., 1059. Springer-Verlag,
Berlin.

Hunt, G.A. (1957-58) Markoff processes and potentials, I-1I1. Illinois J. Math.,
1, 4493, 316-369; 2, 151-213.

ITO, K. (1944) Stochastic Integral. Proc. Imp. Acad. Tokyo, 20, 519-524.

ITO, K. (1946) On stochastic integral equation. Proc. Imp. Acad. Tokyo, 22,
32-35.

ITO, K. (1951) On stochastic differential equations. Mem. Amer. Math. Soc., 4,
1-51.

JAcoD, J. (1975) Multivariate point processes: Predictable projection, Radon-
Nikodym derivative, representation of martingales. Z. Wahrsheinlichkeitstheorie
verw. Gebiete, 31, 235-253, Springer-Verlag, Berlin.

JAcoD, J. (1976) Un théoreme de représentation pour les martingales discontin-
ues. Z. Wahrsheinlichkeitstheorie verw. Gebiete, 34, 225-244, Springer-Verlag,
Berlin.

Jacop, J. (1977) A general theorem of representation for martingales. Proc.
Symp. Pure Math. 31, 37-53.

JAcop, J. (1979) Calcul stochastique et problémes de martingales. Lect. Notes
in Math., 714. Springer-Verlag, Berlin.

28



[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

JACOD, J.; SKOROKHOD, A.V. (1994) Jumping filtrations and martingales with
finite variation. Séminaire de Probabilités, XX VIII, 21-35, Lect. Notes in Math.,
1583. Springer-Verlag, Berlin.

JacoD, J.; SHIRYAEV, A.N. (1987) Limit Theorems for Stochastic Processes.
Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin.

JAacop, J.; YOr, M. (1977) Etude des solutions extrémales et représentation
intégrale des solutions pour certains problemes de martingales. Z. Wahrshein-
lichkeitstheorie verw. Gebiete, 38, 83-125, Springer-Verlag, Berlin.

JEULIN, T. (1980) Semi-martingales et grossissement d’une filtration. [Semi-
martingales and enlargement of a filtration.] Lect. Notes in Math., 833. Springer-
Verlag, Berlin.

JEULIN, T.; YOR, M. (1985) Grossissements de filtrations: exemples et appli-
cations. Lect. Notes in Math., 1118. Springer-Verlag, Berlin.

KALLENBERG, O. (1997) Foundations of Modern Probability. Probability and
its Applications. Springer, New York.

LEvy, P. (1937) Théorie de I’Addition des Variables Aléatoires. Gauthier-
Villars, Paris.

MEYER, P.A. (1966) Probability and Potentials. (Engl. trans.) Blaisdell,
Waltham.

MEYER, P.A. (1976) Un cours sur les intégrales stochastiques. Séminaire de
Probabilités, X, 245400, Lect. Notes in Math., 511. Springer-Verlag, Berlin.

PROTTER, P.E. (1990) Stochastic Integration and Differential Equations. A new
approach. Applications of Mathematics, 21. Springer-Verlag, Berlin.

SKOROKHOD, A.V. (1965) Studies in the Theory of Random Processes. Addison-
Wesley, Reading, MA.

VILLE, J. (1939) Etude Critique de la Notion du Collectif.. Gauthier-Villars,
Paris.

WANG, J.G. (1981) Some remarks on processes with independent increments.
Séminaire de Probabilités, XV, 627-631, Lect. Notes in Math., 850. Springer-
Verlag, Berlin.

Y@&urp, C. (1976) Décompositions des martingales locales et formules expo-
nentielles. Séminaire de Probabilités, X, 432—480, Lect. Notes in Math., 511.
Springer-Verlag, Berlin.

29



