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Activity prediction and identification of
mis-annotated chemical compounds using
extreme descriptors

Petro Borysova,b�, Jan Hannigb, J. S. Marronb, Eugene Muratovc,d, Denis
Fourchesc and Alexander Tropshac

Data pre-processing that includes removal of descriptors with low variance is a standard first step in quantitative
structure–activity relationship modeling. In this paper, we study low-variance descriptors and show that some of
them contain significant amounts of useful information. In particular, we define the notion of extreme descriptors
(those variables that have the same value for almost all compounds and only a few values that are different from the
common median). We show that extreme descriptors can be helpful for activity prediction in a standard binary classifi-
cation setting. Moreover, we demonstrate using two case studies (M2 muscarinic receptors and skin sensitization) that
extreme descriptors can be used for the identification of possibly mislabeled compounds. Because of these previously
unknown, but important, properties, extreme descriptors should be considered in quantitative structure–activity
relationship modeling studies. Copyright © 2016 John Wiley & Sons, Ltd.
Additional information may be found in the online version of this article at the publisher’s web site
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1. INTRODUCTION

Data quality is critical for development of robust and predictive
quantitative structure–activity relationship (QSAR) models [1,2].
Young et al. [2] showed that even a reasonably small (up to 4%)
fraction of corrupted data can lead to significant decrease of
model quality. This conclusion becomes especially important in
light of the studies demonstrating that on average, there are two
errors per each medicinal chemistry publication with an over-
all error rate for compounds in primary sources used to compile
the WOMBAT database as high as 8% [3,4]. One of the sources
of errors in chemical databases and data sets is a mislabeling
of activity of investigated compounds. There could be numer-
ous reasons for such artifacts, for example, erroneous transition
from a publication to a database and shifting the string of labels
toward the list of corresponding compounds.

The choice of structural descriptors and modeling techniques
also has an influence on the quality of QSAR models. The recent
study by Zhu et al. [5] demonstrated that the choice of descrip-
tors are more important than the model optimization techniques.
Nowadays, thousands of descriptors can be generated by dif-
ferent software packages for every compound in the data set.
However, many of the descriptors do not contain any useful mod-
eling information and just reduce the quality and interpretability
of models based on them [6]. Therefore, the standard first step in
QSAR modeling is data pre-processing, which generally includes
removal of descriptors with low variance. However, the selection
of a low-variance threshold is subjective and often is not data set
specific. Also, it is possible that descriptors with variance smaller

than selected threshold can still contain some useful information.
In this paper, we will show why descriptors that have the same
value for almost all compounds and only a small fraction of val-
ues that are different from the common median should be used
in the modeling process to enhance the performance of stan-
dard methods. Furthermore, we propose a measure of prediction
confidence based on extreme descriptors (EDs) and only consider
prediction with high confidence in our analysis.

There are several methods that can reduce the high dimension
of the data to a lower dimension, for example, principle com-
ponent analysis [7] or partial least squares [8], so that classical
multivariate techniques can be applied. In recent years, there was
a lot of attention paid to regularized sparse regression methods,
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for example, least absolute shrinkage and regression operator
(LASSO) [9]. Sparse methods were also developed for classifi-
cation problems, for example, sparse support vector machine
(SVM) [10]. A weakness of the first sparse methods was in their
inability to find more than one, often inadequate, representative
of a set of descriptors that work as a group. This drawback has
been addressed by methods such as group LASSO [11]. It was
designed with a goal of finding important explanatory factors
that may be represented by a group of variables. Even though
all these methods are very powerful, usually, they are applied to
the preprocessed data where many descriptors, especially with
low variance, are removed. In this paper, we introduce the term
extreme descriptor to define descriptor that has almost all values
the same and all different values in just one class (see panels B–D
of Figure 1). EDs are data set dependent. That is, the same descrip-
tor could have extreme values for one data set and regular for
another one. Expectedly, EDs have small overall variance, but we
will show that they can be used not only for prediction but also
for identification of mislabeled compounds. Although the major-
ity of EDs are fragment descriptors, certain integral descriptors
could also match our definition.

The situation is different for the quality of labels because
the errors are completely contained in the training set and are
not extended to new data points. Brodley and Friedl [12] iden-
tified several sources of labeling errors, such as subjectivity,
data entry, and inadequacy of the information, used to label
each observation . These errors potentially lead to contradic-
tory labels, where the same observations appear more than once
and belong to different classes. They also may lead to misclas-
sifications, where observations are assigned to incorrect classes.

Thus, the identification and removal of the misclassified observa-
tions in many situations substantially improve the performance
of the model [13].

The problem of misclassification was addressed previously by
researchers in several areas, especially in genetics and medicine.
For example, Zhang et al. [14] proposed the procedure for han-
dling potential mislabeling among training samples based on
gene expression data in human breast cancer study. Joseph et al.
[15] analyzed and validated the reclassification of several subjects
that were misdiagnosed with Alzheimer’s disease. Gamberger
et al. [16] studied mislabeling in early diagnosis of rheumatic
diseases. Brodley and Friedl [12] investigated the mislabeling
problem in areas of automated land cover mapping and credit
approval. Many of the proposed methods rely on the idea of
outlier removal in regression analysis. Wilson and Martinez [17]
used various versions of the k-nearest neighbor classifier as a fil-
ter to identify and eliminate suspect observations. Brodley and
Friedl [13] applied an ensemble of classifiers with several vot-
ing strategies. Zeng and Martinez [18] proposed an automatic
data enhancement approach based on the mechanisms of neural
networks to correct mislabeled data points. Teng [19] developed
a two-stage decision tree classifier designed to correct noise
both in labels and in variables. Gamberger et al. [16] proposed
a noise detection and elimination method based on the mini-
mum description principle. In the area of QSAR, Fourches et al.
[20] showed that consensus models can be used to flag and
correct bioactivity annotation for certain compounds in a data
set. Fourches et al. [1] demonstrated the success of the consen-
sus models approach on Ames mutagenicity data set [21,22].
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Figure 1. Distributions of regular (A) and extreme (B–D) descriptors on their original scale from the M2 muscarinic receptors data. Gray circles and black
crosses represent 179 active and 265 inactive compounds, respectively. The black dashed curve is a smooth histogram. Test compounds are shown as
black square, diamond, and triangle. EDs have zero variance in one of the classes. Test compounds were predicted using the EDs as inactive (B) and as
actives (C and D).
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In this data set, 31 compounds were erroneously annotated in
the original database and successfully corrected. Recently, the
same approach was used for the identification of two mislabeled
compounds in reduced Local Lymph Node Assay (rLLNA) skin
sensitization data set [23].

Descriptor selection and preprocessing should be performed
with caution. Quinlan [24] showed that attempts at removing
noise from the variables decrease the predictive performance of
the classifier when the same noise level is present in the data to
be predicted. The goals of this study are as follows: (i) to intro-
duce the concept of EDs; (ii) to prove using case studies that those
descriptors are useful for improving the prediction of new com-
pounds; and, the most important, (iii) to demonstrate that they
can be used for identification of mislabeled compounds.

2. DATA

In this paper, we present the analysis of two chemical data sets
using EDs. The first data set used in this study was compiled
by Alves et al. [23] from the Interagency Coordinating Commit-
tee on the Validation of Alternative Methods report [25]. Each
chemical was designated as sensitizer/non-sensitizer according
to the value of its effective concentration (EC3). The compounds
were tested in multiple settings to achieve optimal solubility
and skin penetration. If for any compound, conflicting sensitiza-
tion potentials were found, then such compounds were removed
from the data set. This process resulted in 381 (253 sensitizers
and 128 non-sensitizers) unique data points that were further
employed for modeling. This data set was unbalanced, and in
order to avoid QSAR models with biased predictivity, we balanced
it before starting the modeling. Instead of randomly removing a
certain proportion of sensitizers from the data set, we performed
a similarity search relying on non-sensitizers as a starting point
to search the active pool for structurally similar compounds. This
similarity-based selection procedure was carried out by the meth-
ods of data analysis module of the HiT QSAR software [26] in
two stages: (i) generate the matrix of Euclidean distances in the
chemical space between all the pairs of compounds, and then
(ii) choose 64 sensitizers with the smallest Euclidean distance to
the nearest non-sensitizer. The final data set consisted of 262
compounds: 134 sensitizers and 128 non-sensitizers.

The second data set was compiled with compounds tested
against M2 muscarinic receptors located in the heart. Their func-
tion of M2 muscarinic receptors is to slow down the heart rate to
normal rhythm after stimulation by the sympathetic nervous sys-
tem. These receptors also reduce contractile forces of the atrial
cardiac muscle; however, they have no effect on the contrac-
tile forces of the ventricular muscle. The data set consists of 444
compounds: 179 active and 265 inactive.

Before descriptor generation step, compounds from both data
sets were carefully curated following the work flow described
by Fourches et al. [1]. In the next step, the following types of
descriptors were generated for standardized chemical structures
using Dragon software (v.5.5; Talete SRL, Milan, Italy): 0D constitu-
tional (atom and group counts), 1D functional groups, 1D atom-
centered fragments, 2D topological descriptors, 2D walk and path
counts, 2D autocorrelations, 2D connectivity indices, 2D informa-
tion indices, 2D topological charge indices, 2D eigenvalue-based
indices, 2D topological descriptors, 2D edge-adjacency indices,
2D burden eigenvalues, 2D binary fingerprints, 2D frequency fin-
gerprints, and molecular properties. Detailed discussion of these
descriptors can be found in Todeschini and Consonni [27].

3. IMPROVING PREDICTION ACCURACY OF
NEW COMPOUNDS

This section describes the proposed method for identification of
a set of compounds that are possibly assigned a wrong label. To
predict the labels of chemical compounds, the proposed method
uses EDs. First, we will explain how the predictions are made for
each compound and then how possibly mislabeled compounds
are identified.

Recall from Section 1 that we define EDs to have almost all val-
ues the same and a small fraction of different values in just one
class. The behavior of regular descriptors is illustrated in panel
A of Figure 1, and three special cases of EDs (with zero variance
in one of the classes) are shown in panels B, C, and D. Most of
the EDs are fragment counts (panels C and D); however, integral
parameters are also represented (panel B).

Molecular weight is shown on Figure 1(A) as an example of
regular descriptor, which is typically retained for analysis by
many researchers. However, as seen in Figure 1(A), molecular
weight by itself contains very little information for classification
of the compound shown as a black square. The distribution of
the descriptor (Hypnotic-50), which takes the value of 0 for all
active compounds (gray circles) and almost all inactive com-
pounds (black crosses) except a few inactives, for which Hypnotic-
50 is equal to 1, is shown on Figure 1(B). Hypnotic-50 belongs
to Ghose–Viswanadhan–Wendoloski drug-like indexes and pro-
vides an evaluation of “drug likeliness.” If Hypnotic-50 is equal
to 1, it means that lypophilicity, molecular weight, and the total
number of atoms in a given compound are within the range of
corresponding properties covering 50% of drugs with hypnotic
effect. The variance of this descriptor for the active compounds
is zero. If a new compound has a value near 1, then this descrip-
tor provides evidence that the new compound is inactive (black).
Otherwise, this descriptor has no useful information. For exam-
ple, consider the new compound shown as the black square in
Figure 1(B). Because the value of the descriptor of this new com-
pound is taken on only by inactive class members, it appears to
be inactive. In this case, there are 12 inactive compounds that
have a value of 1 for Hypnotic-50 descriptor and thus support
this prediction. Clearly, the larger the number of compounds that
support such a prediction, the higher the confidence that the
prediction is correct. The reported label of the new compound
(black square) is active, but EDs as well as a classification rule
(described later in this section) assign this compound to the inac-
tive class. Further verification showed that the test compound
is mislabeled. Figure 1(C) is similar to Figure 1(B), except now
descriptor (nR03 – number of 3-membered rings, e.g., aziridine
or oxirane) has three different values for compounds from the
active class. In this case, the predicted label of a new compound
(black diamond) is active (same as the original label), while the
classification rule assigns it to the inactive class. Figure 1(D) illus-
trates a prediction of another compound (black triangle) with
the descriptor (nR = Cp – number of terminal primary carbons
with sp2-hybridization) that has zero variance within the inactive
class. In this case, the predicted label of the new compound (orig-
inally labeled active) is taken to be active, and the number of
compounds that support the label assignment is 19.

As mentioned earlier, EDs have very small variance and often
removed from the analysis during data preprocessing steps. Addi-
tionally, the vast majority of EDs are not correlated with them-
selves and other descriptors, but in rare cases, the correlations
are close to one. This phenomenon is attributed to the fact that
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for a specific ED, most of the compounds share the same value.
Because most of EDs are fragment counts, sets of compounds
that share the same values are different across descriptors. Hence,
the correlation coefficient is near zero. In cases when sets of
compounds that share the same values have significant overlap,
the correlation is close to one. Furthermore, individual EDs have
relatively small impact on dimension reduction methods. For
example, the size of the average loading among EDs is only
around 5% of the size of the average loading across the remain-
ing descriptors. Therefore, we believe that EDs should be used
collectively (described later) and, if possible, in combination with
other methods.

In the first step of the proposed method, we divide the data
into training and test sets. Then we identify EDs using only the
training set compounds. The information about the predictions
from all EDs identified in the training set is combined and used to
assign a class label to some compounds in the test set. If the pre-
dicted class label for a particular compound does not match the
original label and if the number of compounds that support the
prediction is greater than a specified threshold, then this com-
pound is a candidate for being misclassified. Detailed explanation
about how the predictions from the individual EDs can be com-
bined is provided in Label prediction using extreme descriptors
section (Appendix). The estimation of the threshold is described
in Section 3.2.

3.1. Extreme descriptors for data with mislabeling

The definition of EDs states that their values are identical for
almost all compounds in a data set and only a small fraction of
compounds from one of the classes have a value that is differ-
ent from the common median. This definition can be extended to
the case where compounds that have descriptor values different
from the common median are not required to be from the same
activity class.

Suppose that p is the percentage of the compounds that
are mislabeled. According to Olah et al. [4], it is reasonable to
assume that this proportion can be as high as 8% . We define a
more general version of EDs as predictors that have one value
shared by most of the compounds. The remaining values have
almost all compounds in one class, with at most p% in the other
class. This definition allows us to use these descriptors and also
handle situations where the training data set contains poten-
tially mislabeled compounds. Similar to Section 3, the prediction
by each generalized ED will be supported by the set of com-
pounds that belong to both classes. In such cases, the label
is assigned by the majority vote. The existence of the major-
ity is guaranteed by the selection process of EDs described
in Appendix.

Note that EDs described earlier and illustrated in Figure 1(B)–
(D) are special cases of generalized EDs with 0% of mislabeling.
In the rest of this paper, we will use the term extreme descriptor
to denote the general version that allows for mislabeling and will
specify the mislabeling percentage when necessary.

3.2. Cutoff and label significance

This section describes the estimation of the cutoff on the number
of compounds that support predictions by EDs. If the number of
compounds that disqualify the current label is large enough, it is
reasonable to suspect that there is a mismatch between the label
and the chemical structure represented by the set of descriptors.

To illustrate the main idea of the cutoff estimation, without
loss of generality, we only consider “true” inactive compounds
that potentially could be mislabeled. The estimation for active
compounds is carried out similarly.

Suppose that � is the population proportion of inactive com-
pounds that are predicted as active by EDs, that is, the probability
that the proposed method will make incorrect prediction. For
every compound in the test set that has EDs identified in the
training set, we can construct a confidence interval for � . The con-
fidence interval will depend on two parameters, n and k. The first
parameter n represents the total number of compounds in the
training set that support prediction of any label across all EDs
present in the test compound. The second parameter represents
the number of compounds k 2 [0, n] in the training set that sup-
port only the active label. For example, compound 5 in Figure A1
has only two EDs (horizontal bars) and k = 2 active compounds
from the training set that support a prediction of active label (two
white dots on the gray horizontal bar) by EDs. At the same time,
compound 5 has n = 3 compounds from the training set that sup-
port both labels (two active compounds that support an active
label and one inactive compound that supports an inactive label).
Similarly, for compound 1, k = 0, and n = 59. Using observed n
and k, one can construct a 1 – ˛ confidence interval (0, u) for the
proportion � . The upper bound u is the upper confidence limit for
the original label. Naturally, it is also possible to find the number
of compounds n required to guarantee that the misclassification
probability is below the selected upper bound u with confidence
level 1 – ˛.

Note that the described probability model only allows estima-
tion of the confidence in the original label for those compounds
that do not have contradicting predictions by EDs. Compounds
that have very few descriptors with opposite predictions should
be examined on a case by case basis.

The confidence interval for the parameter � can be con-
structed using ideas of pivoting a discrete pdf [28] or general-
ized fiducial inference [29–32]. For example, the upper bound
of the confidence interval for k = 0 can be obtained from the
following equation:

1 – ˛ =
1

2
+

1

2

Z u

0
(1 – t)n–1dt

which yields

u = 1 – (2˛)1/n (1)

This equation can be also solved for n to obtain the number of
compounds n required to achieve upper bound u with confi-
dence 1 – ˛. For example, to achieve a 10% upper bound on the
probability that EDs made incorrect prediction with 95% confi-
dence, it is required to observe n = 22. For different values of k,
the relationship between parameters can be derived in a similar
manner. Please see Appendix for details.

To estimate the upper bound u on the confidence of the orig-
inal label using Equation (1), it is necessary to count only unique
compounds observed across all EDs. But it is very possible that
the same compound from the training set will support predic-
tions made by several EDs. If this happens for many EDs, it means
that the test compound is similar (has the same values of EDs) to
the compounds in the training set. Therefore, such situations also
should be carefully considered.
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Table I. Analysis of prediction accuracy with and without EDs

Data Description of prediction method Active Inactive Sensitivity Specificity Accuracy MCC
M

2
m

u
sc

.r
ec

. DWD with all descriptors 179 265 81.01 66.04 72.07 0.46
DWD without ED 179 265 80.45 66.42 72.07 0.46

ED-improved DWD 179 265 82.68 67.17 73.42 0.49
Accuracy bound 179 265 86.03 67.17 74.77 0.52

ED only 33 44 81.82 100.0 92.21 0.85
DWD for compounds with ED 33 44 72.73 93.18 84.42 0.68

Sk
in

se
n

s.

DWD with all descriptors 134 128 84.33 67.97 76.34 0.53
DWD without ED 134 128 83.58 68.75 76.34 0.53

ED-improved DWD 134 128 82.09 70.31 76.34 0.53
Accuracy bound 134 128 91.04 70.31 80.92 0.63

ED only 14 46 0.00 95.65 73.33 –0.11
DWD for compounds with ED 14 46 21.43 89.13 73.33 0.13

Among other things shows maximum potential prediction improvement for inactive compounds by ED
improved DWD classifier.
EDs, extreme descriptors; MCC, Matthews correlation coefficient; DWD, distance-weighted discrimination; musc.
rec., muscarinic receptor; sens., sensitization.

4. ANALYSIS OF CHEMICAL DATA

In this section, we present the results of the analysis of two chem-
ical data sets (included as supporting information) using EDs. In
order to test the class label of all compounds, we use an exter-
nal cross validation with every data set. There are several types of
external cross validation. In general external N-fold cross valida-
tion, the data are randomly separated into N parts. One of those
parts is used for blind prediction external test set, and the remain-
ing N – 1 parts are used for model development. In QSAR, it is
common to use fivefold external cross validation, while in the mis-
classification literature, the leave-one-out type (N = sample size)
is often used. In this paper, we adopt the idea of leave-one-out
external cross validation with the proposed classifier based on the
EDs, where in each fold, one compound is set aside. The collection
of EDs as well as the classification model was developed based on
the remaining data. Every compound is classified using EDs and
the distance-weighted discrimination (DWD) classifier. For each
compound that was classified using EDs, the original label con-
fidence u was computed as described in the previous section.
The predicted label was compared with the originally assigned
class label. If for a particular compound the predicted label did
not match the original label and its label upper confidence limit
u was low, then those compounds were selected to be checked
for mislabeling.

In this paper, we consider two versions of EDs: with no misla-
beling (these descriptors have zero variance in one of the classes)
and with possible mislabeling (when required, we will use 8%).
In addition, during the preprocessing step, we did not remove
descriptors with low variance. Only descriptors with zero total
variance and all but one identical descriptor were removed from
the data set.

4.1. Activity prediction with extreme descriptors

Depending on the objective, the analysis can be carried out in
two opposite directions. In case of the prediction objective, the
goal is to develop a model that is able to accurately predict the

property of a new compound. One of the main assumptions here
is that all labels in the training and validation data sets are cor-
rect. The accuracy of the model is estimated by the proportion of
the predicted labels that match the original label for compounds
in the validation data set. In case of identification of mislabeled
compounds, the labels in the validation data set do not have to be
correct. In this setting, if the predicted label is different from the
original label in the validation data set, the compound becomes
a suspect for being mislabeled.

In this section, we demonstrate how EDs can enhance stan-
dard classifiers from the prediction objective point of view. Table I
shows the various aspects of the ED classifier’s impact on the
DWD classifier on M2 muscarinic receptors and skin sensitization
data sets. The prediction performance is estimated using sensitiv-
ity, specificity, accuracy, and Matthews correlation coefficient [33]
(MCC) measures.

It is possible to see that simply removing EDs has a small effect
on sensitivity and specificity, but not on the overall accuracy of
the model for both data sets. Next, we combine predictions by
EDs and DWD (see ED-improved DWD in Table I) in the follow-
ing way. For all compounds that can be predicted with EDs, the
prediction confidence is calculated using Equation (1). If the pre-
diction confidence is large (at least 70 %), then the predicted
label is based on the EDs alone; otherwise, it is based only on
the DWD classifier. Addition of prediction by EDs improved the
accuracy of the model (including sensitivity, specificity, and MCC)
on the M2 muscarinic receptors data. In the case of skin sensiti-
zation data set, the improvement was only in specificity at some
cost of decline in sensitivity. Overall, accuracy and MCC remained
the same.

Because the number of compounds that contain EDs is rela-
tively small (around 20% of all compounds), the potential increase
in accuracy cannot be very large. Even if the DWD classifier
made correct prediction on all compounds with EDs, the poten-
tial increase would be about 20%. The accuracy bound for ED-
improved DWD prediction method in Table I shows the highest
possible accuracy assuming all compounds with EDs are correctly
predicted. The ED-improved DWD classifier achieved maximum
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Figure 2. Predictions for chemical compounds from the skin sensitization data (134 sensitizers and 128 non-sensitizers) based on the distance-weighted
discrimination classification model and descriptors with low variance. Compounds that are predicted as active and inactive by the distance-weighted
discrimination classifier are denoted as solid gray and dashed black vertical lines. Predictions using low variance descriptors are denoted by small
horizontal bars. White dots show the number of compounds in the training set that support the prediction. Compounds 1, 3, 6, and 7 from the right
panel (original label is active) are strong candidates for being mislabeled.

accuracy for inactive compounds in both data sets, while there is
still room for improvement for active compounds.

Additionally, we investigated the independent performance of
both ED and DWD classifiers on the same set of compounds
(those that contain extreme descriptors). It is possible to see that
on the M2 muscarinic receptor data set, the ED classifier performs
significantly better compared with DWD. The ED classifier has
the same overall accuracy as DWD on the skin sensitization data.
While performing better on inactive compounds, the ED classifier
fails to classify active compounds correctly. Note that in the next
section, out of the 14 compounds that were misclassified by the
ED predictor, five were identified as suspects (with one verified)
of being mislabeled.

4.2. Identification of potentially mislabeled compounds

In this section, for each data set, we create a table that contains
the list of compounds suspected to be mislabeled, their original
label with corresponding confidence bound.

There are two main types of error that affect the label of each
compound. The first corresponds to typographical or manual
data entry errors. This type of error can be eliminated by con-
firming the label reported in the description of the original or
repeated experiments. The second type comes from errors in the
experiment and can be removed from the data set by repeating
the experiment. Data entry errors are the easiest to confirm, but
it is possible that the label reported in the original experiment is
not correct.

A full list of mislabeled suspects, based on extreme descriptors
without mislabeling, has six compounds from the skin sensitiza-
tion data set and three compounds from the M2 data. Out of the
eight suspects, two compounds were verified to be mislabeled
(one out of the six compounds from the skin sensitization data
set and one out of the three compounds from the M2 data set)
because of data entry errors. Extreme descriptors with mislabel-
ing produce similar list for skin sensitization data set and five
additional suspects from M2 data set.

Figure 2 summarizes the results over 20 randomly selected
(10 inactive, left panel, and 10 active, right panel) leave-one-out
folds. The detailed explanation of the format and interpretation
of this figure are identical to Figure A1 and provided in Label
prediction using extreme descriptors section of the Appendix.
Some of the compounds on the left panel are predicted as active
by the DWD classifier (solid gray horizontal lines). At the same
time, it is possible to see that almost all predictions by extreme
descriptors correspond with the predictions by the DWD. Out of
the three compounds that predicted as active, only compound
8 has large number of compounds that support the predic-
tion; however, all these compounds contain the same extreme
descriptor. The situation is different for active compounds (right
panel). In this subset, there are six compounds that are pre-
dicted as inactive by the DWD classifier. Only compounds 1, 3, 6,
and 7 have a reasonable number of compounds from the train-
ing set (white dots) that support the inactive label prediction.
The list of all six mislabeled suspects is presented in Table II.
All suspects were checked for data entry errors, and compound
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Table II. Mislabeled suspects (sorted by label confidence) from the skin sensitization
and M2 muscarinic receptors data sets

Data Compound number Original label Label confidence Verified mislabeling

Sk
in

se
n

s.

246 Active 0.06
43 Active 0.06
85 Active 0.07 Yes

212 Inactive 0.08
82 Active 0.08

258 Active 0.10

M
2

426 Active 0.06 Yes
317 Active 0.11
347 Active 0.11

Label confidence is based on the upper bound of 90% confidence interval for misclassifi-
cation probability. Two of the suspects have been independently verified as mislabeled.
sens., sensitization.

85 (compound 3 in the right panel of Figure 2) was verified to
be mislabeled.

The M2 muscarinic receptor data set that we considered con-
tains 444 compounds (179 actives and 265 inactives) and 1116
descriptors. Table II contains the list of three active compounds
that are predicted as inactive with a significant amount of sup-
port. Compound 426 was confirmed to be mislabeled because of
a data entry error.

An interesting phenomenon happens when we allow mis-
labeling during the selection process of extreme descriptors.
There are a group of six active compounds (9, 26, 333, 395,
409, and 426) that are predicted as inactive by extreme descrip-
tors, and each of them has five active compounds that disqualify
the prediction. Further investigation showed that compounds
from this group are very similar to each other in the subspace
generated by selected extreme descriptors. Additionally, active
compounds that disqualify the prediction for each of the six
compounds are remaining compounds from the group. In other
words, they disqualify each other. The next logical step was to
put the whole group into the test set and predict all of them at
the same time. When all six compounds were predicted at the
same time, only active compound 64 disqualified the prediction.
Also, confidence of the original label decreased approximately
from 12% to 5%. This fact makes them good candidates for being
mislabeled, especially because compound 426 was verified to
be mislabeled.

5. CONCLUSIONS

In this paper, we introduced the term “extreme predictors,” that
is, descriptors that have a constant value for the majority of the
compounds of the data set and only for a small fraction of com-
pounds the values of these descriptors could vary. In the more
specific version of extreme descriptors, the compounds from this
small fraction must belong to the same activity class. Although
extreme descriptors have very low total variance and are often
discarded before modeling, we showed that they alone contain
significant amounts of information and can be used for improv-
ing the quality of prediction. We also showed on two case studies

that extreme descriptors can be successfully used for the identifi-
cation of possibly mislabeled compounds.
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Figure A1. Example illustrates prediction of a subset of 10 compounds
taken from the M2 muscarinic receptor data set with DWD classification
model and with extreme descriptors. Compounds that are predicted as
active and inactive by DWD model are denoted as solid gray and dashed
black vertical lines. Predictions by extreme descriptors are represented by
small horizontal bars of appropriate color. White dots inside the horizontal
bars show the number of compounds in the training set that support the
prediction. Compound 1 with top two extreme descriptors is also shown
in Figure 1(B) and 1(C). Compound 6 with third from the top extreme
descriptor is shown in Figure 1(D).

APPENDIX A

A.1. Label prediction using extreme descriptors

The idea of how the predictions from the individual extreme
descriptors can be combined is illustrated in Figure A1. It gives
a simultaneous view of the classification results produced by
two different methods. It shows the predictions of active com-
pounds from the test set by the distance-weighted discrimination
classifier (DWD) [34] and the set of extreme descriptors. To appro-
priately handle distributional irregularities that could significantly
affect the DWD model, for example, skewness as shown in
Figure 1(A), the MinSkew transformation (described in MinSkew
transformation section) was applied to each descriptor in the data
set. However, because the majority of extreme descriptors are
binary, the MinSkew transformation will have almost no effect
on their predictions. The data illustrated in Figure A1 are a small
subset of 10 compounds taken from the M2 muscarinic receptor
data set (described in Section 4), chosen for illustrative purposes.
In Figure A1, the horizontal axis represents compounds from the
test set, and the vertical axis represents extreme descriptors iden-
tified in the training set. If DWD alone predicts a compound as
active (inactive), it will be shown as a solid gray (dashed black)
vertical line. Ideally, all compounds in Figure A1 should be pre-
dicted as active and represented by solid gray vertical lines. For
example, compound number 6 is predicted as active (correct with
respect to the given labeling), hence colored gray. On the other
hand, compound 1 is predicted as inactive (incorrect prediction)
and colored black. The second set of predictions is based only
on the set of extreme descriptors. Those predictions are repre-
sented by short horizontal bars of appropriate color. The number
of compounds from the training set that support the prediction
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is indicated by the number of white dots. Consider, for exam-
ple, compound 6 (also shown as the black-triangle test case in
Figure 1(D)). It has three extreme descriptors (short gray bars)
that assign the active label and a total of 31 white dots (active
compounds that support the active label assignment). Therefore,
there are no reasons to dispute the labeling from the DWD model.
Similarly, compound 1 (black-square test case in Figure 1(A) and
(B)) is predicted as inactive by the DWD (black vertical line) and
four extreme descriptors with a total of 59 supporting com-
pounds. This compound is a good candidate to be checked for
mislabeling or to be retested. Alternatively, compound 7 (black-
diamond test compound in panel C of Figure 1) is predicted
as inactive by the DWD classifier but assigned to the originally
reported class by the set of extreme descriptors. In this case,
there is a disagreement between two predictions. There are also
compounds that cannot be predicted by extreme descriptors.
For example, compound 8 does not have extreme descriptors
that contain useful information. At the same time, compound 5
has two extreme descriptors that make opposite predictions sup-
ported. These are seen to be spurious because there are only two
and one supporting compounds from opposite classes. In this
case, the prediction by extreme descriptors does not provide any
useful information.

A.2. Derivation of the original label confidence

Let X1, : : : , Xn be a sample from a Bernoulli distribution with
parameter � . Then X =

P
Xi is a binomial random variable with

parameters n and � and with distribution function F(x|� ). We can
construct a confidence interval (0, u) for the parameter � , where u
is defined by

F(x|u) = ˛ (a1)

Using the fact that

kX
i=0

 
n

i

!
ui(1 – u)n–i = (n – k)

 
n

k

! 1–uZ
0

tn–k–1(1 – t)kdt

Equation (a1) can be written as

˛ =
1

B(n – k, k + 1)

1–uZ
0

tn–k–1(1 – t)kdt (a2)

where k is the observed value of X and B(�, �) is the beta function.
Relationship (a2) can be simplified for particular values of k. For
example,

˛ =

8̂<
:̂

(1 – u)n, if k = 0,
1 + (1 – u)n–1(u – 1 – nu), if k = 1,
2(u–1)2–(1–u)n(2–4u+2nu+2u2–3nu2+n2u2)

2(u–1)2 if k = 2
(a3)

Solving Equation (a3) for the unknown u produces the upper
bound of the 1 – ˛ confidence interval for the parameter � .

This idea can be directly applied to the situation where we use
extreme descriptors to predict the label of a chemical compound.
For example, to construct a 95% confidence interval (0, 0.1), we
would have to observe n = 29 compounds that support an active
label and k = 0 compounds that support an inactive label. This
also means that if we observe n = 29 and k = 0, then the original
label confidence is bounded by 10%.

The estimate of the threshold n or the upper bound u of the
confidence interval might be too conservative. We can use ideas
of generalized fiducial inference [32,35] to find a 1 – ˛ confidence
interval for � based on the half-corrected confidence distribution
[29–31], which has good small and large sample properties [35].
For observed k and n, the half-corrected confidence distribution
is given by

H(� , k) + H(� , k – 1)

2
(a4)

where H(� , k) = P(X > k|� ) and X has a binomial (n, � ) distribu-
tion. Note that the distribution (a4) is the 50–50 mixture of the
beta(k, n–k+1) and beta(k+1, n–k) distributions. In the case where
k = 0, distribution (a4) becomes a mixture with components
that take a value zero and beta(1, n) with equal probabilities. The
upper bound of the confidence interval for k = 0 can be obtained
from the following equation:

1 – ˛ =
1

2
+

1

2

Z u

0
(1 – t)n–1dt

which yields

u = 1 – (2˛)1/n (a5)

This equation can be also solved for n to obtain the number of
compounds n required to achieve upper bound u with confi-
dence 1 – ˛. For example, to achieve a 10% upper bound on the
probability that extreme descriptors made incorrect prediction
with 95% confidence, it is required to observe n = 22.

The upper bound obtained using (1) is less conservative than
the bound obtained from (a3) and will be used in the analysis of
real chemical data.

A.3. Selection of extreme descriptors

This section describes the algorithm of the selection process of
the extreme descriptors. The algorithm is designed for the gen-
eral version of extreme descriptors that allows for a certain level
of mislabeling in the data. For illustrative purposes, in this paper,
we consider 8% of mislabeling [3]. Note that descriptors with zero
variance in one of the classes are the special case of extreme
descriptors with no mislabeling.

The following algorithm produces the list of extreme descrip-
tors. A descriptor that satisfies all conditions is called an extreme
descriptor. The conditions are structured as a sequential filter,
where the input for each step is the output of the previous step.

(1) The median should be the same for both classes.
(2) All compounds should have the value of the descriptor on

one side of the median, that is, greater or equal (smaller or
equal) than the median.

(3) Proportion of possibly mislabeled compounds pMiss
should be smaller than 8%. The calculation of pMiss is
carried out in the following way:

� For each class, calculate the number of compounds that

are different from the median
�

Ndiff
act and Ndiff

inact

�
.

� Calculate the proportion pMiss of possibly mislabeled
compounds

pMiss =
min

�
Ndiff

act , Ndiff
inact

�
Ndiff

act + Ndiff
inact
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(4) Values of possibly mislabeled compounds should be
within the range of the other class. For example, if Ndiff

act >

Ndiff
inact , then values of inactive compounds that are differ-

ent from the median should be within minimum and max-
imum of the values of active compounds that are different
from the median.

(5) Prediction is made only if the value of the new compound
is also within the same range as in step 4.

A.4. MinSkew transformation

Because most statistical procedures, including DWD, are sensitive
to gross changes in scale and skewness of marginal distributions,
predictor transformation is important. We propose a transforma-
tion called MinSkewness to make the descriptors more amenable
to statistical analysis, that is, closer to Gaussian.

The algorithm for the proposed transformation follows:

(1) For every descriptor xi , decide if it is binary.

(a) For every non-binary descriptor xi 2 Rn, calculate
the sample skewness

g(xi) =
1
n
Pn

j=1(xij – Nxi)
3�

1
n
Pn

j=1(xij – Nxi)2
�3/2

Then apply the family of shifted log transforma-
tions

x0ij =

8̂<
:̂

log
�

xij – min(xi) + ˛ri
�

g(xi) > 0,

log
�
max(xi) – xij + ˛ri

�
g(xi) < 0,

xij g(xi) = 0

where ri = max(xi)–min(xi) and i = 1, : : : , n. Choose
the parameter ˛ to minimize the absolute sample
skewness g(x0).

(b) If the descriptor xi is binary, no transformations are
applied because it will not change the skewness,
that is, x0i = xi .

(2) Standardize every descriptor x0 in the following way:

x00ij =
x0ij – Nx0i

si

where Nx0i and si are the sample mean and standard devia-
tion of the transformed descriptor x0i , respectively.

(3) If |x00ij | > L, where L is the threshold defined in the succeed-

ing texts, truncate descriptors x000ij = sign
�

x00ij

�
L.

There are many descriptors that have very small sample stan-
dard deviation because of the majority of the compounds shar-
ing the same value for that descriptor. Standardization of such
descriptors by the sample standard deviation as part of the
transformation proposed in this section will significantly magnify
its values. One possible remedy is truncation of the descriptor
values.

Let x =
�

xT
1 , : : : , xT

m

�T
be the column vector of stacked descrip-

tor values, where xi = (xi1, : : : , xin)T is the ith standardized
descriptor with zero mean. If the absolute value of the element
of x is greater than a certain threshold, that is, |xij| > L, then
x0ij = sign(xij)L.

A reasonable value of the threshold L is based upon the fol-
lowing fact. Let X1, X2, : : : be independent, identically distributed
standard normal random variables. Define the maximum of k ran-
dom variables by Mk = max(X1, : : : , Xk). By a classical result from
the extreme value theory [36], there exist real constants ak > 0
and bk such that

Mk – bk

ak

D
�! Y as k!1

where Y has the standard Gumbel distribution and

bk = (2 log k)1/2 –
log log k + log(4�)

(2 log k)1/2
,

ak = (2 log k)–1/2

A reasonable large value is thus based on the 95th percentile of
the standard Gumbel distribution p95. Take the corresponding
threshold to be

L = p95ak + bk

where k = mn.
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