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In this article we propose a new method for constructing confidence intervals for σ 2
α , σ 2

ε , and the intraclass correlation ρ = σ 2
α /(σ 2

α + σ 2
ε )

in a two-component mixed-effects linear model. This method is based on an extension of R. A. Fisher’s fiducial argument. We conducted
a simulation study to compare the resulting interval estimates with other competing confidence interval procedures from the literature. Our
results demonstrate that the proposed fiducial intervals have satisfactory performance in terms of coverage probability, as well as shorter
average confidence interval lengths overall. We also prove that these fiducial intervals have asymptotically exact frequentist coverage
probability. The computations for the proposed procedures are illustrated using real data examples.

KEY WORDS: Fiducial density; Fiducial generalized confidence interval; Unbalanced one-way random-effects model; Variance compo-
nent.

1. INTRODUCTION

Random-effects and mixed-effects linear models are useful
in applications that require accounting for components of vari-
ability arising from multiple sources. For example, in animal
breeding studies, mixed linear models with two variance com-
ponents are often used. One variance component accounts for
genetic variability, and the other accounts for variability due
to environmental factors. In industrial applications where one
is interested in understanding process variability, mixed mod-
els with multiple variance components are used to account for
variability due to operators, due to batches of raw material, due
to machine differences, due to measurement errors, and so on.
In such situations it is of interest to estimate the components
of variance and provide lower and upper confidence bounds for
them.

Confidence intervals for variance components have been an
important research area for more than 70 years. Interestingly,
the first published work on interval estimation for the between-
groups variance component in the standard one-way normal
random model was by R. A. Fisher (1935), who gave a so-
lution to this problem using his then-new method of fiducial
argument. Bross (1950) provided further computational details
for the fiducial approach and informally compared it with ap-
proximate frequentist methods available at the time. Numer-
ous subsequent articles have been published on this topic (see,
e.g., Green 1954; Huitson 1955; Graybill, Martin, and God-
frey 1956; Welch 1956; Healy 1961, 1963; Williams 1962;
Broemeling 1969; Burdick and Sielken 1978; Venables and
James 1978; Graybill and Wang 1980; Jeyaratnam and Gray-
bill 1980; Seely 1980; Burdick and Graybill 1984; Harville and
Fenech 1985; Wild 1981, among others). Most of these articles
are concerned with developing exact or approximate confidence
intervals for specified linear functions of variance components
or their ratios. Some of the work was carried out in the con-
text of inference on a heritability coefficient in animal breeding
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studies. Healy (1963), Venables and James (1978), and Wild
(1981) considered fiducial approaches to the problem in the
case of balanced data.

Our focus in this article is on unbalanced normal mixed linear
models with two variance components. There are several good
reasons for limiting ourselves to these models. Two-component
mixed models are actually a fairly general class, because no re-
strictions are placed on the fixed-effects part of the model. In
addition, closed-form expressions for minimal sufficient statis-
tics are available for this situation. Such closed-form expres-
sions for minimal sufficient statistics typically are unavailable
for general (unbalanced) mixed models with more than two
variance components. Although in principle the fiducial ap-
proach still can be implemented in these cases, one loses the
computational advantages that accompany closed-form expres-
sions for minimal sufficient statistics. These are some of the rea-
sons possibly explaining why most of the publications on this
topic address only the special case of two-component mixed
models.

Although many works have addressed interval estimation
problems for the two–variance component mixed linear model
and its various special cases, a fiducial solution to the inter-
val estimation problem in this context is not currently avail-
able. Here we develop such a fiducial solution and demonstrate
through a simulation study that the resulting procedure has
better overall frequentist performance than competing meth-
ods. We also establish the asymptotic exactness of the cover-
age probability of fiducial intervals for variance components of
interest. Although we focus on confidence interval estimation,
our results can be used to carry out hypothesis tests about the
variance components. In the context of recovery of intrablock
information, Portnoy (1973) discussed tests of the null hypoth-
esis that the variance component associated with blocks is 0
and proposed improved tests of parameters in such models. The
procedures that we develop in this article automatically make
use of both interblock and intrablock information.

More specifically, let Y denote a N × 1 vector of observable
random variables. Suppose that Y has a distribution described
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by the following mixed linear model with two variance compo-
nents:

Y = Xβ + Zu + ε, (1)

where X and Z are known incidence matrixes of sizes N × p

and N × a, β is a p × 1 vector of unknown parameters, u ∼
N(0, σ 2

αA) is a a × 1 vector of random effects, ε ∼ N(0, σ 2
ε IN)

is the error vector of size N × 1, and u and ε are indepen-
dent. Without loss of generality, we assume that rank(X) = p.
A is a known matrix often referred to as a relationship matrix
in animal breeding context, because it describes the degree to
which the elements u1, . . . , ua of the vector u covary. For ex-
ample, if the elements u1 and u2 of u are the (additive) ge-
netic effects corresponding to a parent and an offspring, then
cov(u1, u2) = σ 2

α/2 (Falconer 1989). Note that the standard un-
balanced one-way random model given by

Yij = μ + ui + εij , i = 1, . . . , a; j = 1, . . . , ni, (2)

is a special case of model (1).
In this article we focus on constructing confidence intervals

for the variance components σ 2
α and σ 2

ε and the heritability co-
efficient ρ = σ 2

α/(σ 2
α + σ 2

ε ). In the special case of a one-way
random-effects model, σ 2

α is the between-groups variance com-
ponent and ρ is the intraclass correlation coefficient. Our pro-
posed methods follow the fiducial generalized pivotal quantity
(FGPQ)-based interval procedures discussed by Hannig, Iyer,
and Patterson (2006) and the generalizations of the fiducial
method given in Hannig (2008).

The article is organized as follows. Section 2 provides a brief
review of published confidence interval procedures for σ 2

α , σ 2
ε ,

and ρ. Section 3 outlines the fiducial method for obtaining con-
fidence intervals for general situations, then applies this method
to derive fiducial confidence intervals for σ 2

α , σ 2
ε , and ρ. Our

procedure is applicable to the two-component mixed model
given in (1). Finally, our proposed procedures for σ 2

α are com-
pared with competing methods described in Section 2 using a
simulation study. Section 4 provides details of the simulation
study, along with a discussion of the simulation results. Sec-
tion 5 considers some data examples using previously published
data and illustrates how our proposed procedures are applied.
Finally, Section 6 concludes with summary discussions. Deriva-
tions of fiducial densities and proof of the asymptotic exactness
of the proposed fiducial intervals are given in the Appendixes.

2. INTERVALS FOR TWO–COMPONENT
MIXED MODELS

In this section we list some of the published confidence in-
tervals for σ 2

α , σ 2
ε , and ρ = σ 2

α/(σ 2
α + σ 2

ε ) in a two-component
mixed model, which we compared with the proposed fiducial
approach in the simulation study reported in Section 4. First,
we briefly review some well-known results concerning minimal
sufficient statistics for the mixed model in (1).

Let H be a N × (N − p) matrix such that HHT = IN −
X(XT X)−XT and HT H = IN−p . Using the fact that Y ∼
N(Xβ, σ 2

ε IN + σ 2
αZAZT ), it follows that

HT Y ∼ N(0, σ 2
ε IN−p + σ 2

α G), (3)

where G = HT ZAZT H. Let λ1 > · · · > λd ≥ 0 be the dis-
tinct eigenvalues of G with multiplicities r1, . . . , rd . Let P =

[P1, . . . ,Pd ] be a (N − p) × (N − p) orthogonal matrix such
that PT GP = diag(λ11T

r1
, . . . , λd1T

rd
), where Pi corresponding

to λi is of size (N − p) × ri . Define

Vi = YT HPiPT
i HT Y, i = 1, . . . , d. (4)

Olsen, Seely, and Birkes (1976) showed that (V1, . . . , Vd) is
minimally sufficient for (σ 2

α , σ 2
ε ) under (3). Furthermore,

Ui = Vi

λiσ 2
α + σ 2

ε

∼ χ2
ri
, i = 1, . . . , d, (5)

and the Ui ’s are mutually independent, where χ2
v represents

a central chi-squared distribution with v degrees of freedom.
Note that when λd is 0, a pure error estimate of σ 2

ε is given by
Vd/rd . An exact 100(1 − α)% confidence interval for σ 2

ε exists
and is given by

[
Vd

χ2
1−α/2;rd

,
Vd

χ2
α/2;rd

]
, (6)

where χ2
α;v represents the 100α-percentile of the chi-squared

distribution with v degrees of freedom. We refer to the interval
in (6) as an EXACT (EX) confidence interval for σ 2

ε . When
λd > 0, a pure error estimate of σ 2

ε is not available. In particular,
an exact confidence interval for σ 2

ε is unavailable.

2.1 Confidence Intervals for σ 2
α in an Unbalanced

One-Way Random-Effects Model

Several methods are available for constructing approximate
confidence intervals for σ 2

α in the unbalanced one-way random-
effects model. We used five different confidence interval pro-
cedures for σ 2

α appearing in the literature in our simulation
study as competitors to our fiducial approach: (a) the Burdick–
Graybill (BG) confidence interval (Burdick and Graybill 1992),
(b) the Thomas–Hultquist (TH) confidence interval (Thomas
and Hultquist 1978), (c) the Burdick–Eickman (BE) confi-
dence interval (Burdick and Eickman 1986), (d) the Hartung–
Knapp (HK) confidence interval (Hartung and Knapp 2000),
and (e) the Arendacká (Ar) confidence interval (Arendacká
2005). (For a summary of these methods, see E et al. 2006).
Note that the HK method used here is the “better” of the two
procedures proposed by Hartung and Knapp (2000). It also is
important to note that the first four interval procedures listed
here apply only for the one-way random model; they do not ap-
ply to the general two-component mixed model in (1). For this
case, the Ar method is applicable when a pure error estimate
of σ 2

ε is available.

2.2 Confidence Intervals for σ 2
ε in a Two–Variance

Components Mixed Model

As mentioned earlier, an exact confidence interval for σ 2
ε is

available when λd = 0; that is, a pure error estimate of σ 2
ε is

available. However, for the case where λd > 0, to the best of
our knowledge, no confidence interval procedure for σ 2

ε has yet
been proposed. Here we propose a fiducial interval estimate for
σ 2

ε that appears to have satisfactory coverage properties. We
discuss the fiducial approach in Section 3.



856 Journal of the American Statistical Association, June 2008

2.3 Confidence Intervals for ρ in a Two–Variance
Component Mixed Model

In many applications, the quantity ρ = σ 2
α/(σ 2

α + σ 2
ε ) is of

interest. For example, in plant and animal breeding, ρ repre-
sents the proportion of the total variance that is explainable by
additive genetic effects; it often is referred to as the heritability
of the trait under study.

Many authors have considered the problem of construct-
ing exact confidence intervals for ρ, beginning with Wald
(1940, 1947). Other contributors to this problem include Khuri
(1981), Seely and El Bassiouni (1983), Verdooren (1988), Lee
and Seely (1996), Fenech and Harville (1991), and Burch and
Iyer (1997). The main tool used in these works is the fact that
independent quadratic forms Vi , i = 1, . . . , d , given in (4) are
available, with which a pivotal quantity for ρ may be con-
structed in the form

R =
(∑

i∈I c

Vi

1 + ρ(λi − 1)

/∑
i∈I c

ri

)

/(∑
j∈I

Vj

1 + ρ(λj − 1)

/∑
j∈I

rj

)
, (7)

where I is any nonempty subset of {1, . . . , d}. This pivotal
quantity has a central F distribution. Burch and Iyer (1997)
studied a subset of pivots of the foregoing form that led to lo-
cally unbiased intervals for ρ and recommended the use of an
optimal interval from this subclass. We refer to their recom-
mended interval as the BI confidence interval. Because nearly
all of the exact intervals for ρ proposed in the literature belong
to this class (e.g., the Wald intervals), we compare our proposed
fiducial interval for ρ with the BI intervals.

3. FIDUCIAL INTERVALS FOR σ 2
α , σ 2

ε, AND ρ

It is worth noting that generalized confidence intervals, such
as those proposed by Arendacká (2005), are closely related to
fiducial intervals. This connection between generalized infer-
ence and fiducial inference was discussed in detail by Hannig et
al. (2006), who also provided a recipe for constructing fiducial
intervals when X has a continuous distribution. Hannig (2008)
generalized this to arbitrary distributions. The term generalized
fiducial inference is used to emphasize the fact that the version
of fiducial inference discussed by Hannig et al. (2006) and Han-
nig (2008) is a generalization of R. A. Fisher’s fiducial argu-
ment.

In this section we describe fiducial interval (FI) procedures
for σ 2

α , σ 2
ε , and ρ that are applicable under the general two-

component mixed model in (1). The intervals that we propose
are obtained using the fiducial method described by Hannig et
al. (2006) and Hannig (2008).

3.1 The Fiducial Approach

Let X be a random vector with a distribution indexed by a
(possibly vector) parameter ξ ∈ 	. Hannig (2008) defined a
generalized fiducial distribution for ξ as follows. Assume that
X has a structural representation given by X = G(U, ξ), where
U is a random variable or random vector whose distribution
is fully known and free of unknown parameters and G is a

jointly measurable function of U and ξ . Let R(x, u) be a set-
valued function defined by R(x, u) = {ξ : x = G(u, ξ)}. The set
{ξ : x = G(u, ξ)} may be empty, may consist of a single ele-
ment, or, when the distribution of X is not continuous, may
consist of more than one element (possibly uncountably many
elements). The function R(X,U) may be viewed as an inverse
of the function G. Here G defines u as an implicit function of ξ

and x is considered fixed. Following Hannig (2008), we define
a generalized fiducial distribution of ξ as a conditional distrib-
ution of

R(x,U∗) given {R(x,U∗) �= ∅}. (8)

Here x is the observed value of X, and U∗ is an independent
copy of U .

If the probability P(R(x,U∗) �= ∅) = 0, as in our case, then
the conditioning event must be interpreted using equations in-
volving random variables. Therefore, the fiducial distribution
of (σ 2

α , σ 2
ε ) is not unique. A different choice of the condition-

ing equations will result in a different fiducial distribution for
(σ 2

α , σ 2
ε ). This is related to the well-known Borel paradox de-

scribed by, for example, Casella and Berger (2002, sec. 4.9.3).
We present a particular way of interpreting (8) that seems very
intuitively appealing and leads to a fiducial distribution for σ 2

α

and σ 2
ε with very good statistical properties.

We begin with the statistics Qi = Vi/ri , i = 1, . . . , d , where
Vi and ri are as defined in (4). Note that these are minimally
sufficient for {σ 2

α , σ 2
ε } under the model in (3). When d = 2,

the relationship between (σ 2
α , σ 2

ε ) and (Q1,Q2) is invertible.
This makes fiducial inference for the case d = 2 quite straight-
forward, and thus we do not consider it here. Hereinafter, we
assume that d > 2, which is the more general and challenging
case. We rewrite the expressions in (5) as

Q1 = (λ1σ
2
α + σ 2

ε )U1

r1
,

Q2 = (λ2σ
2
α + σ 2

ε )U2

r2
,

(9)
...

Qd = (λdσ 2
α + σ 2

ε )Ud

rd
.

Note that (9) provides a structural representation for the ob-
servable random vector Q = (Q1, . . . ,Qd) in terms of the ran-
dom vector U = (U1, . . . ,Ud) whose distribution is completely
known. (The U ’s are independent, with each Ui having a chi-
squared distribution with ri degrees of freedom.) We denote re-
alized values of Qi and Ui by qi and ui , for i = 1, . . . , d .

The main idea in interpreting (8) is to randomly pick two
equations in (9) and solve for σ 2

α and σ 2
ε , then plug these solu-

tions for σ 2
α and σ 2

ε into the remaining equations and use them
for conditioning. This recipe produces a well-defined joint fidu-
cial distribution of (σ 2

α , σ 2
ε ). As shown in Appendix A, this fidu-

cial density is

f (w1,w2) = C · g(w1,w2), (10)
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where

g(w1,w2) =
(∑

i<j

(λi − λj )qiqj

(λiw1 + w2)(λjw1 + w2)

)

×
(

exp(−(1/2)
∑d

i=1 riqi/(λiw1 + w2))∏d
i=1(λiw1 + w2)ri/2

)

×
d∏

i=1

I{λiw1+w2>0}

and

C−1 =
∫ 0

−∞

∫ ∞

−λ1w1

g(w1,w2) dw2 dw1

+
∫ ∞

0

∫ ∞

−λdw1

g(w1,w2) dw2 dw1.

For future reference, we denote a random variable with density
(10) by (Rσ 2

α
,Rσ 2

ε
).

Hannig et al. (2006) outlined a method that can be used to
prove that the fiducial distribution for (σ 2

α , σ 2
ε ) given in (10)

leads to asymptotically correct frequentist inference if d is fixed
and ri → ∞. But this is not sufficient for many applications in
which we have numerous different eigenvalues with relatively
small multiplicities, such as the loin-eye data set discussed in
Section 5. Consequently, we have generalized Hannig’s earlier
theorem (Hannig et al. 2006) by allowing the number of dis-
tinct eigenvalues d to take any value between 2 and n. But this
requires that the eigenvalues themselves satisfy some natural
conditions related to the Fisher’s information to have asymp-
totically correct frequentist inference. The exact conditions are
given in Theorem 1, the proof of which is given in Appendix B.

Theorem 1. Write n = ∑d
i=1 ri and assume that the limits

lim
n→∞

1

n

d∑
i=1

λk
i ri

(λiσ 2
α + σ 2

ε )2
= mk for k = 0,1,2

are such that the matrix 
 = (
m0 m1
m1 m2

)
is positive definite.

Then the frequentist coverage probability of the (1 − α) equal-
tailed fiducial interval based on the joint fiducial distribution of
(σ 2

α , σ 2
ε ) approaches the stated value as n → ∞.

Remark 1. It is worth noting that the Fisher information ma-
trix F for (σ 2

α , σ 2
ε ) based on Qi, i = 1, . . . , d , is the 2 × 2 ma-

trix whose (j, k) element is given by

d∑
i=1

riλ
j+k−2
i

2(λiσ 2
α + σ 2

ε )2

for j, k = 1,2. Thus the conditions of the theorem state of the
requirement that 1

n
F converge to a positive definite matrix 1

2


as n → ∞.

Moreover, the proof of Theorem 1 demonstrates that the
fiducial distribution as simply Bayesian posteriors satisfies the
Bernstein–von Mises theorem. Thus it is asymptotically effi-
cient.

3.2 A Fiducial Confidence Interval for σ 2
α and σ 2

ε

A fiducial distribution for σ 2
α can be easily derived from the

joint fiducial distribution of (σ 2
α , σ 2

ε ) in (10) and is given by

fR
σ2
α
(w1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

∫ ∞

−λ1w1

g(w1,w2) dw2 if w1 < 0

C

∫ ∞

−λdw1

g(w1,w2) dw2 otherwise.

Let Rσ 2
α ,γ be the 100γ -percentile of the fiducial distribution of

σ 2
α . Then a two-sided (1 − α)100% fiducial confidence interval

for σ 2
α is given by[

max
(
0,Rσ 2

α ,α/2

)
,max

(
0,Rσ 2

α ,1−α/2

)]
.

Similarly, it follows that the fiducial distribution of σ 2
ε is

given by

fR
σ2
ε
(w2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C

∫ ∞

−w2/λd

g(w1,w2) dw1 if w2 < 0 and

λd > 0

C

∫ ∞

−w2/λ1

g(w1,w2) dw1 if w2 > 0

0 otherwise,

where C and g(w1,w2) are the same as C and g(w1,w2) in
(10).

Let Rσ 2
ε ,γ be the 100γ -percentile of the fiducial distribution

of σ 2
ε . Then a two-sided (1 −α)100% fiducial confidence inter-

val for σ 2
ε is given by[

max
(
0,Rσ 2

ε ,α/2

)
,max

(
0,Rσ 2

ε ,1−α/2

)]
.

3.3 A Fiducial Confidence Interval for ρ

A fiducial distribution for ρ can be easily derived from the
joint fiducial distribution of (σ 2

α , σ 2
ε ) in (10). In fact, we obtain

the fiducial density for ρ as the density of Rρ = Rσ 2
α
/(Rσ 2

α
+

Rσ 2
ε
) given by

fRρ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C

∫ 0

−∞
g(x, y) dy if

x

1 − x
< − 1

λd

and λd > 0

C

∫ ∞

0
g(x, y) dy if

x

1 − x
> − 1

λ1

0 otherwise,

where

g(x, y) =
(∑

i<j

(λi − λj )qiqj

((λi − 1)xy + y)((λj − 1)xy + y)

)

×
(

(1 − x)(
∑d

i=1 ri )/2|y|∏d
i=1((λi − 1)xy + y)ri/2

)

× exp

(
−1

2

d∑
i=1

(1 − x)riqi

(λi − 1)xy + y

)

×
d∏

i=1

I{((λi−1)xy+y)/(1−x)>0}
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and

C−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1/(1−λd)

−∞

∫ 0

−∞
g(x, y) dy dx

+
∫ ∞

1

∫ 0

−∞
g(x, y) dy dx

+
∫ 1

1/(1−λ1)

∫ ∞

0
g(x, y) dy dx,

if λd > 1
∫ ∞

1

∫ 0

−∞
g(x, y) dy dx

+
∫ 1

1/(1−λ1)

∫ ∞

0
g(x, y) dy dx

if λd = 1
∫ 1/(1−λd)

1

∫ 0

−∞
g(x, y) dy dx

+
∫ 1

−∞

∫ ∞

0
g(x, y) dy dx

+
∫ ∞

1/(1−λ1)

∫ ∞

0
g(x, y) dy dx

if 0 < λ1 < 1
∫ 1/(1−λd)

1

∫ 0

−∞
g(x, y) dy dx

+
∫ 1

−∞

∫ ∞

0
g(x, y) dy dx

if λ1 = 1
∫ 1/(1−λd)

1

∫ 0

−∞
g(x, y) dy dx

+
∫ 1

1/(1−λ1)

∫ ∞

0
g(x, y) dy dx

if λ1 > 1 and 0 ≤ λd < 1.

Let Rρ,γ be the 100γ -percentile of the fiducial distribution
of ρ. Then a two-sided (1 − α)100% fiducial confidence in-
terval for ρ is given by[

max
(
0,min

(
Rρ,α/2,1

))
,max

(
0,min

(
Rρ,1−α/2,1

))]
.

The next two sections describe details of simulation studies
that we conducted to compare the proposed fiducial interval for
σ 2

α , σ 2
ε , and ρ with previously proposed methods.

4. SIMULATION STUDY AND DISCUSSION

In this and subsequent sections, we use the abbreviations in-
troduced in Sections 2 and 3 when referring to various com-
peting procedures. The coverage probability of a confidence in-
terval on σ 2

α depends on the design (e.g., number of within-
group measurements, n1, . . . , na) as well as on the values of
σ 2

α and σ 2
ε . The degree of imbalance of the design in the case

of a one-way random-effects model has been quantified by
Ahrens and Pincus (1981) using the measure �, defined as
� = añ/N with N = ∑a

i=1 ni and ñ = a/
∑a

i=1(1/ni). Note
that 0 < � ≤ 1 and that � equals 1 if and only if ni are all

Table 1. Unbalanced patterns used in the simulation study

Pattern � a ni

1 .068 6 1 1 1 1 1 100
2 .130 6 2 2 2 2 2 100
3 .187 3 2 5 60
4 .410 5 4 4 4 8 48
5 .700 6 5 10 15 20 25 30
6 .807 4 2 2 4 6
7 .957 6 6 6 8 8 10 10

equal. The smaller the value of �, the greater the degree of im-
balance. For our simulation study, we selected seven different
unbalanced patterns, as shown in Table 1. Patterns 1, 2, and 5
also were considered by Hartung and Knapp (2000); pattern 4
also was considered by Arendacká (2005). We added the addi-
tional patterns 3, 6, and 7 to study the performance of confi-
dence intervals in small-sample situations. Without loss of gen-
erality, we assumed that μ = 0. The values selected for (σ 2

α , σ 2
ε )

were (.1,10), (.5,10), (1,10), (.5,2), (1,1), (2, .5), (5, .2),
and (10, .1), where the settings (.1,10), (.5,2), (1,1), (2, .5),
(5, .2) were used by Arendacká (2005). We added three more
settings to our study to better investigate the performance of
confidence intervals under extremely large and small values of
the ratio σ 2

α/σ 2
ε .

For each setting of sample size ni and values of (σ 2
α , σ 2

ε ),
we generated 3,000 independent data sets and computed two-
sided 95% confidence intervals for σ 2

α for each method. We
compared the (a) BG interval, (b) TH interval, (c) BE interval,
(d) HK interval, (e) Ar interval, and (f) FI interval. The criteria
for judging the performance of the methods were the empiri-
cal coverage probabilities and the average lengths of the confi-
dence intervals. The simulation study was programmed in For-
tran. Two IMSL subroutines, DQ2AGI and DTWODQ (IMSL
1994), were used to compute the necessary one-dimensional
and two-dimensional integrals.

The results of our simulation study are graphically summa-
rized in Figures 1, 2, 3, and 4. Figures 1 and 2 show the empiri-
cal coverage probabilities for settings with ratio η = σ 2

α/σ 2
ε < 1

Figure 1. Empirical coverage probabilities for settings with η < 1.
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Figure 2. Empirical coverage probabilities for settings with η ≥ 1.

and for settings with η ≥ 1. Figures 3 and 4 show the differ-
ences of the average confidence interval lengths, relative to the
fiducial interval, for all competing procedures for settings with
η < 1 and settings with η ≥ 1. These relative lengths are de-
noted by RL, which is defined as (LM − LFI)/LFI , where LM

denotes the average length of a competing interval and LFI de-
notes the average length of the FI interval. (For the detailed
numerical simulation results, see E et al. 2006.)

The results show that BG procedure is very liberal when the
ratio η is large. The TH procedure is liberal for small values
of η and very unbalanced designs. This finding agrees with the
findings of Burdick and Eickman (1986). The BE procedure is
conservative, and its behavior for large η is similar to that of the
TH procedure. The HK procedure becomes more conservative
as the value of η becomes large. The Ar procedure appears to
always maintain the stated confidence coefficient. The FI inter-
val is conservative when the ratio η < 1 but maintains the stated
confidence coefficient when η ≥ 1.

Figure 3. Relative difference of the average confidence interval
length (RL) for settings with η < 1.

Figure 4. Relative difference of the average confidence interval
length (RL) for settings with η ≥ 1.

Comparing average interval lengths, we see that all of the in-
tervals behave very similarly except the BG and FI intervals.
Although the BG interval has small average lengths, it does not
adequately maintain the stated coverage probabilities when η

is large; therefore, the BG interval is not recommended. Com-
pared with procedures other than the BG procedure, the FI inter-
val always has the smallest average lengths and standard devia-
tions, even when it is conservative. The average lengths of FI in-
tervals are 10–25% smaller than the average lengths of all other
intervals except the BG interval. Based on these results, we rec-
ommend the FI intervals for σ 2

α as the most suitable choice for
practical applications.

5. EXAMPLES

As noted earlier, a fiducial interval for σ 2
α , σ 2

ε , and ρ is avail-
able in the general mixed model (1) with two variance com-
ponents. In this section we give two examples, one involving
incomplete-block designs for slope-ratio assays and the other
arising from animal breeding studies. In the first example is,
from Das and Kulkarni (1966), the degrees of freedom for er-
ror is positive and the eigenvalue λd is 0. The second example
uses a model that may be referred to as a full animal model. All
eigenvalues λj , j = 1, . . . , d , are positive, and thus there are no
degrees of freedom available for error.

5.1 Incomplete-Block Design for the Slope-Ratio Assay

In a (2k+1)-point symmetrical slope-ratio assay, equal num-
bers of subjects are given each of k standard and test prepa-
rations and a blank dose. The responses are assumed to lin-
early depend on dose, usually on a logarithmic scale. This
(2k + 1)-point symmetrical slope-ratio assay requires blocks
of size 2k + 1 for a randomized complete-block design. Das
and Kulkarni (1966) developed a modified Balanced Incom-
plete Block (BIB) design with blocks of size 2k′ + 1 (k′ < k)

for slope-ratio assays. Suppose that si and ti , i = 1, . . . , k, are
the ith dose levels of standard preparation and test preparation,
where doses are equally spaced and sorted in ascending order.
First, a BIB design for k doses of the standard preparation in
blocks of size k′ is obtained and used as the basic design. Then
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the modified BIB design is obtained by augmenting every block
of the basic BIB design by a blank dose and k′ doses of the
test preparation, using the rule that dose ti should be included
in every block containing dose si . Das and Kulkarni (1966)
claimed that the modified BIB design is more efficient than the
randomized complete-block design. Kulshreshtha (1969) later
proved that the new design gives shorter confidence intervals
for relative potency based on Fieller’s theorem than the ran-
dom block design with equal replication of nonzero doses. The
relative potency is defined as the ratio of the slope of the dose-
response curve for the test preparation to that for the standard
preparation. The model for slope-ratio assay considered by Das
and Kulkarni (1966) and Kulshreshtha (1969) can be described
by

yijm = μ + βixij + γm + εijm,

i = s, t, or c; j = 1, . . . , k, m = 1, . . . , b, (11)

where ysjm, ytjm, and ycjm denote the observation in mth block
for j th dose of standard preparation, test preparation, and blank
dose; xsj and xtj denote the j th dose of the standard and
test preparation; xcj is equal to 0; γk represents the effect of
kth block; and εijm are iid random measurement errors with a
N(0, σ 2

ε ) distribution. The block effect γm was taken to be fixed
by Das and Kulkarni (1966) and Kulshreshtha (1969). To illus-
trate the methods of this article, we consider blocks to be ran-

dom and assume that γm
iid∼ N(0, σ 2

α ). Furthermore, we assume
that γm are independent of εijm.

Das and Kulkarni (1966) gave several real data examples to
illustrate the construction and analysis of the new designs. One
example is a nine-point slope-ratio assay on riboflavin content
of yeast, with two replications of each dose. These data were
first used by Bliss (1952). Das and Kulkarni (1966) deleted the
observations on the highest dose of each preparation and used
the remaining data to develop a modified BIB design for seven
doses in three blocks of size five, with two replications of each
preparation. The observations of titer per tube, arranged accord-
ing to this design, are given in Table 2. Here we calculate the
fiducial distributions associated with σ 2

α , σ 2
ε , and ρ.

There are three distinct eigenvalues of G = HT ZAZT H:
λ1 = 5 with multiplicity r1 = 1, λ2 = 4.545455 with multiplic-
ity r2 = 1, and λ3 = 0 with multiplicity r3 = 10. The method-
of-moments (MOM) estimates of σ 2

α and σ 2
ε are .0033 and

.1045. The corresponding estimate of ρ is .0306. The restricted
maximum likelihood (REML) estimates of σ 2

α and σ 2
ε are the

same as the MOM estimates.
Figures 5, 6, and 7 show plots of the fiducial densities of σ 2

α ,
σ 2

ε , and ρ. Note that the support of the fiducial density for σ 2
α ,

σ 2
ε , and ρ might be a proper superset of their natural bound-

aries. For instance, observe that the fiducial density for ρ for

Table 2. Data and modified BIB design for the example of
the slope-ratio assay

Blank
c

Standard Test

Block s1 s2 s3 t1 t2 t3

1 .72 2.15 4.35 2.35 4.40
2 .78 4.05 6.10 4.70 6.10
3 .76 2.30 5.60 2.45 5.10

Figure 5. Fiducial density plot for σ 2
α for the slope-ratio assay data.

Figure 6. Fiducial density plot for σ 2
ε for the slope-ratio assay data.

Figure 7. Fiducial density plot for ρ for the slope-ratio assay data.
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Table 3. Nominal 90% and 95% confidence intervals on σ 2
α for

the slope-ratio assay data

Method 90% 95%

Ar (0, .898) (0, 1.841)
FI (0, .875) (0, 1.781)

this data has a range of ρ equal to the interval (1/(1 − λ1),1),
that is, (−.25,1). When calculating fiducial confidence inter-
vals, we replace negative confidence bounds with 0, and when
a confidence bound for ρ happens to be larger than 1, we replace
it with 1. Table 3 gives the Ar and the FI confidence intervals
for σ 2

α with 90% and 95% nominal confidence coefficients.
In this example, it might be of interest to test the existence of

the block random effect, that is, the hypothesis of H0 :σ 2
α = 0

versus Ha :σ 2
α > 0. Portnoy (1973) proposed an efficient test

of the foregoing hypothesis, that used both intrablock (i.e.,
between-subjects) and interblock (i.e., within-subjects) infor-
mation. The test is based on three independent scaled chi-
squared statistics,

T ∼ (σ 2
ε + aσ 2

α )χ2
n1

,

S1 ∼ (σ 2
ε + bσ 2

α )χ2
n2

, and S2 ∼ σ 2
ε χ2

m.

The null hypothesis is rejected if

(S1 + T )/(n1 + n2)

S2/m
> F1−α;(n1+n2),m, (12)

where Fγ ;v1,v2 represents the γ -quantile of the F-distribution
with v1 and v2 degrees of freedom. Portnoy’s test statistic cal-
culated from this slope-ratio assay data are equal to 2.7930, less
than F.95;2,10 = 4.1028. Thus we are unable to reject H0. Note
that the test given in (12) cannot be inverted to provide a con-
fidence interval of σ 2

α , because the test is applicable for testing
the hypothesis H0 :σ 2

α = σ 2
0 for the special case where σ 2

0 = 0.
On the other hand, the fiducial approach proposed here can be
used to obtain a confidence interval for σ 2

α .
The hypothesis σ 2

α = 0 also can be tested using the fidu-
cial confidence interval procedure. In particular, for this exam-
ple, the 95% one-sided fiducial interval for σα is (−.0095,∞),
which contains 0. We again fail to reject H0. Thus in this exam-
ple, the test of Portnoy (1973) and the test based on a fiducial
interval both reach the same conclusion.

For sake of completeness, Table 4 shows the EX and the FI
confidence intervals for σ 2

ε with 90% and 95% nominal con-
fidence coefficients. For this example, there does not exist an
unbiased BI confidence interval for ρ. In this case we take
I = {1,2} in (7), which gives us the pivotal quantity with the
closest “balance” between the numerator and denominator de-
grees of freedom, where r3 = 10 and

∑2
i=1 ri = 2. Table 5 gives

the FI and BI confidence intervals for ρ with 90% and 95%
nominal confidence coefficients.

Table 4. Nominal 90% and 95% confidence intervals on σ 2
ε for

the slope-ratio assay data

Method 90% 95%

EX (.045, .210) (.040, .254)
FI (.045, .211) (.040, .257)

Table 5. Nominal 90% and 95% confidence intervals on ρ for
the slope-ratio assay data

Method 90% 95%

BI (0, .913) (0, .956)
FI (0, .916) (0, .957)

5.2 Full Animal Model

These data were used previously by Burch (1996) and Burch
and Iyer (1997). Data were obtained on 171 yearling bulls from
a red Angus seed stock in Montana. A trait of interest was the
loin eye (i.e., ribeye) muscle area, measured in square inches.
Ultrasound techniques were used to obtain these measurements.
The fixed effect was age of the dam, in one of five categories: 2
years, 3 years, 4 years, 5–9 years, or 10 or more years. The ran-
dom effects are the animal’s (additive) genetic effect and error.
The mixed linear model under consideration can be represented
by

Y = Xβ + Zu + ε,

where Y is a 171 × 1 vector of observable random variables, X
is a 171 × 5 design matrix, β is a 5 × 1 vector of unknown
parameters, Z = I171, and u and ε are vectors of unobserv-
able random variables of size 171 × 1. The relationship matrix
A was determined using a recursive method given by Hender-
son (1976); this means that var(u) = σ 2

αA. The number of dis-
tinct eigenvalues of G = HT ZAZT H was d = 165. Eigenvalues
ranged in magnitude from λ1 = 8.5692472 to λ165 = .5656916.
Except for λ105 = .6718750, with r105 = 2, all eigenvalues had
a multiplicity of 1. The REML estimates of σ 2

α and σ 2
ε were

.2994 and 2.6539. The corresponding estimate of ρ was .1014.
We refer to this estimate the as REML estimate of ρ.

Figures 8, 9, and 10 show plots of the fiducial densities for
σ 2

α , σ 2
ε , and ρ for the loin-eye data. The support of the fidu-

cial density for σ 2
α and for σ 2

ε is (−∞,∞). The support of the
fiducial density for ρ is{

ρ :ρ ∈
(

1

1 − λ1
,1

)
∪

(
1,

1

1 − λd

)}
,

that is, {ρ :ρ ∈ (−.1321,1) ∪ (1,2.3025)}. The FI confidence
intervals for σ 2

α with 90% and 95% nominal confidence coeffi-
cients are (0, 3.000) and (0, 3.750). The FI confidence intervals

Figure 8. Fiducial density plot for σ 2
α for the loin-eye data.
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Figure 9. Fiducial density plot for σ 2
ε for the loin-eye data.

for σ 2
ε with 90% and 95% nominal confidence coefficients are

(.625,3.341) and (.100,3.513).
We estimated the coverage probabilities corresponding to the

nominally 90% and 95% two-sided FI confidence intervals on
σ 2

α and σ 2
ε using simulation with REML estimates of σ 2

α and σ 2
ε

as their true values. The results are based on 2,000 generated in-
dependent data sets. The simulation estimates of the empirical
coverages for FI intervals on σ 2

α are .935 and .975, correspond-
ing to nominal confidence coefficients of .90 and .95. For the
FI intervals on σ 2

ε the coverage probability estimates are .923
and .959, corresponding to nominal confidence coefficients of
.90 and .95.

The BI pivotal quantity that results in a locally unbiased con-
fidence interval corresponds to I = {1, . . . ,83} in (7). In this
case,

∑83
i=1 ri = ∑165

j=84 rj = 83. We refer to this unbiased con-
fidence interval as the BI confidence interval in what follows.
Table 6 gives the FI and BI confidence intervals for ρ with 90%
and 95% nominal confidence coefficients. It is interesting to
see that the BI confidence interval covers the entire parameter
space. Inverting the pivotal quantity in (7) results in a confi-
dence interval whose endpoints fall outside of the parameter
space. Harville and Fenech (1985) attributed this to a lack of
sufficient information in the data about the parameter of in-
terest. Table 7 gives the empirical coverages of these interval

Figure 10. Fiducial density plot for ρ for the loin-eye data.

Table 6. Nominally 90% and 95% confidence intervals on ρ for
the loin-eye data

Method 90% 95%

BI (0, 1.000) (0, 1.000)
FI (0, .824) (0, .972)

procedures for ρ using REML estimates of σ 2
α , σ 2

ε , and ρ as
their true values. The results show that the FI method leads to
a shorter confidence interval for ρ in this data set. Comparing
the empirical coverages shows that the FI confidence interval is
more conservative than the BI confidence interval. In summary,
the FI method performs better than the BI method for this data
set.

6. CLOSING REMARKS

In this article, we have proposed interval estimation proce-
dures for σ 2

α , σ 2
ε , and ρ in a two-component mixed-effects

linear model using the fiducial approach. We reported a sim-
ulation study carried out to compare the proposed confidence
interval for σ 2

α with five other confidence intervals from the lit-
erature, the proposed confidence interval for σ 2

ε with an exact
confidence interval, and the proposed confidence interval for
ρ with the method due to Burch and Iyer (1997). The results
of a simulation study showed that the proposed fiducial inter-
vals for σ 2

α are satisfactory in terms of coverage probability.
Although they are conservative for small values of the variance
ratio η = σ 2

α/σ 2
ε , they have the smallest average interval lengths

among all confidence intervals. We gave two examples to illus-
trate the use of the proposed procedures. The results confirm
that the fiducial intervals can be recommended for practical use
instead of the methods previously discussed in the literature.
The code implementing the proposed method is available from
the authors on request.

APPENDIX A: DERIVATION OF THE
FIDUCIAL DENSITY

As mentioned earlier, we interpret the fiducial distribution (8) as
follows. Pick randomly two equations in (9) and solve for σ 2

α and σ 2
ε .

Then plug these solutions for σ 2
α and σ 2

ε into the remaining equations
and use them for conditioning.

More formally, the set-valued function R(q,U�) in (8) is the set of
all σ 2

α and σ 2
ε , with λiσ

2
α + σ 2

ε > 0, i = 1, . . . , d , for which

qi = (λiσ
2
α + σ 2

ε )U�
i

ri
, i = 1, . . . , d, (A.1)

is satisfied. Here U� is an independent copy of U. In particular, assum-
ing that equations i, j in (A.1) were chosen and fixed, we solve them

Table 7. Empirical coverages of the nominally 90% and 95%
two-sided confidence intervals on ρ for the loin-eye data using

REML estimates of σ 2
α , σ 2

ε , and ρ as their true values
(based on 2,000 simulations)

Method 90% 95%

BI .900 .951
FI .939 .977
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for σ 2
α and σ 2

ε . This gives

σ 2
α = 1

(λi − λj )

(
riqi

U�
i

− rj qj

U�
j

)
and

(A.2)

σ 2
ε = 1

(λi − λj )

(
−λj riqi

U�
i

+ λirj qj

U�
j

)
.

The system of equations in (A.1) then has a solution if and only if the
values of σ 2

α and σ 2
ε in (A.2) also satisfy the remaining equations in

(A.1). This requirement leads to the following set of constraints that
must be satisfied by U�:

qk = U�
k

rk(λi − λj )

(
riqi(λk − λj )

U�
i

− rj qj (λk − λi)

U�
j

)

for k �= i, j. (A.3)

Summarizing, the set R(q,U�) is nonempty if and only if (A.3)
holds, in which case the set

R(q,U�) =
{(

1

(λi − λj )

(
riqi

U�
i

− rj qj

U�
j

)
,

1

(λi − λj )

(
−λj riqi

U�
i

+ λirj qj

U�
j

))}
.

This leads us to define the random variables Ai,j , Si,j , and Wk,i,j as

Ai,j = 1

(λi − λj )

(
riqi

U�
i

− rj qj

U�
j

)
,

Si,j = 1

(λi − λj )

(
−λj riqi

U�
i

+ λirj qj

U�
j

)
,

and

Wk,i,j = U�
k

rk(λi − λj )

(
riqi (λk − λj )

U�
i

− rj qj (λk − λi)

U�
j

)
.

We now can interpret the conditional distribution in (8) as

Ai,j , Si,j |Wk,i,j = qk, k �= i, j. (A.4)

This conditional distribution has a density proportional to the joint den-
sity of Ai,j , Si,j , and Wk,k �= i, j , computed at the points a, s, and q.
Routine calculation shows that this density is given by

fi,j (a, s,q) = (λi − λj )qiqj

2
∑d

k=1 rk/2(λia + s)(λj a + s)
exp

[
−1

2

d∑
k=1

rkqk

λka + s

]

×
d∏

k=1

r
rk/2
k

q
rk/2−1
k

�(rk/2)(λka + s)rk/2
I{λka+s>0}.

Unfortunately, a careful inspection of fi,j (a, s,q) reveals that the con-
ditional distribution (A.4) depends on the arbitrary choice of i, j .

To remedy this nonuniqueness, we have considered the equation
i, j as being selected at random. Taking this into account, the fiducial
density of (σ 2

α ,σ 2
ε ) in (8) thus can be computed as

f (a, s) = lim
ε→0+

[((
d

2

)−1 ∑
i<j

ε−dP
(
Ai,j ∈ (a, a + ε),

Si,j ∈ (s, s + ε),Wk,i,j ∈ (qk, qk + ε), k �= i, j
))

/((
d

2

)−1

×
∑
i<j

ε−d+2P(Wk,i,j ∈ (qk, qk + ε), k �= i, j)

)]
(A.5)

Notice that each term of the sum in the numerator of (A.5) con-
verges to fi,j (a, s,q). The limit in (A.5) is then

f (a, s) =
∑

i<j fi,j (a, s,q)∑
i<j

∫ ∫
fi,j (a, s,q) da ds

,

which simplifies to (10) with w1 = a and w2 = s. The derivation is
now complete.

APPENDIX B: PROOF OF THEOREM 1

We use the ideas presented in the proof of theorem 1 of Hannig
(2008). Define the random vectors

S =
(

d∑
i=1

riQi

(λiσ
2
α + σ 2

ε )2
,

d∑
i=1

λiriQi

(λiσ
2
α + σ 2

ε )2

)

and

t =
(

d∑
i=1

ri

λiσ
2
α + σ 2

ε

,

d∑
i=1

λiri

λiσ
2
α + σ 2

ε

)
.

We show that (S− t)/
√

n converges in distribution to a normal random
vector.

Toward this end, assume without loss of generality that ri = 1 for
all i, possibly repeating some eigenvalues several times. We then can
write

S − t =
(

n∑
i=1

(Ui − 1)

λiσ
2
α + σ 2

ε

,

n∑
i=1

λi(Ui − 1)

λiσ
2
α + σ 2

ε

)
,

where Ui are iid chi-squared random variables with 1 degree of free-
dom. To prove the convergence, we use the Cramèr–Wold device. Fix
a and b and denote

c = max
j=1,...,n

(a + bλj )2

(λj σ 2
α + σ 2

ε )2
.

By our assumptions, c/n → 0. Next, we verify the Lindeberg–Feller
condition,

lim
n→∞

n∑
i=1

E

[
(a + bλi)

2(Ui − 1)2

n(λiσ
2
α + σ 2

ε )2
;

n∑
j=1

(a + bλj )2

n(λj σ 2
α + σ 2

ε )2
ε <

(a + bλi)
2(Ui − 1)2

n(λiσ
2
α + σ 2

ε )2

]

≤ lim
n→∞E

[
c(Ui − 1)2; (a2m0 + 2abm1 + b2m2)

ε

2
< c(Ui − 1)2

]

= 0.

Thus we conclude that (S − t)/
√

n
D−→ H = (H1,H2) ∼ N(0,2
).

By Skorokhod’s representation theorem (Billingsley 1995), this con-
vergence can be taken a.s. We assume the a.s. convergence in the rest
of the proof.

We now investigate the distribution of
√

n(R(σ 2
α ,σ 2

ε ) − (σ 2
α ,σ 2

ε )),
where R(σ 2

α ,σ 2
ε ) denotes a random vector with the distribution de-

scribed in (10). The density of this random variable is a constant

multiple of r(z1, z2) = (d
2
)−1

g(σ 2
α + z1/

√
n,σ 2

ε + z2/
√

n), where g

is as defined in (10). [For future reference, denote this constant as
Cn; that is, the density is C−1

n r(z1, z2).] Set w1 = σ 2
α + z1/

√
n and

w2 = σ 2
ε + z2/

√
n and consider

log r(z1, z2)

= −1

2

d∑
i=1

ri

(
qi

λiw1 + w2
+ log(λiw1 + w2)

)
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+ log

((
d

2

)−1 ∑
i<j

(λi − λj )qiqj

(λiw1 + w2)(λjw1 + w2)

)
. (A.6)

Applying Taylor series to each term of the first sum in (A.6), we get

d∑
i=1

ri

(
qi

λiw1 + w2
+ log(λiw1 + w2)

)

= −n−1/2z1

d∑
i=1

(
riqi

(λiσ
2
α + σ 2

ε )2
− ri

λiσ
2
α + σ 2

ε

)

− n−1/2z2

d∑
i=1

(
λiriqi

(λiσ
2
α + σ 2

ε )2
− λiri

λiσ
2
α + σ 2

ε

)

+ n−1z2
1

d∑
i=1

(
riqi

(λiσ
2
α + σ 2

ε )3
− ri

2(λiσ
2
α + σ 2

ε )2

)

+ n−12z1z2

d∑
i=1

(
λiriqi

(λiσ
2
α + σ 2

ε )3
− λiri

2(λiσ
2
α + σ 2

ε )2

)

+ n−1z2
2

d∑
i=1

(
λ2
i
riqi

(λiσ
2
α + σ 2

ε )3
− λ2

i
ri

2(λiσ
2
α + σ 2

ε )2

)

+
d∑

i=1

ri

(
qi

λiσ
2
α + σ 2

ε

+ log(λiσ
2
α + σ 2

ε )

)
+ oas(1). (A.7)

As noted earlier, the first two terms on the right side of (A.7) con-
verge a.s. as n → ∞ to −z1H1 −z2H2. By Slutsky’s theorem, the next
three terms converge a.s. to z2

1m0 + 2z1z2m1 + z2
2m2. Similarly, set

Ln =
(

d

2

)−1 ∑
i<j

(λi − λj )qiqj

(λiσ
2
α + σ 2

ε )(λj σ 2
α + σ 2

ε )

and note that

log

((
d

2

)−1 ∑
i<j

(λi − λj )qiqj

(λiw1 + w2)(λjw1 + w2)

)
− log(Ln) → 0 a.s.

Define

Kn = exp

(
1

2

d∑
i=1

ri

(
qi

λiσ
2
α + σ 2

ε

+ log(λiσ
2
α + σ 2

ε )

)
− 1

4
HT
−1H

)

/(
2πLn

√
det(2
−1)

)
and note that

h(z1, z2)

= lim
n→∞Knr(z1, z2)

= K exp

{
−1

4
(z2

1m0 + 2z1z2m1 + z2
2m2 − 2z1H1 − 2z2H2)

}

a.s.

Here the constant K is chosen so that h(z1, z2) integrates to 1. Note
that, conditionally on H, h(z1, z2) is a density of a multivariate nor-
mal distribution N(
−1H,2
−1). Also note that, unconditionally,

−1H ∼ N(0,2
−1).

Recall that the density of
√

n(R(σ 2
α ,σ 2

ε ) − (σ 2
α ,σ 2

ε )) is C−1
n r(z1,

z2). Furthermore, the functions
√

det(2
−1)Knr(
√

2
−1/2z +

−1H) are dominated by C(1 + z2

1 + z2
2)−1 for C sufficiently large.

Thus the Lebesgue-dominated convergence theorem, the fact that den-
sities integrate to 1, and Fatou’s lemma imply that KnCn → 1. We

conclude that the density C−1
n r(z1, z2) converges to the density of

N(
−1H,2
−1).
This verifies the crucial assumption 1.2 of Hannig (2008). More-

over, the equal-tailed region satisfies assumption 1.3 of Hannig (2008).
The rest of the proof is identical to the proof of theorem 1 of Hannig
(2008).

[Received November 2006. Revised January 2008.]
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