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There is now a vast literature on the theory and applications of generalized random

processes, pioneered by Itô (1953), Gel’fand (1955) and Yaglom (1957). In this note we

make use of the theory of generalized random processes as defined in the book of

Gel’fand and Vilenkin (1964) to extend the definition of continuous-time ARMA(p,q)

processes to allow qZp, in which case the processes do not exist in the classical sense.

The resulting CARMA generalized random processes provide a framework within which

it is possible to study derivatives of CARMA processes of arbitrarily high order.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

A Gaussian continuous-time ARMA process with autoregressive order p and moving average order q (henceforth
denoted CARMA(p,q)) can be defined formally, for p4qZ0, as a stationary solution of the stochastic differential equation

aðDÞYt ¼ bðDÞDWt , t 2 R, ð1:1Þ

where D denotes differentiation with respect to t, að�Þ and bð�Þ are the polynomials

aðzÞ ¼ a0zpþa1zp�1þ � � � þap, ð1:2Þ

bðzÞ ¼ b0þb1zþ � � � þbqzq, ð1:3Þ

where a0 :¼ 1 and W :¼ ðWtÞt2R is standard Brownian motion (i.e. W has continuous sample paths with time-homogeneous
independent Gaussian increments, W0=0 and W1 is distributed as N(0,1)). Eq. (1.1) is the natural continuous-time analogue
of the p th-order linear difference equations used to define a discrete-time ARMA process (see e.g. Brockwell and Davis,
1991). However, since the derivatives on the right-hand side of (1.1) do not exist as random functions, Eq. (1.1) is
interpreted, when qop, in the state-space form

Yt ¼ b0Xt , t 2 R, ð1:4Þ

where X¼ ðXtÞt2R is an Rp
�valued process satisfying the Itô equation

dXt ¼ AXt dtþep dWt ð1:5Þ
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or equivalently

Xt ¼ eAðt�sÞXsþ

Z t

s
eAðt�uÞep dWu, 8srt 2 R, ð1:6Þ

with

A¼

0 1 0 � � � 0

0 0 1 � � � 0

^ ^ ^ & ^

0 0 0 � � � 1

�ap �ap�1 �ap�2 � � � �a1

2
6666664

3
7777775

, ep ¼

0

0

^

0

1

2
6666664

3
7777775

, and b¼

b0

b1

^

bp�2

bp�1

2
6666664

3
7777775

,

where bj :¼ 0 for j4q. For p=1 the matrix A is to be understood as A = (�a1).
In a recent paper of Brockwell and Lindner (2009, Theorem 4.2), it is shown that if all singularities of the meromorphic

function z/bðzÞ=aðzÞ on the imaginary axis are removable (i.e. if að�Þ has a zero l of multiplicity mðlÞ on the imaginary axis
then bð�Þ has a zero at l of multiplicity greater than or equal to mðlÞ) then the strictly stationary solution of (1.4) and (1.5) is
unique and given by

Yt ¼ b0Xt ¼ b0
Z 1
�1

gðt�uÞdWu, t 2 R, ð1:7Þ

where

gðtÞ ¼ lðtÞ1½0,1ÞðtÞ�rðtÞ1ð�1,0�ðtÞ ð1:8Þ

and l(t) and r(t) are the sums of the residues of the column vector ezt½1 z � � � zp�1�0=aðzÞ at the zeroes of að�Þ with strictly
negative and strictly positive real parts, respectively. Moreover there exist vectors l(0) and r(0) such that

lðtÞ ¼ eAtlð0Þ and rðtÞ ¼ eAtrð0Þ: ð1:9Þ

(The results of Brockwell and Lindner apply also to the more general case in which W is replaced by a Lévy process L with
Elogþ jL1jo1.) We shall assume in this paper that að�Þ has no zeroes on the imaginary axis. This is a necessary and
sufficient condition for the existence of the CARMA(p,0) process corresponding to the autoregressive polynomial a(z). It
also implies (see Brockwell and Lindner, 2009) that

lðtÞþrðtÞ ¼ eAtep, t 2 R: ð1:10Þ

It is clear from (1.5) that the jth component, j¼ 2, . . . ,p, of the random vector X is the (j�1)st mean square derivative of
the solution (1.7) with b¼ e1 ¼ ½1,0, . . . ,0�0, i.e. of the CARMA(p,0) process with autoregressive polynomial a(z). This is the
unique stationary solution ðXtÞt2R of (1.4) and (1.5) with b¼ e1. Thus, if qop, the unique stationary solution of (1.4) and
(1.5) is given by

Yt ¼ ðb0þb1Dþ � � � þbqDqÞXt , t 2 R, ð1:11Þ

where D in (1.11) denotes mean square differentiation and both X and Y are stationary random processes in the usual
sense. In other words, if qop, the unique stationary solution of (1.4) and (1.5) is given by (1.11) with

Xt ¼

Z 1
�1

g0ðt�uÞdWu, t 2 R, ð1:12Þ

where

g0ðtÞ ¼ e01½lðtÞ1½0,1ÞðtÞ�rðtÞ1ð�1,0�ðtÞ�: ð1:13Þ

The kernel g0 can also be expressed (see Brockwell and Lindner, 2009) as

g0ðtÞ ¼
X

l:Rlo0

XmðlÞ�1

k ¼ 0

clktkelt1ð0,1ÞðtÞ�
X

l:Rl40

XmðlÞ�1

k ¼ 0

clktkelt1ð�1,0ÞðtÞ

 !
, t 2 R, ð1:14Þ

where the sums are over the zeroes of að�Þ, mðlÞ is the multiplicity of the zero l and the coefficients clk are determined by
the expansion

XmðlÞ�1

k ¼ 0

clktkelt ¼
1

ðmðlÞ�1Þ!
½DmðlÞ�1

z ððz�lÞmðlÞezt=aðzÞÞ�z ¼ l,

where Dz denotes differentiation with respect to z. (If mðlÞ ¼ 1 the last expression reduces to elt=a0ðlÞ, where a0 is the
derivative of a.)

In order to extend the definition of CARMA(p,q) processes to include the possibility that qZp40, the representation of
Y given in (1.11), (1.12) and (1.13) provides a natural starting point. In the following section we view X as defined in (1.12)
as the convolution of the kernel g0 with the derivative of W, regarded as a generalized random process (GRP) in the sense of
Gel’fand and Vilenkin (1964, pp. 242–243), i.e. a continuous linear mapping from the space K of infinitely differentiable
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functions on R with compact support into the set of random variables on the probability space where W is defined. The
convolution X is also a GRP so that the derivatives of X appearing in the (1.11) of Y, and hence Y itself, are well-defined GRPs
reducing to random processes when qop.

In Section 3 we consider the special case p=1, which clearly illustrates the explicit form of Y when qZp and highlights
the distinction between the cases qop and qZp. Section 4 deals with the connection with discrete-time ARMA(p,q)
processes and Section 5 contains some concluding remarks.

2. CARMA(p,q) generalized random processes

There is now a vast literature on the theory and applications of generalized random processes, pioneered by Itô (1953),
Gel’fand (1955) and Yaglom (1957). A generalized random process (GRP), in the terminology of Gel’fand and Vilenkin
(1964), is a continuous linear functional V on K, where continuity in this context means that convergence of fnj to fj,
j¼ 1, . . . ,k, in the topology of K (see Gel’fand and Vilenkin, p. 20) implies the corresponding convergence in distribution

ðVðfn1Þ,Vðfn2Þ, . . . ,VðfnkÞÞ ) ðVðf1Þ,Vðf2Þ, . . . ,VðfkÞÞ: ð2:1Þ

If V is any GRP then its derivative is also a GRP, defined by

V ð1ÞðfÞ ¼ Vð�f0Þ, f 2 K : ð2:2Þ

The GRP corresponding to standard Brownian motion is the continuous linear functional WðfÞ :¼
R
fðtÞWðtÞdt, with

corresponding GRP derivative,

W ð1ÞðfÞ :¼
Z

fðtÞdWt , f 2 K: ð2:3Þ

(All integrals, unless specified otherwise, are over R.) The convolution of W(1) with the kernel g0 is also a well-defined
linear functional

ðW ð1Þ � g0ÞðfÞ :¼
Z
ðĝ0 � fÞðtÞdWt , f 2 K , ð2:4Þ

where g0 was defined in (1.13), ĝ0ðtÞ :¼ g0ð�tÞ and ðĝ0 � fÞðtÞ :¼
R

ĝ0ðt�uÞfðuÞdu, t 2 R.
Since the convolution (2.4) is the GRP analogue of the representation (1.12) of the CARMA(p,0) process ðXtÞt2R, we define

the CARMA(p,0) generalized random process X as

XðfÞ ¼ ðW ð1Þ � g0ÞðfÞ ¼
Z
ðĝ0 �fÞðtÞdWt , f 2 K : ð2:5Þ

Changing the order of integration in (2.5) shows that we can also write

XðfÞ ¼
Z

XðuÞfðuÞdu, f 2 K :

The derivative of any GRP V is also a GRP, defined by

V ð1ÞðfÞ ¼ Vð�f0Þ, f 2 K : ð2:6Þ

Although the process ðXtÞt2R has mean square derivatives of order only up to p�1, the corresponding GRP X has derivatives
of all orders, each of which is a GRP. The jth of these will be denoted by X(j). Our next step is to evaluate the derivatives X(j)

in order to express the GRP Y defined by (1.11) in terms of Brownian motion and its derivatives.
For this purpose it is convenient to introduce the vector-valued GRP X, defined as the convolution (cf. (2.4)),

XðfÞ :¼ ðW ð1Þ � gÞðfÞ ¼
Z
ðĝ �fÞðtÞdWt , f 2 K , ð2:7Þ

where the p-vector g was defined in (1.8), ĝðtÞ :¼ gð�tÞ and ðĝ �fÞðtÞ :¼
R

ĝðt�uÞfðuÞdu, t 2 R. Notice that X has GRP
derivatives X(j) of all orders and that the GRP derivatives of the CARMA(p,0) process defined by (2.5) are related to those of
X by the relations

XðjÞ ¼ e01XðjÞ, j¼ 0,1,2, . . . , ð2:8Þ

where e1 is the p-vector, e1 ¼ ½1 0 � � � 0�0. The following proposition shows that the GRP X as defined in (2.7) satisfies
Eq. (1.5), interpreted as a relation between generalized random processes.

Proposition 2.1.

Xð1Þ ¼ AXþW ð1Þep ¼ AðW ð1Þ � gÞþW ð1Þep: ð2:9Þ

Proof. The GRP derivative of X is

Xð1ÞðfÞ ¼�Xðf0Þ ¼ �ðW ð1Þ � gÞðf0Þ ¼ �
Z
ðĝ � f0ÞðtÞdWt , f 2 K ,



P.J. Brockwell, J. Hannig / Journal of Statistical Planning and Inference 140 (2010) 3613–36183616
where ðĝ � f0ÞðtÞ ¼
R

ĝðt�uÞf0ðuÞdu. From (1.8) and (1.9) we can write

gðtÞ ¼ eAtðlð0Þ1½0,1ÞðtÞ�rð0Þ1ð�1,0�ðtÞÞ,

and hence, substituting in the definition of ĝ � f0 and integrating by parts,

ðĝ � f0ÞðtÞ ¼
Z 1

t
e�Aðt�uÞlð0ÞdfðuÞ�

Z t

�1

e�Aðt�uÞrð0ÞdfðuÞ

¼�Aðĝ � fÞðtÞ�fðtÞðlð0Þþrð0ÞÞ:

Integrating both sides with respect to dWt and using (1.10), we obtain

Xð1ÞðfÞ ¼ A

Z
ðĝ �f0ÞðtÞdWtþW ð1ÞðfÞep ¼ AðW ð1Þ � gÞðfÞþW ð1ÞðfÞep,

which, since X¼W ð1Þ � g, is equivalent to the statement of the proposition. &

Corollary 2.2.

XðjÞ ¼ AjXþ
Xj�1

k ¼ 0

W ðj�kÞAkep, j¼ 0,1,2, . . . : ð2:10Þ

Proof. For j=1 this is a restatement of the proposition. To establish the general result by induction, assume that it holds for
j=m. Differentiating each side of the equation with j=m and using Proposition 2.1 immediately establishes the validity for
j¼mþ1. &

Corollary 2.3.

XðjÞ ¼ e01AjXþ
Xj�1

k ¼ p�1

W ðj�kÞe01Akep, j¼ 0,1,2, . . . , ð2:11Þ

where X¼W ð1Þ � g and g was defined in (1.8).

Proof. The result follows straight from (2.8), (2.10) and the fact that e01Akep ¼ 0 for kop�1. The sum in (2.11) is zero for
jop�1 and W(1) for j=p. &

We are now ready to define the CARMA(p,q) generalized random process with autoregressive and moving average
polynomials a(z) and b(z), respectively, and without the constraint that qop. We continue to assume, however, that að�Þ is
non-zero on the imaginary axis.

Definition 2.4. The CARMA(p,q) generalized random process Y with autoregressive polynomials a(z) and b(z) as in (1.2)
and (1.3) is defined as

Y ¼

Xq

j ¼ 0

bjX
ðjÞ if p40,

Xq

j ¼ 0

bjW
ðjþ1Þ if p¼ 0,

8>>>>><
>>>>>:

ð2:12Þ

with X(j) specified in (2.11).

Proposition 2.5. The CARMA(p,q) generalized random process Y defined in (2.12) satisfies Eq. (1.1) with the operator D

interpreted as differentiation in the GRP sense.

Proof. If p40 we have

Xp

k ¼ 0

akY ðp�kÞ ¼
Xp

k ¼ 0

ak

Xq

j ¼ 0

bjX
ðp�kþ jÞ

¼
Xq

j ¼ 0

bj

Xp

k ¼ 0

akXðp�kþ jÞ ¼
Xq

j ¼ 0

bjW
ðjþ1Þ,

since, by the last component equation of (2.9),
Pp

k ¼ 0 akXðp�kÞ ¼W ð1Þ. In the case p=0, (2.12) is just a restatement of
(1.1). &

Remark. The CARMA(p,q) GRP as defined in (2.12) is strictly stationary in the sense that if Su denotes the shift operator
on K, i.e. if Sufð�Þ ¼fð�þuÞ, then ðYðf1Þ, . . . ,YðfkÞÞ has the same distribution as ðYðSuf1Þ, . . . ,YðSufkÞÞ for all positive integers
k, for all f1, . . . ,fk 2 K and for all u 2 R. This follows from independence and homogeneity of the increments of standard
Brownian motion and the preservation of strict stationarity under differentiation and convolution.
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3. The case p=1

The general case is perhaps most clearly illustrated in the case p=1, when the autoregressive polynomial is aðzÞ ¼ z�l
with l 2 R\f0g. If q=0 then Y is the stationary Ornstein–Uhlenbeck process. In general we have, from (2.11),

XðjÞ ¼ ljXþ
Xj�1

k ¼ 0

lkW ðj�kÞ, j¼ 0,1,2, . . . , ð3:1Þ

where

XðfÞ ¼
ZZ

ĝ ðt�uÞfðuÞdu dWt

¼

Z
XðuÞfðuÞdu,

with XðtÞ ¼
R

gðt�uÞdWu, ĝ ðtÞ ¼ gð�tÞ and gðtÞ ¼ eltð1½0,1ÞðtÞlð0Þþ1ð�1,0�ðtÞrð0ÞÞ, where lð0Þ ¼ 1ð�1,0ÞðlÞ and rð0Þ ¼ 1ð0,1ÞðlÞ.
Hence, if the moving average polynomial is bðzÞ ¼ b0þb1zþ � � � þbqzq, then from (2.12) we see that the CARMA(1,q)

generalized random process Y is given by

Y ¼ bðlÞXþ
Xq

j ¼ 1

Xq

k ¼ j

bkl
k�jW ðjÞ:

This expression contains a ‘‘regular’’ component bðlÞX, interpretable as a random function, and derivatives of W up to order
q+1�p. A similar structure is found also in the general case.

Example 3.1. The velocity of a particle whose position at time t is specified by a stationary Ornstein–Uhlenbeck process
with aðzÞ ¼ z�l and b(z)=b0 does not exist in the classical random process sense; however, it does exist as a CARMA(1,1)
GRP, denoted by Y, with aðzÞ ¼ z�l and b(z)=b0z. Although the velocity at time t does not exist, it makes perfectly
good sense to observe the random variable, YðfÞ for some function f 2 K. In particular, if f is chosen to be an
approximation in K to the function 1ðt,tþDÞð�Þ=D, YðfÞ will be an approximation to the average velocity over the time
interval ðt,tþDÞ. Higher derivatives of the Ornstein–Uhlenbeck process and of more general CARMA processes may be
treated analogously.
4. The relation with discrete-time ARMA processes

Define fðzÞ :¼ aðd�1
ð1�zÞÞ and yðzÞ :¼ bðd�1

ð1�zÞÞ where a(z) and b(z) are the polynomials defined in (1.2) and (1.3).
Denote by L the set of distinct zeroes of the polynomial a(z) and by mðlÞ the multiplicity of the zero l. It will be assumed, as
in previous sections, that none of the zeroes l lies on the imaginary axis. We shall assume also that 0odoc where c is
small enough to ensure that none of the zeroes 1�dl of the polynomial fðzÞ lies on the unit circle. Let ðYnÞn2Z be the unique
stationary solution of the ARMA equations

fðBÞYn ¼ yðBÞd�1=2Zn, n 2 Z, ð4:1Þ

where B is the backward shift operator and ðZnÞn2Z is i.i.d. Gaussian with mean 0 and variance 1. Then

Yn ¼ y0Xnþy1Xn�1þ � � � þyqXn�q, n 2 Z, ð4:2Þ

where Xn is the AR(p) process defined by Eq. (4.1) with yðBÞ ¼ 1.
Under the assumptions made in the previous paragraph fðzÞ�1 has the Laurent expansion, fðzÞ�1

¼

aðd�1
ð1�zÞÞ�1

¼
P1

k ¼ �1 gd
k zk, valid in an annulus containing the unit circle, where

gd
k ¼

X
l:j1�ldj41

pd
lðkÞ1½0,1ÞðkÞ�

X
l:j1�ldjo1

pd
lðkÞ1ð�1,0ÞðkÞÞ, k 2 Z,

0
@

the sums are over the distinct zeroes l of a(z) and

pd
lðkÞ ¼�

ð�dÞp

ðmðlÞ�1Þ!
DmðlÞ�1

z ðz�1þdlÞmðlÞz�k�1
Y

l
ðz�1þdlÞmðlÞ

. �� i
z ¼ 1�dl

,
h

where Dz denotes differentiation with respect to z.
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Let us now place the processes on the lattice fnd, n 2 Zg. Define Xd
t ¼ X½t=d�, Yd

t ¼ Y½t=d�, and gdðtÞ ¼ d�1gd
½t=d�, with [x] being

the integer part of x. Since Xk ¼ d�1=2P1
l ¼ �1 gd

k�lZk, we have for a suitably chosen standard Brownian motion

Xn ¼ Xd
nd ¼
D
Z 1
�1

gdðnd�sÞdWs, ð4:3Þ

where the superscript D means equality in distribution of the sequence fXd
nd,n¼ 1,2, . . .g and the sequence on the right.

After a careful calculation we see that, as d-0,

d�1pd
lð½t=d�Þ-

1

ðmðlÞ�1Þ!
½DmðlÞ�1

z ððz�lÞmðlÞezt=aðzÞÞ�z ¼ l ð4:4Þ

and consequently gdðtÞ-g0ðtÞ with g0 as in (1.14).
Consider now Xd as a generalized process, i.e. XdðfÞ ¼ ðW ð1Þ � gdÞðfÞ. Eqs. (2.5), (4.3) and (4.4) imply that Xd converges to

X in the sense of finite dimensional distributions, i.e. for any fixed f1, . . . ,fk 2 K , ðXdðf1Þ, . . . ,X
dðfkÞÞ converges in

distribution to ðXðf1Þ, . . . ,XðfkÞÞ as d-0.
From (4.2),

YdðtÞ ¼
Xq

i ¼ 0

bid
�i
Xi

j ¼ 0

i

j

 !
ð�1ÞjXd

t�jd:

If we again interpret YdðtÞ as a generalized process we get

YdðfÞ ¼
Xq

i ¼ 0

bid
�i
Xi

j ¼ 0

i

j

 !
ð�1ÞjXdðfð�þ jdÞÞ ¼

Xq

i ¼ 0

biX
d d�i

Xi

j ¼ 0

i

j

 !
ð�1Þjfð�þ jdÞ

0
@

1
A:

However, d�iPi
j ¼ 0

i
j

� �
ð�1Þjfðtþ jdÞ-ð�1ÞifðiÞðtÞ and (2.12) implies Yd converges to

Pq
i ¼ 0 biXðð�1ÞifðiÞÞ ¼ Y in the sense of

finite dimensional distributions.
This establishes the sense in which Yd, for small d, approximates the CARMA generalized random process Y defined in

Section 2.

5. Conclusions

Yaglom (1957) considered classes of generalized random fields in his study of turbulence and Gel’fand and Vilenkin
(1964) gave a general account of generalized random fields and generalized random processes. In this note we have used
the concept of generalized random process, together with a recent characterization of the unique stationary solution of the
CARMA equations, to extend the definition of Gaussian CARMA(p,q) processes to include the possibility that qZp. We
remark finally that for qop the CARMA(p,q) process Y can also be regarded as the GRP defined by YðfÞ :¼

R
fðtÞYðtÞdt,

f 2 K , which, with Definition 2.4, provides a unified framework for the study of CARMA(p,q) processes and their derivatives
regardless of whether or not p4q.
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