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SUMMARY

This paper is concerned with the modeling and simulation of extremely large networks. We derive a time-
dependent diffusion–convection partial differential equation, the solution of which captures the global
characteristics of a stochastic network model. Continuum modeling provides a powerful way to deal with
the number of components in large networks and opens up the use of highly sophisticated mathematical
tools such as adaptive finite element methods. This, in turn, makes it possible to carry out}with
reasonable computational burden even for very large systems}network performance evaluation and
prototyping, network design, systematic parameter studies, and optimization of network characteristics.
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1. INTRODUCTION

This paper is concerned with the modeling and simulation of networks involving a large number
of nodes using time-dependent partial differential equations (PDEs). The analysis and design of
large networks is a critically important engineering problem impacting a number of fields.
In many applications, numerical simulation is the tool of choice for the design and evaluation of
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large networks. However, the computational overhead associated with direct simulation severely
limits the size and complexity of networks that can be studied in this fashion. Performing
numerical simulations of large stochastic networks has been widely recognized as a major hurdle
to future progress in understanding and evaluating large networks.

In this paper, we demonstrate that important global characteristics (what might be called
‘macroflow behavior’) of very large networks can be captured by a continuum model posed in
terms of a PDE. The continuum model considers the behavior of the components on the scale of
the aggregate rather than of the individual, while the individual characteristics of the
components enter the model through the form of the equations and the parameters defining the
model. Continuum modeling of large networks by PDEs provides a powerful way to deal with
the number of components in large networks and opens up the use of highly sophisticated
mathematical tools such as adaptive finite element methods. This, in turn, makes it possible to
carry out network performance evaluation and prototyping, network design, systematic
parameter studies, and optimization of network characteristics with reasonable computational
burden even for very large systems.

It turns out that the physical characteristics of a network significantly affect the derivation of
the continuum model. In order to focus ideas, we consider an ideal network that represents
important characteristics of both wireless ad hoc networks and remote sensing networks.

Interest in wireless ad hoc networks has flourished in recent years. At the same time, the
analysis of such networks has proven to be challenging. A particular line of research focuses on
deriving scaling laws in an asymptotic regime of behavior. For example, a seminal paper by
Gupta and Kumar [1] shows that under certain modeling assumptions, it is possible to
characterize the scaling law of the transport capacity in the asymptotic regime, where the
number of nodes N grows to infinity. Roughly, they show that the throughput grows as Oð

ffiffiffiffi
N
p
Þ:

This result has spawned numerous papers that characterize asymptotic scaling laws for wireless
networks in different settings (e.g. [2–4]). Despite the ground-breaking nature of these scaling-
law results, they do not provide any means to determine the actual throughput of a network
with, say, a million nodes. Simulation remains the only method of answering such questions.
However, simulation tools do not currently support very large network sizes.

The possibility of networking, not only computers and communication devices but also
sensors, has led to a significant current interest in sensor networks (see, e.g. NSF’s Sensors and
Sensor Networks Program [5]). Similarly to ad hoc networks, sensor networks consist of sensors
connected together via wireless links. However, sensor networks exhibit some unique features,
including limitations in energy, bandwidth, and processing power. Analysis of such networks
has closely followed that of wireless ad hoc networks, characterizing asymptotic scaling laws as
the number of sensors grows (e.g. [6, 7]). The performance of large-scale sensor networks is still
not possible with state-of-the-art simulators.

2. A DISCRETE STOCHASTIC NETWORK MODEL

We consider a network of wireless nodes distributed uniformly over a domain that represents an
idealized network of sensors that continuously generate data, which need to be communicated
to destination nodes located on the edge of the network. We illustrate a two-dimensional model
in Figure 1. These destination nodes may represent, for example, communication relay devices
that transmit the sensor data to a satellite.
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The derivation of a PDE model starts with a detailed stochastic model for the transmission
of information in the network. The network consists of N wireless nodes, each capable of
either receiving or transmitting messages from or to its immediate neighbors. This is a
simplification of a more realistic model using a power law to model the range of transmission,
but this allows for a relatively simple presentation. At each time instant k ¼ 0; 1; . . . ; we
assume that a message is generated in a random fashion at each node and each node
probabilistically decides to transmit or receive, but not both. Each node has the capacity to store
messages in a queue. On the outer boundary of the network region, we place special nodes that
can only receive messages. These nodes represent specialized devices that collect data from the
network of sensors. The basic goal is for the messages in the network to be routed to these
special edge nodes. There are many possible routing schemes, but all have to take into account
the fact that the communication is interference-limited because all nodes share the same wireless
channel.

We derive a model for a particular communication scheme. At each time instant, each
node decides to be a sender (independent of others) with probability depending on the
(expected) number of messages in its queue, i.e. the probability that the node at n is trying
to send a message at time k is Fðn;Qðk; nÞÞ; where Q is the expected queue length and F is a
given function. The node then probabilistically chooses one of its neighbors in an attempt to
transmit a message independent of the choices made by its neighbors. The transmission
is successful if there is no interference, i.e. the intended receiver and its other neighbors are
not trying to transmit messages of their own. Additionally, at each time instant, node n
generates messages and adds them to its queue. We assume that the number of
messages generated at node n follows a Poisson distribution with mean GðnÞ: This assumption
is consistent with assuming that the messages are arriving at node n in a homogeneous random
fashion.

This description gives rise to a recurrent relation for the length of the queue at time k and at
node position n: The sequence of queue-length vectors f½ *Qðk; 1Þ; . . . ; *Qðk;NÞ�g forms a Markov
process.

Figure 1. An illustration of a network consisting of a set of wireless nodes distributed uniformly over a
rectangular grid. A set of receivers is located at the far edge. We show the possible path of a message

originating from a node located in the left-front region.
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The specialized receiver nodes at the edge of the network obey a different set of rules. The
protocols employed by the specialized receiver nodes give rise to boundary conditions for the
PDE model, with the specific conditions depending on the protocols that govern its behavior.
We consider three types of boundary behaviors:

* A sink is a receiver that receives all the messages passed to it (and then passes them on to
the final user). A sink never transmits anything into the network.

* A wall is a boundary node that returns all the messages passed to it back into the system. In
other words, it is not a ‘consumer’ of messages. We assume that messages encounter the
same interference coming into a wall as in the regular system.

* A semi-permeating wall is a compromise between a wall and a sink. It receives messages,
stores them in a queue, and returns them back to the system in a similar manner as a
regular node. Additionally, it removes messages from its queue and passes them to the final
user with some probability Sðn;Qðk; nÞÞ:

3. A CONTINUUM MODEL IN ONE DIMENSION

The goal is to construct a PDE model that describes the limiting mean behavior of the
system as the number of nodes grows to infinity. In the first case, we assume that the network
is one dimensional in the sense that the nodes are uniformly located at N integer positions
on the line. At the edge of the network, nodes n ¼ 0 and n ¼ N þ 1; we place two special nodes
that can only receive messages. The basic goal is to route the messages in the network to these
two special edge nodes taking into account the interference caused by sharing the wireless
channel.

In this case, each node chooses one of its two neighbors to transmit a message. We
denote the probabilities of sending to the right and left by PrðnÞ and PlðnÞ with PrðnÞþ
PlðnÞ ¼ 1: The Markov process of queue-length vectors f½ *Qðk; 1Þ; . . . ; *Qðk; nÞ�g has the
transition rule:

*Qðkþ 1; nÞ ¼

*Qðk; nÞ þ 1þ *Gðn; kÞ with probability

½1� Fðn;Qðk; nÞÞ�

�½Prðn� 1ÞFðn� 1;Qðk; n� 1ÞÞð1� Fðnþ 1;Qðk; nþ 1ÞÞÞ

þPlðnþ 1ÞFðnþ 1;Qðk; nþ 1ÞÞð1� Fðn� 1;Qðk; n� 1ÞÞÞ�

*Qðk; nÞ � 1þ *Gðn; kÞ with probability

Fðn;Qðk; nÞÞ

�½PrðnÞð1� Fðnþ 1;Qðk; nþ 1ÞÞÞð1� Fðnþ 2;Qðk; nþ 2ÞÞÞ

þPlðnÞð1� Fðn� 1;Qðk; n� 1ÞÞÞð1� Fðn� 2;Qðk; n� 2ÞÞÞ�

*Qðk; nÞ þ *Gðn; kÞ otherwise

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

Here *Gðn; kÞ; k ¼ 1; . . . are independent Poisson random variables with mean GðnÞ: Taking
an expectation and simplifying, we obtain the following difference equation for the mean
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queue length:

Qðkþ 1; nÞ �Qðk; nÞ ¼ ½1� Fðn;Qðk; nÞÞ�

� ½Prðn� 1ÞFðn� 1;Qðk; n� 1ÞÞð1� Fðnþ 1;Qðk; nþ 1ÞÞÞ

þ Plðnþ 1ÞFðnþ 1;Qðk; nþ 1ÞÞð1� Fðn� 1;Qðk; n� 1ÞÞÞ�

� Fðn;Qðk; nÞÞ

� ½PrðnÞð1� Fðnþ 1;Qðk; nþ 1ÞÞÞð1� Fðnþ 2;Qðk; nþ 2ÞÞÞ

þ PlðnÞð1� Fðn� 1;Qðk; n� 1ÞÞÞð1� Fðn� 2;Qðk; n� 2ÞÞÞ�

þ GðnÞ ð2Þ

We now take an asymptotic limit of this difference equation to obtain an approximating PDE.
Generally, this requires an a priori assumption about how the space and time scales are related.
We scale time and space in such a way that the location of two neighboring nodes and times
differ by dx and dt; respectively, i.e. x ¼ x0 þ n dx and t ¼ t0 þ k dt for some fixed spatial and
temporal reference points x0 and t0; respectively. We assume dt ¼ dx2; which is sometimes called
the hydrodynamic scaling of time and space. The communication protocol we pose above
describes random forwarding of messages between neighboring nodes and is nominally a diffuse
process. The hydrodynamic scaling is natural for diffusion processes. For the variables obtained
in the limit of dt; dx! 0; we use lower-case notation, so that qðt;xÞ corresponds to Qðk; nÞ; and
f ðx; qðt; xÞÞ corresponds to Fðn;Qðk; nÞÞ: Assuming that the solution of the limiting partial
differential equation is smooth, we can write

qðtþ dt;xÞ ¼ qðt; xÞ þ
@

@t
qðt;xÞ dtþ oðdtÞ

qðt;xþ dxÞ ¼ qðt; xÞ þ
@

@x
qðt; xÞ dxþ

@2

@x2
qðt;xÞ

dx2

2
þ oðdx2Þ ð3Þ

We substitute these expansions into the scaled difference equation, divide both sides of the
equation by dx2; and take the limit as dx! 0:

To ensure a finite non-degenerate limit, we assume that

PrðnÞ ¼
1
2
þ crðx; q; q

0Þ dx; PlðnÞ ¼
1
2
þ clðx; q; q

0Þ dx; GðnÞ ¼ gðxÞ dt ð4Þ

where q0 ¼ @q=@x: This assumption is not merely a matter of technical convenience}it also has
some important practical significance. For example, GðnÞ ¼ gðxÞ dt guarantees that the number
of messages entering the system from outside over finite time intervals remains finite throughout
the limiting process. Similarly, the probabilities Pr and Pl are introducing a directional bias in
the system. The assumption in (4) ensures that this directional bias remains finite over a finite
interval. For technical reasons, we also assume that the functions f ; cr; cl ; and g are smooth,
and, in addition, f is twice differentiable, monotone, and takes values between 0 and 1 with
f ð0Þ ¼ 0: Further conditions on f ; cr; and cl might be required to guarantee that the model PDE
has smooth solutions. In the simulations in this paper, we assume that f ðx; qÞ ¼ q:
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This argument leads to the following limiting differential equation:

@qðt;xÞ

@t
¼
@

@x

1

2
ð1� f ðx; qðt; xÞÞÞð1þ 3f ðx; qðt;xÞÞÞ

@

@x
f ðx; qðt;xÞÞ

� �

þ
@

@x
ððclðx; q; q

0Þ � crðx; q; q
0ÞÞf ðx; qðt; xÞÞð1� f ðx; qðt;xÞÞÞ2Þ

þ gðxÞ ð5Þ

3.1. Boundary conditions

We derive boundary conditions for the three types of boundary nodes.
Consider a sink at the right-hand node, which never transmits into the network. The

node just to the right of the sink therefore receives messages only from the right. Also, when
that node transmits to the right, there is no interference. This leads to the difference
equation,

Qðkþ 1; nÞ �Qðk; nÞ ¼ ½1� Fðn;Qðk; nÞÞ�Prðn� 1ÞFðn� 1;Qðk; n� 1ÞÞ

� Fðn;Qðk; nÞÞ½PrðnÞ þ PlðnÞð1� Fðn� 1;Qðk; n� 1ÞÞÞ

� ð1� Fðn� 2;Qðk; n� 2ÞÞÞ�

If we rescale as before and take a limit, we arrive at the homogeneous Dirichlet boundary
condition at the sink, i.e. qðx; tÞ ¼ 0: The same condition is derived analogously for a sink on the
left.

For a wall, we assume the same interference coming into the wall as in the regular
system. This yields the following difference equation for a wall located at the right end of the
domain:

Qðkþ 1; nÞ �Qðk; nÞ ¼ ½1� Fðn;Qðk; nÞÞ�

� ½Prðn� 1ÞFðn� 1;Qðk; n� 1ÞÞð1� Fðnþ 1;Qðk; nþ 1ÞÞÞ

� Fðn;Qðk; nÞÞ

� ½PlðnÞð1� Fðn� 1;Qðk; n� 1ÞÞÞð1� Fðn� 2;Qðk; n� 2ÞÞÞ�

Rescaling as before and taking a limit, we arrive at the homogeneous Neumann boundary
condition at the wall:

1

2
ð1� f ðx; qðt;xÞÞÞð1þ 3f ðx; qðt;xÞÞÞ

@

@x
f ðx; qðt;xÞÞ

þ ðclðx; q; q
0Þ � crðx; q; q

0ÞÞf ðx; qðt;xÞÞð1� f ðx; qðt;xÞÞ2 ¼ 0

The same condition is derived analogously if the wall is at the left side.
Finally, for a semi-permeating wall, we assume that the same interference coming into

the wall as in the regular system. This leads to the following difference equation for a
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semi-permeating wall located at the right end of the domain:

Qðkþ 1; nÞ �Qðk; nÞ ¼ ½1� Fðn;Qðk; nÞÞ�

� ½Prðn� 1ÞFðn� 1;Qðk; n� 1ÞÞð1� Fðnþ 1;Qðk; nþ 1ÞÞÞ

� Fðn;Qðk; nÞÞ

� ½PlðnÞð1� Fðn� 1;Qðk; n� 1ÞÞÞð1� Fðn� 2;Qðk; n� 2ÞÞÞ�

� Sðn;Qðk; nÞÞ

Assuming that Sðn;Qðk; nÞÞ ¼ sðx; qðt; xÞÞ dx; we obtain the following boundary condition:

1

2
ð1� f ðx; qðt;xÞÞÞð1þ 3f ðx; qðt;xÞÞÞ

@

@x
f ðx; qðt;xÞÞ

þ ðclðx; q; q
0Þ � crðx; q; q

0ÞÞf ðx; qðt; xÞÞð1� f ðx; qðt;xÞÞ2 ¼ �sðx; qðt; xÞÞ

The analogous argument at the left end of the domain yields

1

2
ð1� f ðx; qðt; xÞÞÞð1þ 3f ðx; qðt;xÞÞÞ

@

@x
f ðx; qðt;xÞÞ

þ ðclðx; q; q
0Þ � crðx; q; q

0ÞÞf ðx; qðt;xÞÞð1� f ðx; qðt;xÞÞ2 ¼ sðx; qðt;xÞÞ

Note that if Sðn;Qðk; nÞÞ ¼ oðdxÞ; we get a Neumann zero condition and the receiver behaves
like a wall. On the other hand, if 1=Sðn;Qðk; nÞÞ ¼ oð1=dxÞ; we get a Dirichlet zero condition and
the receiver behaves asymptotically like a sink.

3.2. Conclusion and characteristics of the PDE model

We summarize the derivation with the following theorem.

Theorem
If the solution q of the PDE model (5) together with appropriate boundary conditions is
sufficiently smooth, then q satisfies the difference equation for the mean queue length (2) to
order oðdtÞ ¼ oðdx2Þ at each node of the discrete network.

As we consider denser and denser networks, this approximation holds at a denser set of points
in the network domain.

The PDE model (5) is a quasi-linear diffusion–convection–reaction problem. The diffusion
coefficient 1

2
ð1� f ðx; qðt; xÞÞÞð1þ 3f ðx; qðt;xÞÞÞ is positive unless f ¼ 1 at some point, in which

case it becomes a singular problem. Our numerical investigations suggest that this problem is
diffusion dominated for a reasonable range of the coefficient ðclðx; q; q0Þ � crðx; q; q0ÞÞ and the
solutions are smooth. The coefficient ðclðx; q; q0Þ � crðx; q; q0ÞÞ represents the bias in routing
messages toward one direction or the other by adding convection to the PDE. In general, we can
expect that the difficulty in finding solutions depends critically on the size of the convection
coefficient. As this becomes larger, the problem becomes more difficult to solve as illustrated below.

In general, we cannot expect to find closed-form solutions of (5). Moreover, such
characteristics as highly localized forcing functions, convection, various boundary conditions,
and the possibility of boundary layers, make finding numerical solutions nontrivial. We use
sophisticated adaptive finite element methods in the simulations below.
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3.3. Numerical comparisons

To illustrate the approximation properties of the PDE model, we compare Monte Carlo
simulations of the original discrete network model with the numerical solution of the PDE
model. For the discrete network, we place the nodes xn ¼ 20n=ðN þ 1Þ � 10; n ¼ 1; . . . ;N;
uniformly on the domain ½�10; 10� and the special boundary nodes (n ¼ 0 and n ¼ N þ 1) at
locations �10 and 10; respectively.

For convenience, we normalize the queue-length variables by a constant maximum queue size
Qmax ¼ 20; so that the dependent variables Qðk; nÞ and qðt;xÞ lie between 0 and 1: In the
comparison, we use clðx; q; q0Þ � crðx; q; q0Þ ¼ c and f ðx; qÞ ¼ q: The equation f ðx; qÞ ¼ q
represents the transmission rule where a node transmits a message with a probability
proportional to its mean queue length. In practice, we may approximate this rule by making this
probability proportional to the instantaneous queue length. This approximation is justified if the
variance of the instantaneous queue length is small relative to the mean queue length. As we will
see later, this turns out to be the case in practice, which means that the approximation has little
impact on the accuracy of the PDE model compared with the actual network behavior.

For the particulars given above, the PDE simplifies to

@qðt;xÞ

@t
¼
@

@x

1

2
ð1þ 3qðt; xÞÞð1� qðt;xÞÞÞ

@qðt; xÞ

@x

� �

þ
@

@x
ðcqðt;xÞð1� qðt;xÞÞ2Þ þ gðxÞ

The PDE is defined on the domain ð�10; 10Þ; with boundaries at �10 and 10. We considered two
boundary conditions: the sink qðt;xÞ ¼ 0 and the wall

@

@x
qðt; xÞ ¼ �

2cqðt;xÞð1� qðt;xÞÞ

1þ 3qðt;xÞ

We use the initial condition qð0; xÞ ¼ 10�2
ffiffiffiffiffiffiffiffiffiffiffi
ð2=pÞ

p
e�x

2

so that initially the nodes in the middle
have messages to transmit, while those near the boundaries have none. We also add messages to
the system with the rate gðxÞ ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
ð2=pÞ

p
e�x

2

; where l > 0 is a parameter determining the total
load of the system.

We compare simulations of the stochastic network model with N ¼ 51 nodes along with
numerical solutions of the PDE model in Figures 2 and 3. In practice, we do not know the
average queue size Q needed in (1) so we simulate the stochastic network using two approaches
for computing the probability of transmission. In the first, we choose Q to be the average over
an ensemble of 400 repeated simulations. In the second, we approximate the rule involving f
using the instantaneous queue length *Q: Note that *Q is an unbiased estimator of Q:

In the first three simulations shown in Figure 2, we place sinks at the boundaries and vary the
convection. The first has no convection (c ¼ 0), the second has a moderate convection of c ¼ 25;
and the third has a relatively large convection of c ¼ 100: The solutions become increasingly
nonsymmetric as a result of the convection increasing. Yet, the PDE solution remains very
accurate for all three simulations.

In the fourth simulation shown in Figure 3, we place walls (instead of sinks) at the boundaries
and use a convection of c ¼ 100: The discrete simulation becomes unstable as the messages can
no longer be transmitted through the boundaries sufficiently rapidly to keep the queues from
becoming full. Remarkably, the PDE model appears to still capture some crude mean behavior.
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In most cases, it is difficult to distinguish between the PDE results and the two approaches to
the stochastic network simulation, which is an indication of the strong agreement among them.
We stress that the numerical solution of the PDE model takes a negligible amount of computer
time compared with running discrete Monte Carlo simulations. Simulation times are fractions
of a second to time on the order of hours.

4. MODELING IN HIGHER SPATIAL DIMENSIONS

The extension of the modeling approach to higher dimensions is straightforward, though the
calculations are more tedious. The resulting PDE is again a quasilinear diffusion–convection–

Figure 2. Simulations of the one-dimensional models with sink boundary conditions. From top to bottom,
the convection c is 0; 25; and 100:

-10 -5 5 10

0.2
0.4
0.6
0.8

1

-10 -5 5 10

0.2
0.4
0.6
0.8

initial transient long time instability

Instantaneous state Ensemble average PDE results

Figure 3. Simulation results for the one-dimensional model with wall boundary conditions and c ¼ 100:
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reaction problem. We describe the model for a two-dimensional network, omitting some of the
more onerous details. Note that higher dimensions lead to a number of interesting issues
because the geometry now becomes an important consideration. For example, we now can route
messages in such a way as to avoid areas that might be prone to develop congestion. This means
that we have to deal with the spatial structure of the strategy that is used to describe the
communication in the network.

4.1. The model in two dimensions

We now denote the mean queue length at time k by Qðk; n;mÞ at node location ðn;mÞ; where
we switch to a two-dimensional node numbering scheme. The associated probability of
being a sender is therefore Fðn;m;Qðk; n;mÞÞ: We denote the corresponding continuous
limiting variables by qðt;x; yÞ and f ðx; y; qÞ; where the variables x; y; and t are related
to n; m; and k; respectively, through scaling. The biases in message-routing probabilities
are

Pnðn;mÞ ¼ 1
4
þ cnðx; y; q;rqÞ dy; Peðn;mÞ ¼ 1

4
þ ceðx; y; q;rqÞ dx

Psðn;mÞ ¼ 1
4
þ csðx; y; q;rqÞ dy; Pwðn;mÞ ¼ 1

4
þ cwðx; y; q;rqÞ dx

for north, east, south, and west directions, respectively. The limiting PDE is

@q

@t
¼r �

1

4
ð1� f ðx; y; qÞÞ3ð1þ 5f ðx; y; qÞÞrf ðx; y; qÞ

�

þ
cwðx; y; q;rqÞ � ceðx; y; q;rqÞ

csðx; y; q;rqÞ � cnðx; y; q;rqÞ

 !
f ðx; y; q;rqÞð1� f ðx; y; q;rqÞÞ4

!

þ gðx; yÞ ð6Þ

We can also derive boundary conditions that correspond to three types of boundary
nodes. Specifically, a sink boundary corresponds to an outlet}it removes all the messages
that reach it from the system, leading to the homogeneous Dirichlet condition qðt;x; yÞ ¼ 0:
A wall corresponds to the boundary where there is no outlet}it returns all the messages
back to the system. This leads to the homogeneous Neumann condition. To be precise,
let t be the normal unit vector pointing toward the interior of the domain. Then, the condition
is

0 ¼ t �
1

4
ð1� f ðx; y; qðt;x; yÞÞÞ3ð1þ 5f ðx; y; qðt;x; yÞÞÞrf ðx; y; qðt;x; yÞÞ

�

þ
cwðx; y; q;rqÞ � ceðx; y; q;rqÞ

csðx; y; q;rqÞ � cnðx; y; q;rqÞ

 !
f ðx; y; qðt;x; yÞÞð1� f ðx; y; qðt;x; yÞÞÞ4

!

Finally, a semi-permeating wall removes messages from the system with probability Sðn;m;QÞ:
Assuming that Sðn;m;QÞ ¼ sðx; y; qÞ dx; this boundary-node behavior leads to the following
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boundary condition: using the notation t as before,

sðx; y; qÞ ¼ t �
1

4
ð1� f ðx; y; qÞÞ3ð1þ 5f ðx; y; qÞÞrf ðx; y; qÞ

�

þ
cwðx; y; q;rqÞ � ceðx; y; q;rqÞ

csðx; y; q;rqÞ � cnðx; y; q;rqÞ

 !
f ðx; y; qÞð1� f ðx; y; qÞÞ4

!

Theorem
If the solution q of the PDE model (6) together with appropriate boundary conditions is
sufficiently smooth, then q satisfies the difference equation for the mean queue length to order
oðdtÞ ¼ oðdx2Þ at each node of the discrete network.

4.2. Numerical comparisons

We present some simulation results for a two-dimensional system. The discrete network consists
of 83� 83 nodes with a maximum queue size of Qmax ¼ 100; laid out as a grid on the square
½�1; 1� � ½�1; 1�: We choose f ¼ q; cn ¼ cw ¼ cs ¼ ce ¼ 0;

gðx; yÞ ¼ 0:4� e�2x
2�2y2=1:4311

and sink conditions at all four boundaries. We use 200 simulations to compute the ensemble
average. The computational time needed to simulate the discrete network until it reaches steady
state is 10 days, while the PDE solved on the same machine takes less than a second. We could
not simulate any larger discrete networks.

In Figure 4, we show a snap shot of the contours of the discrete and continuum simulations at
the same time. In Figure 5, we show the differences between the discrete and continuum
simulations at the same time. The network simulations agree to a remarkable extent with the
PDE simulation, and also remarkably, the agreement begins very quickly in the evolution.

Recall that we used an approximation for f involving instantaneous queue length instead of
mean queue length in (2). This approximation is justified if the variance of the instantaneous
queue length is small relative to the mean queue length. Motivated by this observation, we
conducted an experiment to measure the covariance between a node ði; jÞ and the queues at the

Figure 4. Contour plots of the normalized queue lengths for the discrete simulation with 83� 83 nodes
(left) and the PDE solution (right).
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nodes in the 5 node by 5 node grid centered at ði; jÞ: We computed this matrix at all of the
internal nodes at each time step in the discrete computation. A representative result is given by
the following matrix, where the entries are given by the square root of the absolute values of the
entries of the covariance matrix at the center point at a time that is halfway along the steady-
state solution:

0:6063 0:7473 0:6607 0:7834 0:6400

1:0742 0:0447 1:5191 0:9781 0:6871

1:2749 1:5841 3:9382 1:0530 0:8603

0:8264 0:5596 1:1322 1:1470 1:1575

0:8221 0:8466 0:9254 0:4035 0:9994

0
BBBBBBBB@

1
CCCCCCCCA
� 10�2

Relative to the size of the queue, the covariances are small. In particular, the standard deviation
of the instantaneous queue length (which is the quantity in the middle of the matrix) is
approximately 0:04; which is an order of magnitude less than the mean queue length.

5. USING THE PDE MODEL

In this section, we demonstrate some of the possibilities enabled by the use of PDE models for
the discrete networks. As pointed out above, direct computer simulation is currently the primary
approach for performance analysis of networks. However, a serious barrier facing the use of
direct simulation for evaluating the behavior of large networks is the prohibitive simulation time
required to carry out the necessary Monte Carlo computations. The capability of computing
accurate numerical solutions of PDE models using a tiny fraction of the time required to run a
single network simulation raises the possibility of performance analysis and prototyping with a
reasonable computational burden regardless of the size of the network being considered.

To illustrate the computational advantages arising from continuum modeling, we consider a
network that has three highly localized sources, see Figure 6. The boundaries are mainly wall
conditions, with three relatively small sink conditions placed at three locations. We also put a

Figure 5. Cross-section plot of the normalized queue lengths for the discrete and PDE simulations (left)
and a contour plot of the difference between the network state and the PDE solution (right).
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mild constant convection away from the sources toward a far corner. The main point here is that
it appears impossible to simulate the corresponding discrete network directly because of the
density of nodes that would be required to represent the localized sources accurately. We can
easily obtain a steady-state solution of the PDE simply by solving the problem for a sufficiently
long time.

5.1. Analysis and comparison of network designs

We can use the PDE models to evaluate and compare multiple network design alternatives by
comparing gross characteristics of network behavior, such as average delay and achievable
throughput. Design issues amenable to evaluation by using the PDE models include network
configuration and topology (including location of receivers, spatial density of nodes, and degree
of connectivity of nodes), routing schemes, and network access protocols. Thus, modeling large
networks using PDEs creates a powerful tool for network design and prototyping for very large
networks.

5.1.1. Varying convection. In the first illustration, we compare steady-state (limiting behavior)
PDE solutions corresponding to the same source and boundary conditions, but for which there
are different convection coefficients. In the solution on the right in Figure 7, the convection is in
the direction of front right-hand side to the back left-hand side. In the solution on the left, the
convection is increased and runs diagonally from the right-hand corner to the left-hand corner.
We can see that increasing the convection and changing the direction so as to point to an area
located away from the source results in a relatively large region with an elevated queue size while
the maximum height is smaller.

5.1.2. Varying boundary conditions. In the second example, we compare the steady-state
(limiting behavior) solutions of the PDE model with the same load and convection coefficients
but for which the boundary conditions are different. In the plot on the middle of Figure 8, we
observe that the queue size near the corner where the walls meet is elevated compared with the
solution with sink conditions on all four walls because signals find it difficult to leave that

Figure 6. A steady-state, limiting behavior solution of the PDE model with three highly localized sources
and three small regions of sink on the boundary. The sinks are indicated on the boundary of the domain.

Left: surface plot. Right: contour plot.
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region. In the plot on the right, we see that placing a source near walls drives the largest queue
size up significantly.

5.1.3. Using convection to improve throughput. In this example, we measure the effects of
varying convection on the throughput. The (normalized) instantaneous throughput at time t of
the continuum model is given by

�

Z
O

@qðt;x; yÞ

@t
� gðx; yÞ

� �
dx dy ð7Þ

where O is the domain and g is the load. If q tends to a steady-state profile, then @q=@t! 0 and
the throughput will converge to the total input provided by the source. A positive throughput
means that the solution is still increasing and there are signals in the network that have a finite
probability of not reaching the receivers. In general, network designs that decrease the time it
takes for the throughput to converge to the total input of the source are better.

Figure 7. PDE solutions with different convection coefficients. Both solutions have convection in the x
direction, whereas the solution on the right has additional convection in the y direction. All four

boundaries are sinks.

Figure 8. PDE solutions corresponding to different boundary conditions. The solution on the left has sink
conditions on all four boundaries. The solution in the middle has a wall at the far boundary and sinks at
the other three. The solution on the right has wall conditions on the wall next to the source and sinks on the

other three.
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To illustrate, we consider a network posed on the same domain with the same localized sink
conditions as that shown in Figure 6. We place one relatively large source in the center of the
domain. We show the different time plots corresponding to different size convection coefficients,
where the convection is always pointed into the same corner of the domain, in Figure 9. In the
plot on the left in Figure 9, we see that, up to a point, as we increase the size of the convection,
the time taken for the throughput to converge to the maximum value decreases. However, as we
increase the convection further, the time to convergence also begins to increase. This is
illustrated in the plot on the right.

We show three of the steady-state profiles in Figure 10.

5.2. Optimization of network characteristics

The ability to evaluate networks quickly suggests that we can use the PDE models to solve
network optimization problems (e.g. using the methods in [8]). The kinds of characteristics that
arise and that are reflected naturally in continuum models include routing and other protocol
parameters, flow rates, critical load levels, location of receivers, and so on. The corresponding
control variables in the optimization problems for a PDE model include the form of the
coefficients and parameters in those coefficients and location of the receivers on the boundaries.
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Figure 9. Plots of the throughput histories corresponding to different size convections. The values of
cw � ce and cn � cs are used to label each curve. Right: plots over ½0; 20�: Left: plots over ½0; 6�:

Figure 10. PDE solutions corresponding to varying convection coefficients. Note that a very large
convection, shown on the right, leads to near instability with the queue size reaching the physically

meaningful limit. Any further increase leads to unbounded growth in the queue.
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Several meaningful performance metrics are possible. First, it may be of interest to minimize
the steady-state queue length averaged over the nodes. This also minimizes the steady-state delay.
Second, we may be interested in ‘load balancing’ over the network, in which case the
optimization problem is to minimize the spread in the queue lengths over the network. Third, we
may constrain the steady-state average queue length and maximize the achievable throughput
subject to this constraint. Finally, instead of steady-state quantities, we may be interested in
transient versions of these quantities, such as a time average over some finite initial time horizon.

To illustrate, we consider the following optimization problem. We pose the PDE model (6)
with the conditions

gðx; yÞ ¼ 0:2� e�100ððxþ0:3Þ
2
þðyþ0:3Þ2Þ=0:03141593

cw � ce ¼ �0:5; cs � cn ¼ �0:2

and initial condition 0 on the domain ½�1; 1� � ½�1; 1�: For boundary conditions, we use wall
conditions on all the boundaries, except for sink condition posed on a small piece of size 0.1
located along the boundary away from the source in the direction of the convection. The
optimization problem is to find the position of the sink to minimize the average queue size over the
domain at time t ¼ 4; which represents several hundred thousand discrete time steps in a network
of reasonable size (the number of steps is obtained from the formula t ¼ k dt=Qmax). In Figure 11,
we show the results. There is a clear minimum found quickly and easily using the PDE model.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we develop a mathematical approach for modeling extremely large networks using
time-dependent partial differential equations (PDEs) based on taking an asymptotic limit of a
stochastic description of communication in the network. Using a number of examples, we
demonstrate that the PDE models capture global characteristics of the networks with
remarkable accuracy. We also demonstrate that the PDE models provide a powerful way to
deal with the number of components in large networks. This makes it possible to carry
out}with reasonable computational burden even for very large systems}network performance
evaluation and prototyping, network design, systematic parameter studies, and optimization of
network characteristics.
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Figure 11. Left: plot of the average queue size versus location of the sink. Right: plot of the optimal queue
distribution.
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The use of PDE models to simulate large networks opens up enormous possibilities for
network performance evaluation and prototyping, network design, systematic parameter
studies, optimization of network characteristics, and solving network inverse problems. We will
consider these applications in future work.
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