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Classification of suspect powders, by using laser-induced breakdown spectroscopy (LIBS) spectra, to determine if they
could contain Bacillus anthracis spores is difficult because of the variability in their composition and the variability
typically associated with LIBS analysis. A method that builds a support vector machine classification model for such
spectra relying on the known elemental composition of the Bacillus spores was developed. A wavelet transformation
was incorporated in this method to allow for possible thresholding or standardization, then a linear model technique
using the known elemental structure of the spores was incorporated for dimension reduction, and a support vector
machine approach was employed for the final classification of the substance. The method was applied to real data
produced from an LIBS device. Several methods used to test the predictive performance of the classification model
revealed promising results. Published 2012. This article is a US Government work and is in the public domain in the USA.
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1. INTRODUCTION

When a large building, complex, or area has been contaminated
with a powder substance that may contain Bacillus spores (causative
agent for anthrax), it is crucial to determine if the substance is
potentially harmful quickly and efficiently. These powder substances
could be nonhazardous hoaxes (e.g., dust, chalk, or sugar), but they
could also actually be or contain Bacillus anthracis. Laser-induced
breakdown spectroscopy (LIBS) devices have the capability of
generating characteristic spectra that can aid in determining if a
substance is or contains a spore material like B. anthracis. In LIBS,
a laser is focused onto a sample producing a plasma. This plasma
atomizes, ionizes, and subsequently excites the interrogated
sample. The light emitted from the plasma is collected, generating
a characteristic wavelength spectrum. LIBS is an attractive tech-
nique for field analysis of suspect powders because it does not
require preparation of samples, yields spectra in real time, and is
easily made man-portable.
Differentiation of B. anthracis spore powder LIBS spectra from

LIBS spectra of other innocuous powders via classificationmethods
can be difficult because of the inhomogeneity of the spore powder
itself and the variability typically associated with LIBS spectra. This
variability is seen even when employing the same LIBS system and
is because of a range of factors including the following: pulse-to-
pulse variations in the laser energy and profile, sample topography
(directly affects the distance of the plasma to the collection lens,
which subsequently impacts the distance from the plasma to the
collection fiber), creation of sampling craters (can be avoided by
moving to a fresh spot for each laser shot), physical and chemical
characteristics of the sample (surface adsorption, reflection, and
thermal conductivity, which are determined by the composition,
roughness, color, and moisture content of the sample), and matrix
effects [1–5]. Normalization methods, such as the use of other
emission lines from elements in the surrounding gas or reference
elements in the matrix, and the use of excitation temperatures

and/or electron temperatures are often applied to correct for
these matrix effects [1]. However, these corrections are frequently
not an option with heterogeneous samples and/or when ungated
(nonintensified) charge-coupled device (CCD) detectors are used.
These ungated CCDs are found on less expensive and portable
LIBS systems.

Statistical methods have been implemented to overcome this
issue, particularly in the area of analysis of biological agent pow-
ders. Using partial least squares discriminant analysis (PLS-DA),
Gottfried and coworkers were able to differentiate stand-off LIBS
spectra intensity ratios of pure spore powders and other powders
such as talcum powder, sugar, dust, and flour on aluminum and
glass substrates [6]. Previously, biological agent surrogate spectra
were classified using linear and rank correlation [7]. These statistical
techniques had difficulty distinguishing spore spectra, specifically
Bacillus atrophaeus spectra, in mixtures of potentially interfering
compounds such as urban particulate matter. Munson and
coworkers explored the use of soft independent modeling of class
analogies for classification of three Bacillus species, molds, Arizona
road dust, and pollens as well as amixture of Arizona road dust and
Bacillus globigii. They found that soft independent modeling of
class analogy models could be used to distinguish between spores
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inmixtures of the road dust and the road dust itself [8]. PLS-DAwas
also able to distinguish between spores in mixtures of the road
dust and the road dust itself [6]. Employing these statistical
methods still did not sufficiently resolve the issues of false positives
for some materials (fertilizer and outdoor air particulate matter).

Other statistical methods have also been employed for
classification of LIBS spectra of heterogeneous samples. Rehse
et al. used discriminant function analysis to discriminate LIBS
spectra of one genus of bacteria, applied as a thin smear on an
agar plate, from another and obtained greater than 90%
accuracy regardless of the nutrient medium in which the
bacteria were cultured [9]. Hierarchical cluster analysis, artificial
neural networks, and PLS-DA were used to classify LIBS spectra of
chicken tissue samples (kidney, lung, liver, brain, muscle, and
spleen) [10]. Artificial neural networks were also employed to
classify rocks and soils, and average classification accuracy of
78% was observed when spectra that were not used to train the
original model were classified (including some spectra of unknown
rock and soil materials) [11].

In this paper, a new statistical technique is presented for
distinguishing B. anthracis surrogate spore powders from other
innocuous suspect powders by using LIBS spectra that can
potentially provide better classification than the previously
mentioned efforts. The proposed method exploits a known
property of the B. anthracis and its surrogate spores to aid in
classification. Specifically, there are eight elements typically
detected in B. anthracis and their surrogate spores [7]. The principal
idea of the proposed technique is, after preprocessing the data
with the use of wavelets, to determine the combination pattern
of the LIBS spectra for those eight elements that form the LIBS
spectra of B. anthracis spore and other innocuous powders by
using linear regression. The combination pattern is then used to
build a classification model by using a support vector machine
(SVM) approach to classify the substance as harmful, that is,
B. anthracis spore, or not. The methodology was developed using
pure spore specimens, pure confusant samples, and pure elements.

2. EXPERIMENTAL

This section describes the LIBS system and the materials used in
the study. Spectra were collected for biological (B. anthracis
spore surrogates) and nonbiological substances.

2.1. Laser-induced breakdown spectroscopy system

Data were collected on a bench-top LIBS system that consisted of a
CFR400 Nd:YAG laser (Big Sky, Bozeman, Montana) operating at
the fundamental wavelength of 1064nm, a pulse duration of
8 ns, and maximum pulse energy of 400mJ; a series of focusing
and collection optics; and an LIBS 2000 broadband (200–980nm
with 0.1 nm resolution) spectrometer (Ocean Optics, Dunedin,
Florida). During operation, a single laser pulse (�65mJ/pulse) from
the laser is triggered by the LIBS software. This beam passes
through a pierced parabolic mirror and is focused onto the sample
surface with a 5-cm lens, producing the LIBS plasma. The resulting
plasma emission is reflected by the pierced mirror to a 10-cm focal
length lens that focuses the plasma emission onto a fiber optic
bundle consisting of seven fibers. The fiber bundle delivers
light to a broadband spectrometer that contains seven CCDs.
Throughout operation of the system, the laser and the spectrometer
are controlled by the Ocean Optics, Incorporated LIBS software.
All spectra were taken at a delay time (time after plasma

initiation) of 1.5 ms. Collection of plasma emission at this delay
time optimizes the ratio of elemental emission lines to back-
ground plasma continuum emission.

2.2. Materials

Pellets (2.54 cm in diameter, 2–4mm in thickness depending on
substance) were made using a pellet press (XPRESS 3630, SPEX
Sample Prep Metuchen, NJ) that applied 20 tons of pressure for
30 s. The nonbiological powder pellets analyzed via the bench-
top LIBS system were as follows: Food Lion brand flour, Arm &
Hammer detergent, Rumford baking powder, Arm & Hammer
baking soda, BC powder, Crayola chalk, DiPel 150 dust, Equal
artificial sweetener, Gain laundry detergent, Advil ibuprofen
tablets, Johnsons baby powder, Food Lion brand powdered sugar,
Food Lion brand sugar, Sweet’n Low artificial sweetener, Tide
laundry detergent, and Tylenol acetaminophen capsules. The 5%
elemental standard powder pellets were made from the following
powders: magnesium sulfate (99%; Sigma Aldrich, St. Louis, MO;
yields magnesium spectral lines), sodium chloride (99.999%, Sigma
Aldrich, yields sodium spectral lines), potassium iodide (≥99.0%,
Sigma Aldrich, yields potassium spectral lines) ferric sulfate hydrate
(97%, Sigma Aldrich, yields iron spectral lines), manganese(II)
sulfate monohydrate (≥98.0%, Sigma Aldrich, yields manganese
spectral lines), sand (white quartz 50+70 mesh, Sigma Aldrich,
yields silicon spectral lines), graphite ( 99.99% 100 mesh powder,
Sigma Aldrich, yields carbon spectral lines), calcium chloride
(≥99%, Sigma Aldrich, yields calcium spectral lines), and boron
oxide (99.999%; Alfa Aesar, Ward Hill, MA; has minimal spectral
features). Boron oxide was used as the diluent for the elemental
standards because of its inertness and low spectral background.
Spectral lines from the other component of the elemental standard
(sulfur, iodine, chlorine) were not observed, but hydrogen,
nitrogen, and oxygen spectral lines (because of the ambient air
surrounding the sample) were observed in all samples except the
graphite (which absorbs some emitted light from the plasma
because of its color). The analyzed anthrax spore surrogate
powders were B. atrophaeus (US Army Dugway Proving Ground,
Dugway, Utah), Bacillus cereus (ATCC 14603), Bacillus thuringiensis
(ATCC 51912), and Bacillus stearothermophilus (ATCC 12979). All
ATCC spores were used as received from ATCC. The B. atrophaeus
was prepared as an 80:20 mixture of dry spores to fumed silica
particles by mass [12]. Spectra were also taken of a stainless steel
coupon blank, used as the pellet backing during analysis. Note that
DiPel 150 dust has traces (less than 0.065%) of B. thuringiensis;
however, because the LIBS system would not detect this low
concentration of B. thuringiensis, we include DiPel 150 dust as a
confusant sample rather than a spore surrogate powder.

3. STATISTICAL ANALYSIS

The proposed methodology provides a means for classification of
LIBS data as Bacillus spores or not. The idea after preprocessing
the data was to reduce the dimension of the data by using known
structural information about B. anthracis spores and linear models
and build an SVM classification model by using the dimension-
reduced data. The statistical analysis begins with preprocessing
of the LIBS spectra produced for the substances described in
Section 2.2. The first step in preprocessing was to remove outlying
spectra followed by logarithmic and wavelet transformations.
Wavelet transformations are described in the succeeding para-
graphs along with an introduction to SVMs, which were used for
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the classification model. A description of the proposed method
follows these introductions, and the section is concluded with an
analysis and discussion of the performance of the model. The
statistical analysis was completed using the statistical software
R [13] and packages kernlab [14] and e1071 [15]. A comparison
of these packages can be found in Karazoglou et al [16].

3.1. Wavelets

The wavelet transformation is a methodology useful in modeling
data characterized by sharp peaks, or spikes, and other local
features by using a set of wavelet basis functions [17]. There
are several wavelet families, and among the most popular are
the Daubechies wavelets, which form an orthonormal basis in
the space of square-integrable functions. In modeling, the
mother wavelet c is dilated and translated, that is, stretched,
squeezed, and shifted, to represent some function f where, in
this analysis, f is an LIBS spectrum. The general form of the rep-
resentation of f by using a wavelet basis is

f xð Þ ¼ c00’0 xð Þ þ
X1
j¼0

X1
k¼�1

djkcjk xð Þ (1)

where ’0 is referred to as the father wavelet, or the scaling
function, with coefficients c00, and cjk(x) = 20.5jc(2jx� k) with
integers j and k indexing the dilations and translations, respectively,
of the mother wavelet. The dilation can be thought of as the
window width of the wavelet. The djk is the wavelet coefficient at
level j and location k, defined as

djk ¼
Z

f xð Þcjk xð Þdx (2)

In practice, f is observed at discretized points so Equation (2) is
replaced by an approximation, and the range of the indices of
the summations in Equation (1) are truncated on the basis of
the values computed by the available data. Specifically, the
sum indexed by j is truncated to log 2(n)� 1, where n is the num-
ber of observations of the function f, and k= 0, 1, . . ., 2j� 1.
In the proposed methodology, a wavelet transformation

was taken of each spectrum, and only the estimated wavelet
coefficients, called the discrete wavelet coefficients (DWC), were
retained for the classification model. Including a wavelet
transformation in the framework provides flexibility when more
preprocessing of the data is required, for example, for noisy data,
it can be appealing to threshold the DWC. More details about the
wavelet transformation used in the proposed methodology can
be found in Section 3.3.

3.2. Support vector machines

Support vector machines have many uses in statistics, in particu-
lar for classification. An overview of the methods can be found in
Shawe-Taylor and Cristianini [18] or Hastie et al. [19]. The main
idea for SVM classification is to find the hyperplane that best
separates the data into two classes by maximizing the margin
between the closest points in each class. These closest data
points are known as the support vectors.
Consider a data set {xi,yi} where i=1,. . .n, yi = {�1, 1}, and

xi
2 Rd where d is the dimension of the data set. For simplicity,

suppose d= 2. Then, there is a two-dimensional vector of n data
points, and each point is assigned into classes �1 or 1. The goal

is to find the hyperplane, which for d=2 is a line that best
separates the two classes. Specifically, one needs to find variable
b and vector w that defines the hyperplane

xi�wþ bð Þyi ≥ 1 for i ¼ 1; . . . ; n; (3)

where the hyperplane is such that it is as far as possible from the
closest data points of each class. That is, the goal is to maximize
the margin between the two classes. The distance between the
hyperplane of Equation (3) and the support vectors of each class
is equal to jjwj �1j , where w is orthogonal to the hyperplane.
Hence, the distance between the two classes (i.e., the margin)
is equal to 2jjwj �1j . To maximize the margin, one can minimize
jjwjj subject to the constraints defined in Equation (3). To make
this computationally easier, 0:5jjwj 2j is minimized with the same
constraints. The variable b is the offset from the origin of the
hyperplane.

Because most data will not be perfectly linearly separable,
Equation (3) is modified to allow for misclassifications (data
points on the wrong side of the separating margin) as follows:

xi�wþ bð Þyi ≥ 1� xi; xi ≥ 0 for i ¼ 1; . . . ; n; (4)

This now allows for some values to be misclassified, and the
objective function is modified to

minð0:5jjwjj2 þ C
Xn
i¼1

xiÞ (5)

subject to the constraints of Equation (4). The parameter C is
chosen to reflect the degree to which misclassifications are
penalized and is referred to as the cost parameter, and the
variables xi are measures of the degree of the misclassification
of xi . A nonzero xi suggests that the datum xi is on the “wrong”
side of the hyperplane resulting in the application of a penalty.

The SVM classification model is completely defined by the
vector w and b where a new point x� is classified by the sign
of w�x� þ b. If there is asymmetry in the number of observations
falling into each class, there are procedures for reducing the
impact of the imbalance [20].

The derivation assumes that the data are linearly separable,
but this is not always the case; for example, one of the classes
could be circumscribed by the other class. However, the data
can be transformed using a kernel function (determined by the
data) onto feature space to improve linear separability [18].

For the proposed methodology, x are a measure of the
presence of the eight elements typically detected in anthrax
surrogates (described in detail hereafter), and the y indicate if
the substance is a spore powder or not.

3.3. Data preprocessing

The data used in the analysis were the spectra (intensity at differ-
ent wavelengths) collected from the LIBS system described in
Section 2.1 and the substances named in Section 2.2. The spectra
used to build the model had 13 701 data points (one for each
wavelength at which the system recorded a measurement). A
sample spectrum of baking powder and B. stearothermophilus
(ATCC 12979) are displayed in Figure 1a and b, respectively.

The overall idea of the model is to first regularize the data via
wavelets, then reduce the dimension of the samples by using a
linear model, and finally build a classification model that will
categorize an unknown substance as a Bacillus spore, or not,
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using SVMs. This section addresses all the steps preceding the
SVM classification model.

In addition to the LIBS spectra for B. anthracis surrogate spore
powders and other innocuous powders described in Section 2.2,
LIBS spectra for the eight elements typically detected in B. anthracis
spores—sodium, potassium, magnesium, manganese, silicon,
carbon, calcium, and iron—were considered. Each element has a
characteristic spectrum with peaks at known wavelengths, and
the characteristic elemental spectra were used in the analysis to
aid in dimension reduction of the other LIBS spectra and provided
a way to focus on the wavelengths of the spectra where peaks are
expected when B. anthracis surrogate spores are present.

The first step in the analysis was to remove obvious outliers in
the data. To locate suspected outliers, each set of spectra for each
substance was analyzed in the following manner. For each
substance (e.g., Sweet ’n Low spectra), mean and median spectra
were defined. The sum of the absolute difference between each
sample and the mean and median spectra were calculated along
with noting the sample’s minimum and maximum intensities. Four
plots were generated to compare these four values between the
samples. If a sample’s point for any of the plots did not follow a
pattern similar to the majority of the other points, its spectrum
was visually compared with the mean and median spectra. In the
few cases where the spectra were clear outliers (e.g., no peaks were
appearing at any wavelength or for large portions of wavelength
ranges), the associated samples were removed from the analysis
(less than 0.6% of the sample spectra were removed as outliers).

After removing outlying spectra, a logarithmic transformation
was taken of all the remaining data. There are a few points to note
about the sample spectra displayed in Figure 1a and b. First, the
spectra have slightly irregular patterns tracing their bases (the
irregularities are more pronounced after the logarithmic transfor-
mation); second, the spectra have a number of sharp peaks; and
lastly, the spectrum in Figure 1a has peaks in locations and at
heights different from the spectrum in Figure 1b. For these
reasons, along with potential for thresholding and other forms of
regularization, a wavelet transformation was employed rather than
another functional representation of the data. Although a wavelet
transformation of the LIBS spectra was not required for the use of

the proposed classification model, the irregular base pattern was
removed by only retaining the DWCs, that is, the estimated djk from
Equation (1), and discarding the information related to the scaling
functionwhile preserving information about the peaks. The type of
wavelet filter selected for the analysis was the Daubechies 4
filter, that is, with two vanishing moments. Symmetric boundary
conditions were selected because it was reasonable to assume
the unobserved signal to the right of the domain would be better
represented as a continuation of the right part of the spectrum
(rather than the left part of the spectrum), and vice versa for
the region to the left of the domain. Only 9 of the 13 possible
levels, that is, dilations of the mother wavelet, of coefficients were
needed to capture the required detail of the spectra. The DWCs
for each spectrum were vectorized and replaced the raw spectra
as the data.
Next, a linear regression model was used to determine the

combination pattern of the characteristic elemental spectra for
the Bacillus spores LIBS spectra and the other substances. The
components of the linear model are described in Equation (6).
For e=1, . . ., 9,

Ee ¼ vector of DWCs for chemical element e (6)

where the ninth element included is boron because of its role in
obtaining the elemental LIBS spectra. Including boron in the
determination of the combination pattern, but not including it
in the classification model, kept the presence of the boron in
the elemental spectra from influencing classification. In addition
to the Ee’s, indicators for the seven CCDs (see Section 2.1),
defined by wavelength ranges, were carried through the wavelet
transformation. The seven indicator vectors initially contained 1
for wavelengths within the range of the corresponding CCD
and 0 everywhere else. The wavelength ranges are disjoint
between the seven CCDs, and therefore for every wavelength,
there is only one column with the corresponding entry 1. These
indicators were then subjected to the same wavelet transforma-
tion as the sample spectra, vectorized as previously, and then
defined for measuring device i= 1, . . ., 7 as

I i ¼ vector of DWCs for measuring device indicator i (7)

The I i’s account for any overall inconsistencies between the
wavelength ranges of each measuring device. Note that an LIBS
spectrum was not used to produce the indicators of Equation (7),
but only known information (i.e., the wavelength ranges of the
seven CCDs) about the LIBS device.
Every sample spectrum was transformed onto the wavelet

domain by using the same wavelet transformation with the
DWCs retained. Each collection of DWCs was vectorized and
defined as Ysj ¼ vector of DWCs; for substance s=1, . . ., S
sample j= 1, . . ., Js (each substance had 20–25 sample spectra).
The combination pattern of the elemental spectra for each

substance is called its loadings. To obtain the loadings for every
sample of each substance, the following linear model was fit:

Ysj ¼ Xbsj þ e (8)

where X is a matrix composed of a column of ones, followed by I i,
i=1, . . .6 defined in Equation (7) (only six of the seven CCDs were
used because of the multicollinearity that would result, and thus
nonidentifiability of parameters; this is a mathematical issue and
does not impact the results), and Ee, e=1, . . ., 9 as defined in
Equation (6). Furthermore, bsj is the unknown 16-dimensional

Figure 1. A spectrum generated by a laser-induced breakdown spec-
troscopy system of samples of (a) baking powder and (b) B. stearothermo-
philus (ATCC 12979).
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parameter vector for sample j of substance s, and e is the unknown
error in the model (note that normality of the data is not assumed).
The loading vector is defined as part of the least-squares estimates,
_

bsj, where
_

bsj ¼ XTX
� ��1

XT Ysj. The loading vector is denoted as
^

bsj

for sample j of substance s, where this only includes the values from
_

bsj , corresponding to the eight elements, that is, excluding boron.
In summary, each sample of each substance had an eight-

dimensional loading vector associated with it. The dimension of
data was reduced from 13701 to 8 by focusing on the locations
of the spectra where the signature elements of Bacillus spores were
found to have peaks. The loadings for the Bacillus spores (the
particular combination of the elemental spectra for each sample)
are displayed in Figure 2a–d. The behavior of the loadings for each
of the surrogates appears to be similar, suggesting that these
elemental spectra do combine in a similar way to form the
Bacillus spore spectra, whereas the loadings for two examples of
innocuous substances, baking soda, and baking powder (see
Figure 2e and f) clearly follow a different pattern. These eight-
dimensional loading vectors were used in the classification model
described in the next section.

3.4. Classification model

Support vector machines were used to develop a classification
model using the loadings associated with the data described in
Section 2.2. The two classes were Bacillus spores and other
nonbiological confusant substances. As noted in Section 3.2,
the goal of SVM was to minimize Equation (5) subject to the con-
straints of Equation (4). In this analysis, yi=1 for spores, yi=� 1
for other substances, and the corresponding vectors xi were
the eight-dimensional loading vectors defined previously. In

addition to our confusant powders, we included loadings for the
spectra of the eight elements in the non-Bacillus group (yi=� 1).
Including these elemental loadings helped to guard against an
unknown confusant substance being misclassified as Bacillus
spores simply because it was made up of only one or several
of these elements. For SVMs, disproportionate class sizes, if
not accounted for, can lead to incorrect classification [21,22].
Because of the imbalance between the number of spore
samples and other samples (94 sample spore spectra were used
compared with 419 confusant substances), the substances were
adjusted to alleviate the disproportion (to diminish the effect of
asymmetric class sizes) by using the class.weights option in the R
packages mentioned in the introduction of Section 3. This
option allows the user to mitigate the class size imbalance
between the two classes by assigning a higher weight to the
class with fewer samples and a lower weight to the class with
more samples.

The model was built using 70% of the data (randomly selected
for each substance) and then verified using the remaining 30%.
Because the data appeared to be linearly separable, the linear
kernel was sufficient for this model, that is, a hyperplane, or flat
surface, separated the two classes of data, and no additional
transformation was needed.

During the construction of the classification model, the cost
parameter C was set using a grid search over a specified range
of values. The final C was chosen on the basis of 10-fold cross
validation error over the grid. The performance based on model
and 10-fold cross validation errors was low for all C’s presented in
the grid. Although all of the values considered for C perform well,
the grid-search algorithm used for tuning parameters of SVM
selected C= 2 as the best value on the basis of 10-fold cross

Figure 2. Box plots of the loadings for Bacillus spores (a) Bacillus stearothermophilus (ATCC 12979), (b) Bacillus thuringiensis (ATCC 51912), (c) Bacillus
atrophaeus (ECBC), and (d) Bacillus cereus (ATCC 14603), and confusant substances (e) baking soda and (f) baking powder. The horizontal axis displays
the eight elements typically detected in Bacillus spores, and the values along the vertical axis are the corresponding loading values for each sample
summarized as a box plot. There were 21–29 samples used for each plot.
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validation. Once the model was built, the remaining 30% of the
data was put into the classification model. Misclassifications, or
prediction error, occurred if the outcome of the model did not
accurately predict the class of the substance, that is, if an anthrax
surrogate powder was classified as a confusant powder, or vice
versa. Table I displays the results of the prediction error of the
fitted model by using the 30% of the data not included in the
model selection and parameter tuning.

To further test the model, sample spectra of two different
Bacillus spores not used to build the model were classified using
the model: B. thuringiensis (ATCC51912; eight spectra) and
B. stearothermophilus (ATCC12979; five spectra). All 13 spectra
were correctly classified.

To further verify the performance, and because of the limited
data available, a “leave-one-out” method was employed. The
model was built using spectra from only three of the four Bacillus
spore samples (i.e., one Bacillus spore sample was left out of the
model building stage). Seventy per cent of the three remaining
Bacillus spore samples and confusant powder samples were
randomly selected to build the model. The model’s predictive
power was tested on the Bacillus spore sample left out and the
remaining 30% of the data. This was repeated for each Bacillus
spore sample, and the results of this test are displayed in Table II.
The prediction error was between 0.0% and 3.4%.

A similar procedure was performed by randomly selecting five
nonspore samples to be left out of building the model: four
confusant substances (baking soda, Gain laundry detergent,
sugar, and Tide laundry detergent) and the blank stainless steel
spectra. These five substances were grouped together in the

determination of the prediction error. The results are also listed
as the last row in Table II. The prediction error was 0.9% and
3.3% for confusant powders and Bacillus spores, respectively.
The higher prediction error for the B. atrophaeus could potentially
be attributed to its distinct spore preparation.

4. CONCLUSION

The proposed methodology provides a way to classify suspect
powders, like Bacillus spores, from other substances by using LIBS
spectra generated using the same LIBS system. Several statistical
techniques were brought together to produce the classification
model. A wavelet transformation was used to reduce irregularities
in the LIBS spectra and focus the classification analysis on the
peaks. Regressing the DWCs of the spores and other substances
on the DWC of the eight elements helped to both reduce the
dimension of the data and focus on the regions of a spectrum
where peaks were expected if spores are present in the substance.
Finally, the output loading vectors were then used to build the
classification model by using the SVM approach.
The overall classification model performed well for the data

and setting presented and could be used in other cases where
one of the classes has some known elemental structure. The
methodology was developed using pure substances, but an
interesting and important extension would be to consider spore
specimens mixed with various confusant substances as well as
various spore preparations for the same spore species. More
complex classification goals would require an increased number
of samples of Bacillus spores and investigation of a nonlinear
relationship between spores’ spectra and the elemental spectra.
To generalize this method to other LIBS systems, random effects
could be incorporated to account for the expected variation
differences between LIBS systems. After obtaining samples from
several LIBS devices (of the same design), a random effect would
be incorporated into the model Equation (8) to capture the
population-level variation of the LIBS devices to generalize the
methodology to all LIBS devices of this type. The usefulness of
incorporating random effects would be assessed by comparing
the results of the method outlined in this paper with the results
of the same method proposed previously, except using a mixed
linear model to determine the loading vectors rather than the
linear model used in Equation (8).
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Table I. Prediction error using cost parameter C= 2. The
prediction error is determined by the frequency of misclassi-
fications of the 30% of the data values not used in model
selection. Note that less than 0.6% of the sample spectra
was removed as outliers

Confusant powders Bacillus spore powders

0.6% 3.3%

Table II. Prediction error of model built with all samples
except the samples listed under “testing substance left out”.
Bacillus stearothermophilus (ATCC 12979), Bacillus thuringiensis
(ATCC 51912), Bacillus cereus (ATCC 14603), and Bacillus
atrophaeus (ECBC) are spores. The category “confusant”
includes stainless steel, baking soda, Gain laundry detergent,
sugar, and Tide laundry detergent. Note that less than 0.6%
of the sample spectra was removed as outliers

Testing substance left out Confusant
powders (%)

Bacillus spore
powders (%)

B. stearothermophilus
(ATCC 12979)

0.0 0.0

B. thuringiensis (ATCC 51912) 1.3 0.0
B. cereus (ATCC 14603) 0.6 0.0
B. atrophaeus (ECBC) 0.0 3.4
Confusant 0.9 3.3
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