# Short course on Generalized Fiducial Inference

Parts of this short course are joint work with

T. C.M. Lee (UC Davis), H. Iyer (NIST) Randy Lai (UC Davis), J. Williams (NCSU), Y. Cui (UPenn) T. Petty (UNC), G. Li (UNC)

Summer 2020

Jan Hannig<sup>a</sup>

University of North Carolina at Chapel Hill https://hannig.cloudapps.unc.edu

<sup>a</sup>NSF support acknowledged

# Outline

- Introduction
- Definition
- Theoretical Results
- Applications
- Conclusions

# Outline

# • Introduction

### • Definition

- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

### Oxford English Dictionary

- adjective technical (of a point or line) used as a fixed basis of comparison.
- Origin from Latin fiducia 'trust, confidence'
- Merriam-Webster dictionary
  - 1. taken as standard of reference *a fiducial mark*
  - 2. founded on faith or trust
  - 3. having the nature of a trust : fiduciary

# Explain the definition of generalized fiducial distribution

- Explain the definition of generalized fiducial distribution
- Discuss theoretical results

- Explain the definition of generalized fiducial distribution
- Discuss theoretical results
- Show successful applications

- Explain the definition of generalized fiducial distribution
- Discuss theoretical results
- Show successful applications
- My point of view is frequentist
  - Justified using asymptotic theorems and simulations.
  - GFI shows very good repeated sampling performance in applications.

Histor

### Long, long, long time ago...



► Probabilistic uncertainty via Bayes Theorem:  $P(\xi|X) = \frac{f(X|\xi)\pi(\xi)}{\int_{\Xi} f(X|\xi)\pi(\xi)d\xi}.$ 

Histor

# Long, long, long time ago...



• Probabilistic uncertainty via Bayes Theorem:  $f(X|c)_{\pi}(c)$ 

 $P(\xi|X) = \frac{f(X|\xi)\pi(\xi)}{\int_{\Xi} f(X|\xi)\pi(\xi)d\xi}.$ 

### ► Bayes-Laplace postulate:

When nothing is known about the parameter in advance, let the prior be so that all values of the parameter are equally likely.

# Long, long, time ago...



"Not knowing the chance of mutually exclusive events and knowing the chance to be equal are two quite different states of knowledge" R. A. Fisher

# Long, long, time ago...



"Not knowing the chance of mutually exclusive events and knowing the chance to be equal are two quite different states of knowledge" R. A. Fisher

It was a wild ride after that!

History

# Brief history of fiducial inference



- ► Fisher (1922, 1930, 1935) no formal definition
- Lindley (1958) fiducial vs Bayes
- Fraser (1966) structural inference
- Dempster (1967) upper and lower probabilities
- ▶ Dawid and Stone (1982) theoretical results for simple cases.
- Barnard (1995) pivotal based methods.
- Weerahandi (1989, 1993), Krishnamoorthy generalized inference.

# Fiducial Inspired Work in the New Millennium



- Dempster-Shafer calculus; Dempster (2008), Edlefsen, Liu & Dempster (2009)
- Inferential Models; Liu & Martin (2015)
- Confidence Distributions; Xie, Singh & Strawderman (2011), Schweder & Hjort (2016)
- $\blacktriangleright$  Higher order likelihood, tangent exponential family,  $r^*$ , Reid & Fraser (2010)
- Objective Bayesian inference, e.g., reference prior Berger, Bernardo & Sun (2009, 2012).
- Fiducial Inference H, Iyer & Patterson (2006), H (2009, 2013), H & Lee (2009), Taraldsen & Lindqvist (2013), Veronese & Melilli (2015), H, Iyer, Lai & Lee (2016)...

 Common: quantify uncertainty using adequate data generating mechanism

- $\blacktriangleright$ Common: quantify uncertainty using adequate data generating mechanism
- Difference: math details, interpretation, replication

- Common: quantify uncertainty using adequate data generating mechanism
- Difference: math details, interpretation, replication
  - My subjective opinion: If the underlying optimization problem is the same, the methods are the same.

| introduction | Bird's Eye View |
|--------------|-----------------|
| Frequentist  |                 |

# • Modeling: collection of distributions $\mathcal{P} = \{P_{\xi}\}_{\xi \in \Xi}$ .

- Modeling: collection of distributions  $\mathcal{P} = \{P_{\xi}\}_{\xi \in \Xi}$ .
- **Replication:** parameter  $\xi_0$  fixed, data  $\boldsymbol{x}$  replicated



- Modeling: collection of distributions  $\mathcal{P} = \{P_{\xi}\}_{\xi \in \Xi}$ .
- **Replication:** parameter  $\xi_0$  fixed, data  $\boldsymbol{x}$  replicated



 Quality judged by averaging over unobserved data x\* (SLLN + Cournot's principle)

- Modeling: collection of distributions  $\mathcal{P} = \{P_{\xi}\}_{\xi \in \Xi}$ .
- **Replication:** parameter  $\xi_0$  fixed, data  $\boldsymbol{x}$  replicated



- Quality judged by averaging over unobserved data x\* (SLLN + Cournot's principle)
- Each problem requires its own solution

# Bayesian

# • **Modeling:** One joint distribution $f(\boldsymbol{x}|\boldsymbol{\xi}) \cdot \pi(\boldsymbol{\xi})$ .

- Modeling: One joint distribution  $f(\boldsymbol{x}|\boldsymbol{\xi}) \cdot \pi(\boldsymbol{\xi})$ .
- **Replication:** data  $x_0$  fixed, parameter  $\xi$  replicated



- **Modeling:** One joint distribution  $f(\boldsymbol{x}|\boldsymbol{\xi}) \cdot \pi(\boldsymbol{\xi})$ .
- **Replication:** data  $x_0$  fixed, parameter  $\xi$  replicated



• Averaging over unused parameters  $\xi^*$  needs prior

- **Modeling:** One joint distribution  $f(\boldsymbol{x}|\boldsymbol{\xi}) \cdot \pi(\boldsymbol{\xi})$ .
- **Replication:** data  $x_0$  fixed, parameter  $\xi$  replicated



- Averaging over unused parameters  $\xi^*$  needs prior
- Unique solution using Bayes theorem (conditional probability)

- **Modeling:** One joint distribution  $f(\boldsymbol{x}|\boldsymbol{\xi}) \cdot \pi(\boldsymbol{\xi})$ .
- **Replication:** data  $x_0$  fixed, parameter  $\xi$  replicated



- Averaging over unused parameters  $\xi^*$  needs prior
- Unique solution using Bayes theorem (conditional probability)
- Axiomatic system for all of inference, subjective interpretation (de Finetti, Savage).

• Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \boldsymbol{\xi})$ 

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- Replication: data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- Replication: data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- Replication: data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated



- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- **Replication:** data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated



- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- **Replication:** data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated


## Fiducial

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- **Replication:** data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated



## Fiducial

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- Replication: data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated

## Fiducial

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- Replication: data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- Replication: data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated

Issues

Fix either  $x_0$  or  $\xi_0$ . Under symmetry "fiducial  $\longleftrightarrow$  frequentist".

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- Replication: data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated

### Issues

- Fix either  $x_0$  or  $\xi_0$ . Under symmetry "fiducial  $\longleftrightarrow$  frequentist".
- Break in symmetry: some u\* incompatible with observed x<sub>0</sub>.
   Still useful, frequentist properties need to be established.

- Modeling: Data generating algorithm:  $\boldsymbol{x} = G(\boldsymbol{u}, \xi)$
- Replication: data x & parameter  $\xi$  linked through DGA, auxiliary variable u replicated

### Issues

- Fix either  $x_0$  or  $\xi_0$ . Under symmetry "fiducial  $\longleftrightarrow$  frequentist".
- Break in symmetry: some u\* incompatible with observed x<sub>0</sub>. Still useful, frequentist properties need to be established.
- Does not satisfy likelihood principle.
   Philosophical interpretation subject to argument

# Outline

### • Introduction

## • Definition

- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

### Comparison to likelihood

• Density is the function  $f(\mathbf{x}, \xi)$ , where  $\xi$  is fixed and  $\mathbf{x}$  is variable.

### Comparison to likelihood

- Density is the function  $f(\mathbf{x}, \xi)$ , where  $\xi$  is fixed and  $\mathbf{x}$  is variable.
- Likelihood is the function  $f(\mathbf{x}, \xi)$ , where  $\xi$  is variable and  $\mathbf{x}$  is fixed.

## Comparison to likelihood

- Density is the function  $f(\mathbf{x}, \xi)$ , where  $\xi$  is fixed and  $\mathbf{x}$  is variable.
- Likelihood is the function  $f(\mathbf{x}, \xi)$ , where  $\xi$  is variable and  $\mathbf{x}$  is fixed.

Likelihood as a distribution?

### Data generating algorithm

## Data generating algorithm (DGA)

 $\mathbf{X} = \mathbf{G}(\mathbf{U}, \boldsymbol{\xi}),$ 



### Generate Xs by generating Us and DGA.

This determines sampling distribution

### Data generating algorithm

## Data generating equation (DGA)

# $\mathbf{x} = \mathbf{G}(\mathbf{U}^{\star}, \boldsymbol{\xi}^{\star}),$

- U is a random with known distribution (iid U(0,1))
- Data x is fixed
- Generate  $\xi^*$  by generating **U**\*s and inverting DGA.
  - This determines fiducial distribution
  - Denote the inverse  $Q_{\boldsymbol{x}}(\boldsymbol{U}^*)$ .

### Example -- Bernoulli trials

### Data generating algorithm $\blacktriangleright$

## $X_i = 1\{U_i \le p\}, U_i \sim \text{Uniform}(0,1)$

### Generating $U_i$ samples Bernoulli(p).

## Example -- Bernoulli trials

### Data generating algorithm $\blacktriangleright$

# $X_i = 1\{U_i^{\star} \leq p^{\star}\}, U_i^{\star} \sim \text{Uniform}(0,1)$

Estimating  $U_i$  by  $U_i^{\star}$  defines fiducial distribution

### Data generating algorithm

 $X_i = 1\{U_i^{\star} \leq p^{\star}\}, \ U_i^{\star} \sim \mathsf{Uniform}(0,1)$ 

Estimating  $U_i$  by  $U_i^{\star}$  defines fiducial distribution • If  $x_i = 1$ , then  $p^{\star} \in [U_i^{\star}, 1]$ 



### Data generating algorithm

 $X_i = 1\{U_i^{\star} \leq p^{\star}\}, \ U_i^{\star} \sim \mathsf{Uniform}(0,1)$ 

Estimating  $U_i$  by  $U_i^{\star}$  defines fiducial distribution • If  $x_i = 0$ , then  $p^{\star} \in [0, U_i^{\star}]$ 



### Data generating algorithm

 $X_1 = 1\{U_1 \le p\}, X_2 = 1\{U_2 \le p\}$   $U_1, U_2$  i.i.d. Uniform(0,1)

definition Main Idea

Example -- Binomial

Data generating algorithm

 $X_1 = 1\{U_1 \le p\}, X_2 = 1\{U_2 \le p\}$   $U_1, U_2$  i.i.d. Uniform(0,1)

• If  $X_1 = 0, X_2 = 1$  and  $U_1^{\star} < U_2^{\star}$ 



▶ No solution! Remove  $(U_1^{\star}, U_2^{\star})$  inconsistent with data.

definition Main Idea

Example -- Binomial

Data generating algorithm

 $X_1 = 1\{U_1 \le p\}, X_2 = 1\{U_2 \le p\}$   $U_1, U_2$  i.i.d. Uniform(0,1)

• If  $X_1 = 0, X_2 = 1$  and  $U_1^{\star} > U_2^{\star}$ 



•  $(U_1^{\star}, U_2^{\star})$  uniform on  $\{U_1^{\star} > U_2^{\star}\}$ 

• 
$$(X_1, \ldots, X_n) \stackrel{iid}{\sim} \text{Bernoulli}(p), S = \sum_{i=1}^n X_i \sim \text{Binomial}(n, p)$$

- $(X_1, \ldots, X_n) \stackrel{iid}{\sim} \text{Bernoulli}(p), S = \sum_{i=1}^n X_i \sim \text{Binomial}(n, p)$
- Condition U\* on having a solution for p

$$p^{\star}: \begin{bmatrix} & & & \\ & & & \\ & & & \\ 0 & U_{1:n}^{\star} & U_{2:n}^{\star} & \cdots & U_{s:n}^{\star} & U_{(s+1):n}^{\star} & \cdots & U_{n:n} & 1 \end{bmatrix}$$

 $O(\mathbf{T}^*)$ 

10

- $(X_1, \ldots, X_n) \stackrel{iid}{\sim} \text{Bernoulli}(p), S = \sum_{i=1}^n X_i \sim \text{Binomial}(n, p)$
- Condition U\* on having a solution for p

$$Q_{\mathbf{x}}(\mathbf{U}^*) \neq \emptyset$$



Select a point in the interval.

A particular choice results in Beta(s + 1/2, n - s + 1/2)

| definition              | Main Idea |
|-------------------------|-----------|
| Example Location Cauchy |           |

• Consider  $X_i = \mu + U_i$  where  $U_i$  are i.i.d. standard Cauchy.

- Consider  $X_i = \mu + U_i$  where  $U_i$  are i.i.d. standard Cauchy.
- ► Solve:

$$Q_{\boldsymbol{x}}(\boldsymbol{u}) = \begin{cases} x_1 - u_1 & \text{if } x_2 - x_1 = u_2 - u_1^*, \dots, x_n - x_1 = u_n - u_1 \\ \emptyset & \text{otherwise} \end{cases}$$

- Consider  $X_i = \mu + U_i$  where  $U_i$  are i.i.d. standard Cauchy.
- Solve:

$$Q_{\boldsymbol{x}}(\boldsymbol{u}) = \begin{cases} x_1 - u_1 & \text{if } x_2 - x_1 = u_2 - u_1^{\star}, \dots, x_n - x_1 = u_n - u_1 \\ \emptyset & \text{otherwise} \end{cases}$$

Estimate u by

 $\mathbf{U}^{\star}$  truncated to  $\{x_2 - x_1 = U_2^{\star} - U_1^{\star}, \dots, x_n - x_1 = U_n^{\star} - U_1^{\star}\}$ 

- Consider  $X_i = \mu + U_i$  where  $U_i$  are i.i.d. standard Cauchy.
- Solve:

$$Q_{\boldsymbol{x}}(\boldsymbol{u}) = \begin{cases} x_1 - u_1 & \text{if } x_2 - x_1 = u_2 - u_1^{\star}, \dots, x_n - x_1 = u_n - u_1 \\ \emptyset & \text{otherwise} \end{cases}$$

Estimate u by

 $\mathbf{U}^{\star}$  truncated to  $\{x_2 - x_1 = U_2^{\star} - U_1^{\star}, \dots, x_n - x_1 = U_n^{\star} - U_1^{\star}\}$ 

• Fiducial density  $r_{\boldsymbol{x}}(\mu) \propto \prod_{i=1}^{n} (1 + (\mu - x_i)^2)^{-1}$ .

- Consider  $X_i = \mu + U_i$  where  $U_i$  are i.i.d. standard Cauchy.
- Solve:

$$Q_{\boldsymbol{x}}(\boldsymbol{u}) = \begin{cases} x_1 - u_1 & \text{if } x_2 - x_1 = u_2 - u_1^{\star}, \dots, x_n - x_1 = u_n - u_1 \\ \emptyset & \text{otherwise} \end{cases}$$

Estimate u by

 $\mathbf{U}^{\star}$  truncated to  $\{x_2 - x_1 = U_2^{\star} - U_1^{\star}, \dots, x_n - x_1 = U_n^{\star} - U_1^{\star}\}$ 

Fiducial density  $r_{\boldsymbol{x}}(\mu) \propto \prod_{i=1}^{n} (1 + (\mu - x_i)^2)^{-1}$ .

 Location problem – same as posterior computed using Jeffreys prior

|                    | definition | Formal Definition |
|--------------------|------------|-------------------|
| General Definition |            |                   |
|                    |            |                   |

• Data generating equation  $X = G(U, \xi)$ .

• e.g. 
$$X_i = \mu + \sigma U_i$$

### **General Definition**

• Data generating equation  $X = G(U, \xi)$ .

• e.g. 
$$X_i = \mu + \sigma U_i$$

Generalized Fiducial Distribution defined as distribution of

$$\xi(\mathbf{x}, \mathbf{U}^{\star}) = \arg\min_{\xi} \|\mathbf{x} - \boldsymbol{G}(\mathbf{U}^{\star}, \xi)\|$$
(1)

where  $U^{\star}$  is truncated to

$$\{ \boldsymbol{U}^{\star}: \ \|\mathbf{x} - \boldsymbol{G}(\mathbf{U}^{\star}, \xi(\mathbf{x}, \mathbf{U}^{\star})) \| \leq \varepsilon \}$$

Take a limit as  $\varepsilon \downarrow 0$ .

### **General Definition**

• Data generating equation  $X = G(U, \xi)$ .

• e.g. 
$$X_i = \mu + \sigma U_i$$

Generalized Fiducial Distribution defined as distribution of

$$\xi(\mathbf{x}, \mathbf{U}^{\star}) = \arg\min_{\xi} \|\mathbf{x} - \boldsymbol{G}(\mathbf{U}^{\star}, \xi)\|$$
(1)

where  $U^{\star}$  is truncated to

$$\{ \boldsymbol{U}^{\star}: \; \|\mathbf{x} - \boldsymbol{G}(\mathbf{U}^{\star}, \xi(\mathbf{x}, \mathbf{U}^{\star})) \| \leq \varepsilon \}$$

Take a limit as  $\varepsilon \downarrow 0$ .

Similar to ABC; generating from prior replaced by min.

## General Definition

► Data generating equation  $X = G(U, \xi)$ .

• e.g. 
$$X_i = \mu + \sigma U_i$$

Generalized Fiducial Distribution defined as distribution of

$$\xi(\mathbf{x}, \mathbf{U}^{\star}) = \arg\min_{\xi} \|\mathbf{x} - \boldsymbol{G}(\mathbf{U}^{\star}, \xi)\|$$
(1)

where  $U^{\star}$  is truncated to

$$\{ \boldsymbol{U}^{\star}: \; \|\mathbf{x} - \boldsymbol{G}(\mathbf{U}^{\star}, \xi(\mathbf{x}, \mathbf{U}^{\star})) \| \leq \varepsilon \}$$

Take a limit as  $\varepsilon \downarrow 0$ .

- Similar to ABC; generating from prior replaced by min.
- Computations?

| defin              | hition Formal Defintion |  |
|--------------------|-------------------------|--|
| Explicit limit (1) |                         |  |

- $\blacktriangleright \ \, \mathsf{Assume} \ \, \mathbf{X} \in \mathbb{R}^n \text{ is continuous; parameter } \xi \in \mathbb{R}^p$
- The limit in (1) has density (H, Iyer, Lai & Lee, 2016)

$$r_{\mathbf{x}}(\xi) = \frac{f_{\mathbf{X}}(\mathbf{x}|\xi)J(\mathbf{x},\xi)}{\int_{\Xi} f_{\mathbf{X}}(\mathbf{x}|\xi')J(\mathbf{x},\xi')\,d\xi'},$$

where 
$$J(\mathbf{x}, \xi) = D\left( \nabla_{\xi} \mathbf{G}(\mathbf{u}, \xi) |_{\mathbf{u} = \mathbf{G}^{-1}(\mathbf{x}, \xi)} \right)$$
  
 $\blacktriangleright n = p \text{ gives } D(A) = |\det A|$ 

# Explicit limit (1)

- $\blacktriangleright$  Assume  $\mathbf{X} \in \mathbb{R}^n$  is continuous; parameter  $\xi \in \mathbb{R}^p$
- The limit in (1) has density (H, Iyer, Lai & Lee, 2016)

$$r_{\mathbf{x}}(\xi) = \frac{f_{\mathbf{X}}(\mathbf{x}|\xi)J(\mathbf{x},\xi)}{\int_{\Xi} f_{\mathbf{X}}(\mathbf{x}|\xi')J(\mathbf{x},\xi')\,d\xi'},$$

where 
$$J(\mathbf{x},\xi) = D\left(\left. 
abla_{\xi} \mathbf{G}(\mathbf{u},\xi) \right|_{\mathbf{u}=\mathbf{G}^{-1}(\mathbf{x},\xi)} 
ight)$$

- n = p gives  $D(A) = |\det A|$
- $\|\cdot\|_2$  gives  $D(A) = (\det A^{\top} A)^{1/2}$

$$\blacktriangleright \|\cdot\|_{\infty} \text{ gives } D(A) = \sum_{\mathbf{i}=(i_1,\ldots,i_p)} |\det(A)_{\mathbf{i}}|$$

$$\blacktriangleright \|\cdot\|_1 \text{ gives } D(A) = \sum_{\mathbf{i} = (i_1, \dots, i_p)} w_{\mathbf{i}} |\det(A)_{\mathbf{i}}|$$

Example -- Uniform $(\theta, \theta^2)$ 

# ► $X_i$ i.i.d. $U(\theta, \theta^2)$ , $\theta > 1$

Example -- Uniform $(\theta, \theta^2)$ 

## ► $X_i$ i.i.d. $U(\theta, \theta^2)$ , $\theta > 1$

▶ Data generating algorithm  $X_i = \theta + (\theta^2 - \theta)U_i$ ,  $U_i \sim U(0, 1)$ .

### Example -- Uniform $(\theta, \theta^2)$

## ► $X_i$ i.i.d. $U(\theta, \theta^2), \theta > 1$

▶ Data generating algorithm  $X_i = \theta + (\theta^2 - \theta)U_i, U_i \sim U(0, 1).$ 

 $\blacktriangleright \quad \frac{d}{d\theta} [\theta + (\theta^2 - \theta)U_i] = 1 + (2\theta - 1)U_i, \text{ with } U_i = \frac{X_i - \theta}{\theta^2 - \theta}.$
►  $X_i$  i.i.d.  $U(\theta, \theta^2), \theta > 1$ 

▶ Data generating algorithm  $X_i = \theta + (\theta^2 - \theta)U_i, U_i \sim U(0, 1).$ 

 $\blacktriangleright \quad \frac{d}{d\theta} [\theta + (\theta^2 - \theta)U_i] = 1 + (2\theta - 1)U_i, \text{ with } U_i = \frac{X_i - \theta}{\theta^2 - \theta}.$ 

Jacobian

$$J(\boldsymbol{x}, \theta) = D \begin{pmatrix} 1 + \frac{(2\theta - 1)(x_1 - \theta)}{\theta^2 - \theta} \\ \vdots \\ 1 + \frac{(2\theta - 1)(x_n - \theta)}{\theta^2 - \theta} \end{pmatrix} = \frac{1}{\theta^2 - \theta} D \begin{pmatrix} x_1(2\theta - 1) - \theta^2 \\ \vdots \\ x_n(2\theta - 1) - \theta^2 \end{pmatrix}$$

►  $X_i$  i.i.d.  $U(\theta, \theta^2), \theta > 1$ 

▶ Data generating algorithm  $X_i = \theta + (\theta^2 - \theta)U_i, U_i \sim U(0, 1).$ 

 $\blacktriangleright \quad \frac{d}{d\theta} [\theta + (\theta^2 - \theta)U_i] = 1 + (2\theta - 1)U_i, \text{ with } U_i = \frac{X_i - \theta}{\theta^2 - \theta}.$ 

Jacobian

$$J(\boldsymbol{x},\theta) = D \begin{pmatrix} 1 + \frac{(2\theta-1)(x_1-\theta)}{\theta^2 - \theta} \\ \vdots \\ 1 + \frac{(2\theta-1)(x_n-\theta)}{\theta^2 - \theta} \end{pmatrix} = \frac{1}{\theta^2 - \theta} D \begin{pmatrix} x_1(2\theta-1) - \theta^2 \\ \vdots \\ x_n(2\theta-1) - \theta^2 \end{pmatrix}$$

$$\blacktriangleright = n \frac{\bar{x}(2\theta - 1) - \theta^2}{\theta^2 - \theta} \text{ for } L_{\infty}.$$

Reference prior (Berger, Bernardo & Sun, 2009)  $\pi(\theta) = \frac{e^{\psi\left(\frac{2\theta}{2\theta-1}\right)}(2\theta-1)}{\theta^2 - \theta}.$ 

► Reference prior (Berger, Bernardo & Sun, 2009)  $\pi(\theta) = \frac{e^{\psi\left(\frac{2\theta}{2\theta-1}\right)}(2\theta-1)}{\theta^2 - \theta}.$ 

► reference prior vs fiducial Jacobian





reference prior vs fiducial Jacobian



In simulations fiducial was marginally better than reference prior which was much better than flat prior.

• Data generating algorithm  $Y = X\beta + \sigma Z$ 

- ► Data generating algorithm  $Y = X\beta + \sigma Z$
- $\frac{d}{d\theta}Y = (X, Z)$  and  $Z = (Y X\beta)/\sigma$ .

- Data generating algorithm  $Y = X\beta + \sigma Z$
- $\blacktriangleright \ \frac{d}{d\theta}Y = (X, Z) \text{ and } Z = (Y X\beta)/\sigma.$
- ► Jacobian  $J(\boldsymbol{y}, \boldsymbol{\beta}, \sigma) = D\left(\boldsymbol{X}, \frac{\boldsymbol{y} \boldsymbol{X}\boldsymbol{\beta}}{\sigma}\right) = \sigma^{-1}D(\boldsymbol{X}, \boldsymbol{y})$

- Data generating algorithm  $Y = X\beta + \sigma Z$
- $\blacktriangleright \ \frac{d}{d\theta}Y = (X,Z) \text{ and } Z = (Y X\beta)/\sigma.$
- ► Jacobian  $J(\boldsymbol{y}, \boldsymbol{\beta}, \sigma) = D\left(\boldsymbol{X}, \frac{\boldsymbol{y} \boldsymbol{X}\boldsymbol{\beta}}{\sigma}\right) = \sigma^{-1}D(\boldsymbol{X}, \boldsymbol{y})$

•  $= \sigma^{-1} |\det(X^T X)|^{1/2} (RSS)^{1/2}$  for  $L_2$ .

- Data generating algorithm  $Y = X\beta + \sigma Z$
- $\blacktriangleright \ \frac{d}{d\theta}Y = (X, Z) \text{ and } Z = (Y X\beta)/\sigma.$
- ► Jacobian  $J(\boldsymbol{y}, \boldsymbol{\beta}, \sigma) = D\left(\boldsymbol{X}, \frac{\boldsymbol{y} \boldsymbol{X}\boldsymbol{\beta}}{\sigma}\right) = \sigma^{-1}D(\boldsymbol{X}, \boldsymbol{y})$

•  $= \sigma^{-1} |\det(X^T X)|^{1/2} (RSS)^{1/2}$  for  $L_2$ .

Same as independence Jeffreys, *explicit* normalizing constant

$$\blacktriangleright X_i = G(U_i, \gamma, \sigma) = \sigma \frac{U_i^{-\gamma} - 1}{\gamma}$$

Models excedances over a large threshold.

Formal Defintion

### Example -- Generalized Pareto

$$\blacktriangleright X_i = G(U_i, \gamma, \sigma) = \sigma \frac{U_i^{-\gamma} - 1}{\gamma}$$

Models excedances over a large threshold.

• Likelihood  $f(\mathbf{x}, \gamma, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \left(1 + \frac{\gamma x_i}{\sigma}\right)^{1+1/\gamma}}$ .

- $\blacktriangleright X_i = G(U_i, \gamma, \sigma) = \sigma \frac{U_i^{-\gamma} 1}{\gamma}$ 
  - Models excedances over a large threshold.
- Likelihood  $f(\mathbf{x}, \gamma, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \left(1 + \frac{\gamma x_i}{\sigma}\right)^{1+1/\gamma}}$ .
- Jacobian evaluated at  $u_i = \left(1 + rac{\gamma x_i}{\sigma}
  ight)^{-1/\gamma}$

$$\blacktriangleright \quad \frac{d}{d\sigma}G(u_i,\gamma,\sigma) = \frac{x_i}{\sigma}.$$

- $\blacktriangleright X_i = G(U_i, \gamma, \sigma) = \sigma \frac{U_i^{-\gamma} 1}{\gamma}$ 
  - Models excedances over a large threshold.
- Likelihood  $f(\mathbf{x}, \gamma, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \left(1 + \frac{\gamma x_i}{\sigma}\right)^{1+1/\gamma}}$ .
- Jacobian evaluated at  $u_i = \left(1 + rac{\gamma x_i}{\sigma}
  ight)^{-1/\gamma}$

$$\frac{d}{d\sigma}G(u_i,\gamma,\sigma) = \frac{x_i}{\sigma}.$$

$$\frac{d}{d\gamma}G(u_i,\gamma,\sigma) = -\frac{x_i}{\gamma} + \frac{\sigma(1+\frac{\gamma x_i}{\sigma})\log(1+2)}{\gamma^2}$$

- $\blacktriangleright X_i = G(U_i, \gamma, \sigma) = \sigma \frac{U_i^{-\gamma} 1}{\gamma}$ 
  - Models excedances over a large threshold.
- Likelihood  $f(\mathbf{x}, \gamma, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \left(1 + \frac{\gamma x_i}{\sigma}\right)^{1+1/\gamma}}$ .
- Jacobian evaluated at  $u_i = \left(1 + rac{\gamma x_i}{\sigma}\right)^{-1/\gamma}$

$$\begin{aligned} & \frac{d}{d\sigma}G(u_i,\gamma,\sigma) = \frac{x_i}{\sigma}. \\ & \frac{d}{d\gamma}G(u_i,\gamma,\sigma) = -\frac{x_i}{\gamma} + \frac{\sigma\left(1+\frac{\gamma x_i}{\sigma}\right)\log\left(1+\frac{\gamma x_i}{\sigma}\right)}{\gamma^2}. \\ & \bullet \quad J(\mathbf{x},\gamma,\sigma) = \gamma^{-2}D\begin{pmatrix} x_1 & \left(1+\frac{\gamma x_1}{\sigma}\right)\log\left(1+\frac{\gamma x_1}{\sigma}\right) \\ \vdots \\ x_n & \left(1+\frac{\gamma x_n}{\sigma}\right)\log\left(1+\frac{\gamma x_n}{\sigma}\right) \end{pmatrix} \end{aligned}$$

Formal Defintion

- $\blacktriangleright X_i = G(U_i, \gamma, \sigma) = \sigma \frac{U_i^{-\gamma} 1}{\gamma}$ 
  - Models excedances over a large threshold.
- Likelihood  $f(\mathbf{x}, \gamma, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \left(1 + \frac{\gamma x_i}{\sigma}\right)^{1+1/\gamma}}$ .
- Jacobian evaluated at  $u_i = \left(1 + rac{\gamma x_i}{\sigma}
  ight)^{-1/\gamma}$

$$\begin{aligned} & \frac{d}{d\sigma}G(u_i,\gamma,\sigma) = \frac{x_i}{\sigma} \\ & \frac{d}{d\gamma}G(u_i,\gamma,\sigma) = -\frac{x_i}{\gamma} + \frac{\sigma\left(1+\frac{\gamma x_i}{\sigma}\right)\log\left(1+\frac{\gamma x_i}{\sigma}\right)}{\gamma^2} \\ & J(\mathbf{x},\gamma,\sigma) = \gamma^{-2}D\begin{pmatrix} x_1 & \left(1+\frac{\gamma x_1}{\sigma}\right)\log\left(1+\frac{\gamma x_1}{\sigma}\right)\\ \vdots & \vdots\\ & x_n & \left(1+\frac{\gamma x_n}{\sigma}\right)\log\left(1+\frac{\gamma x_n}{\sigma}\right) \end{pmatrix} \\ & \bullet & = \sum_{i < j} \left| \frac{x_j\left(1+\frac{\gamma x_i}{\sigma}\right)\log\left(1+\frac{\gamma x_i}{\sigma}\right)-x_i\left(1+\frac{\gamma x_j}{\sigma}\right)\log\left(1+\frac{\gamma x_j}{\sigma}\right)}{\gamma^2} \right| \text{ for } L_{\infty}. \end{aligned}$$

Weibull distribution

- Weibull distribution
- Negative Binomial Distribution (compare to Binomial)

- Weibull distribution
- Negative Binomial Distribution (compare to Binomial)
- ► T distribution (might not have a pretty form)

- Weibull distribution
- Negative Binomial Distribution (compare to Binomial)
- ▶ T distribution (might not have a pretty form)
- Your favorite model

- Weibull distribution
- Negative Binomial Distribution (compare to Binomial)
- ► T distribution (might not have a pretty form)
- Your favorite model

Open problem:

Derive Jacobian formula on manifolds

# Outline

- Introduction
- Definition
- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

**Basic Observations** 

Important Observations (Bayesian)

► GFD is always proper

- GFD is always proper
- $\blacktriangleright$ GFD is invariant to re-parametrizations (same as Jeffreys)

- ► GFD is always proper
- ▶ GFD is invariant to re-parametrizations (same as Jeffreys)
- GFD is *not* invariant to smooth transformation of the data if n > p

- GFD is always proper
- GFD is invariant to re-parametrizations (same as Jeffreys)
- GFD is *not* invariant to smooth transformation of the data if n > p
- Consequently:
  - GFD does not satisfy likelihood principle. ►

- GFD is always proper
- GFD is invariant to re-parametrizations (same as Jeffreys)
- GFD is *not* invariant to smooth transformation of the data if n > p
- Consequently:
  - GFD does not satisfy likelihood principle.
  - Adding a multiple of a column to another column does not ► alter D(A). Row operations not allowed!

Data generating algorithm  $S = G_S(\mathbf{U}, \xi)$  (1-dimensional statistic)

Data generating algorithm  $S = G_S(\mathbf{U}, \xi)$  (1-dimensional statistic)

- 1.  $G_S(\mathbf{u},\xi)$  is non-decreasing in  $\xi$  for all  $\mathbf{u}$
- 2. For all  $\mathbf{u}$  and s the inverse  $Q_s(\mathbf{u}) = \{\xi : s = G_S(\mathbf{u}, \xi)\} \neq \emptyset$ .
- 3. For all  $\xi$  the cdf  $F_S(s,\xi)$  is continuous.

Data generating algorithm  $S = G_S(\mathbf{U},\xi)$  (1-dimensional statistic)

- 1.  $G_S(\mathbf{u},\xi)$  is non-decreasing in  $\xi$  for all  $\mathbf{u}$
- 2. For all **u** and *s* the inverse  $Q_s(\mathbf{u}) = \{\xi : s = G_S(\mathbf{u}, \xi)\} \neq \emptyset$ .
- 3. For all  $\xi$  the cdf  $F_S(s,\xi)$  is continuous.

Then one has "unique" fiducial distribution and exact coverage of one-sided confidence intervals, i.e.,

 $P(Q_s(\mathbf{U}^{\star}) \le \xi) = 1 - F_S(s,\xi).$ 

Data generating algorithm  $S = G_S(\mathbf{U}, \xi)$  (1-dimensional statistic)

- 1.  $G_S(\mathbf{u},\xi)$  is non-decreasing in  $\xi$  for all  $\mathbf{u}$
- 2. For all **u** and *s* the inverse  $Q_s(\mathbf{u}) = \{\xi : s = G_S(\mathbf{u}, \xi)\} \neq \emptyset$ .
- 3. For all  $\xi$  the cdf  $F_S(s,\xi)$  is continuous.

Then one has "unique" fiducial distribution and exact coverage of one-sided confidence intervals, i.e.,

 $P(Q_s(\mathbf{U}^{\star}) \leq \xi) = 1 - F_S(s,\xi).$ 

• If  $S \sim \xi_0$  then  $1 - F_S(S, \xi_0) \sim U(0, 1)$  – fiducial p-value.

Exact frequentist coverage

• Set 
$$P(Q_s(\mathbf{U}^{\star}) \leq C_{\alpha}(s)) = 1 - \alpha$$
.

#### Exact frequentist coverage

• Set  $P(Q_s(\mathbf{U}^{\star}) \leq C_{\alpha}(s)) = 1 - \alpha$ .

Coverage of upper confidence limit:

$$P_{\xi}(\xi \le C_{\alpha}(S)) = P_{\xi}(P(Q_S(\mathbf{U}^{\star}) \le \xi | S) \le 1 - \alpha)$$
$$= P(U(0, 1) \le 1 - \alpha) = 1 - \alpha$$

#### Exact frequentist coverage

• Set  $P(Q_s(\mathbf{U}^{\star}) \leq C_{\alpha}(s)) = 1 - \alpha$ .

Coverage of upper confidence limit:

$$P_{\xi}(\xi \le C_{\alpha}(S)) = P_{\xi}(P(Q_S(\mathbf{U}^{\star}) \le \xi | S) \le 1 - \alpha)$$
$$= P(U(0, 1) \le 1 - \alpha) = 1 - \alpha$$





exact conservative liberal

## Exact frequentist coverage (p > 1)

## ▶ Which set of fiducial probability $1 - \alpha$ will be confidence set?

## Exact frequentist coverage (p > 1)

- ▶ Which set of fiducial probability  $1 \alpha$  will be confidence set?
- Follow pivots and Inferential Models (Liu & Martin, 2015)
- Which set of fiducial probability  $1 \alpha$  will be confidence set?
- ▶ Follow pivots and Inferential Models (Liu & Martin, 2015)
  - Select a  $P(U^* \in U) = \alpha$
  - $\blacktriangleright~ \operatorname{Set} Q_S(\mathcal{U})$  has both fiducial probability and confidence  $1-\alpha$

- Which set of fiducial probability  $1 \alpha$  will be confidence set?
- ▶ Follow pivots and Inferential Models (Liu & Martin, 2015)
  - Select a  $P(U^* \in U) = \alpha$
  - ▶ Set  $Q_S(\mathcal{U})$  has both fiducial probability and confidence  $1 \alpha$
  - $\blacktriangleright \ p=1 \text{ above: } \xi \in (-\infty, C(s)) \longleftrightarrow u \in (\alpha, 1)$

- Which set of fiducial probability  $1 \alpha$  will be confidence set?
- ▶ Follow pivots and Inferential Models (Liu & Martin, 2015)
  - $\blacktriangleright \ \, {\rm Select} \ \, {\rm a} \ \, P({\boldsymbol U}^* \in {\mathcal U}) = \alpha$
  - $\blacktriangleright~ \operatorname{Set} Q_S(\mathcal{U})$  has both fiducial probability and confidence  $1-\alpha$
  - $\blacktriangleright \ p = 1 \text{ above: } \xi \in (-\infty, C(s)) \longleftrightarrow u \in (\alpha, 1)$
- ► Comments:
  - Links sets of  $1 \alpha$  fiducial probability for different X.

- Which set of fiducial probability  $1 \alpha$  will be confidence set?
- ▶ Follow pivots and Inferential Models (Liu & Martin, 2015)
  - $\blacktriangleright \ \, {\rm Select} \ \, {\rm a} \ \, P({\boldsymbol U}^* \in {\mathcal U}) = \alpha$
  - $\blacktriangleright~ \operatorname{Set} Q_S(\mathcal{U})$  has both fiducial probability and confidence  $1-\alpha$
  - $\blacktriangleright \ p = 1 \text{ above: } \xi \in (-\infty, C(s)) \longleftrightarrow u \in (\alpha, 1)$
- ► Comments:
  - Links sets of  $1 \alpha$  fiducial probability for different X.
  - Reverse: Map C(S) of fiducial probability  $1 \alpha$  to  $\mathcal{U}$ . If invariant in  $\mathbf{X}$  then exact coverage.

# • $X \sim N(\mu_x, 1), \ Y \sim N(\mu_y, 1)$ , parameter of interest $\eta = \frac{\mu_x}{\mu_y}$

- $X \sim N(\mu_x, 1), \ Y \sim N(\mu_y, 1)$ , parameter of interest  $\eta = \frac{\mu_x}{\mu_y}$
- ► DGA 1:  $X = \mu_x + U_x$ ,  $Y = \mu_y + U_y$
- Marginal Fiducial RV  $Q_{x,y}(U_x^*, U_y^*) = \frac{x U_x^*}{y U_y^*}$

- ►  $X \sim N(\mu_x, 1), Y \sim N(\mu_y, 1)$ , parameter of interest  $\eta = \frac{\mu_x}{\mu_y}$
- ► DGA 1:  $X = \mu_x + U_x$ ,  $Y = \mu_y + U_y$
- Marginal Fiducial RV  $Q_{x,y}(U_x^*, U_y^*) = \frac{x U_x^*}{y U_y^*}$
- Consider equal tailed regions of fiducial probability 90%:
  - When  $|\mu_y| >> 0$  good frequentist performance, when  $\mu_y \approx 0$  poor performance.

- $X \sim N(\mu_x, 1), Y \sim N(\mu_y, 1)$ , parameter of interest  $\eta = \frac{\mu_x}{\mu_y}$
- ► DGA 1:  $X = \mu_x + U_x$ ,  $Y = \mu_y + U_y$
- Marginal Fiducial RV  $Q_{x,y}(U_x^*, U_y^*) = \frac{x U_x^*}{y U_y^*}$
- Consider equal tailed regions of fiducial probability 90%:
  - When  $|\mu_y| >> 0$  good frequentist performance, when  $\mu_y \approx 0$  poor performance.



- $X \sim N(\mu_x, 1), Y \sim N(\mu_y, 1)$ , parameter of interest  $\eta = \frac{\mu_x}{\mu_y}$
- ► DGA 1:  $X = \mu_x + U_x$ ,  $Y = \mu_y + U_y$
- Marginal Fiducial RV  $Q_{x,y}(U_x^*, U_y^*) = \frac{x U_x^*}{y U_y^*}$
- Consider equal tailed regions of fiducial probability 90%:
  - When  $|\mu_y| >> 0$  good frequentist performance, when  $\mu_y \approx 0$  poor performance.



- $X \sim N(\mu_x, 1), Y \sim N(\mu_y, 1)$ , parameter of interest  $\eta = \frac{\mu_x}{\mu_y}$
- ► DGA 1:  $X = \mu_x + U_x$ ,  $Y = \mu_y + U_y$
- Marginal Fiducial RV  $Q_{x,y}(U_x^*, U_y^*) = \frac{x U_x^*}{y U_y^*}$
- Consider equal tailed regions of fiducial probability 90%:
  - When  $|\mu_y| >> 0$  good frequentist performance, when  $\mu_y \approx 0$  poor performance.



• DGA 2: 
$$X = \eta \mu_y + \frac{-\eta U_1 + U_2}{\sqrt{1 + \eta^2}}, Y = \mu_y + \frac{U_1 + \eta U_2}{\sqrt{1 + \eta^2}}$$

DGA 2: 
$$X = \eta \mu_y + \frac{-\eta U_1 + U_2}{\sqrt{1 + \eta^2}}, Y = \mu_y + \frac{U_1 + \eta U_2}{\sqrt{1 + \eta^2}}$$
Fiducial density  $r_{x,y}(\eta) = \frac{e^{-\frac{(x - \eta y)^2}{2(\eta^2 + 1)}}|y + x\eta|}{\sqrt{2\pi}(\eta^2 + 1)^{3/2}}$ 
Jacobian  $J(x, y, \eta, \mu_y) = \frac{|y + x\eta|}{1 + \eta^2}$ 

Fieller picked the set of fiducial probability 90% corresponding to  $\mathcal{U} = \{|u_1| < 1.96\}$ 

• Jacobian 
$$J(x, y, \eta, \mu_y) = rac{|y+x\eta|}{1+\eta^2}$$

- Fieller picked the set of fiducial probability 90% corresponding to  $\mathcal{U} = \{|u_1| < 1.96\}$ 
  - Pros: Fiducial sets are linked, exact coverage is guaranteed
  - Cons: The shape of the sets is strange (interval, complement of interval, whole real line)

• DGA 2: 
$$X = \eta \mu_y + \frac{-\eta U_1 + U_2}{\sqrt{1 + \eta^2}}, \ Y = \mu_y + \frac{U_1 + \eta U_2}{\sqrt{1 + \eta^2}}$$
  
• Fiducial density  $x = (x) = e^{-\frac{(x - \eta y)^2}{2(\eta^2 + 1)}} |y + x\eta|$ 

Fiducial density  $r_{x,y}(\eta) = \frac{e^{-\sqrt{(\eta+1)}|y+x\eta}}{\sqrt{2\pi}(\eta^2+1)^{3/2}}$ 

• Jacobian 
$$J(x, y, \eta, \mu_y) = rac{|y+x\eta|}{1+\eta^2}$$

- Fieller picked the set of fiducial probability 90% corresponding to  $\mathcal{U} = \{|u_1| < 1.96\}$ 
  - Pros: Fiducial sets are linked, exact coverage is guaranteed
  - Cons: The shape of the sets is strange (interval, complement of interval, whole real line)
- GFD1  $\approx$  GFD2 if |y| >> 0.

Ancillary Representation (n > 1, p = 1)

- 4. Let  $(S(\mathbf{X}), \mathbf{A}(\mathbf{X}))$  be a smooth 1-1 transformation of  $X = G(U, \xi).$ 
  - $\blacktriangleright$   $S(\mathbf{X})$  is one dimensional satisfying 1, 2, 3.
  - A(X) is a vector of functional ancillary statistics  $\left(\frac{\partial}{\partial \epsilon} \mathbf{A} \circ \mathbf{G}(\boldsymbol{U}, \xi) = \mathbf{0}\right).$
- Theorem (Majumder, 2015)
- If (4) is satisfied GFI derived from  $(S, \mathbf{A})$  is exact.

Ancillary Representation (n > 1, p = 1)

- 4. Let  $(S(\mathbf{X}), \mathbf{A}(\mathbf{X}))$  be a smooth 1-1 transformation of  $X = G(U, \xi).$ 
  - $\blacktriangleright$   $S(\mathbf{X})$  is one dimensional satisfying 1, 2, 3.
  - A(X) is a vector of functional ancillary statistics  $\left(\frac{\partial}{\partial \epsilon} \mathbf{A} \circ \mathbf{G}(\boldsymbol{U}, \xi) = \mathbf{0}\right).$

# Theorem (Majumder, 2015)

If (4) is satisfied GFI derived from  $(S, \mathbf{A})$  is exact.

- ▶ Idea: The GFD is the same as FD based on  $S = G_{S|\mathbf{a}}(\mathbf{U}_{\mathbf{a}},\xi)$ 
  - $\blacktriangleright$  **U**<sub>a</sub> ~ **U** | **a** = A(**G**(**U**,  $\xi$ ))
  - $G_{S|\mathbf{a}}$  is the restriction of G to the domain of  $U_{\mathbf{a}}$ .

Ancillary Representation (n > 1, p = 1)

- 4. Let  $(S(\mathbf{X}), \mathbf{A}(\mathbf{X}))$  be a smooth 1-1 transformation of  $X = G(U, \xi).$ 
  - $\blacktriangleright$   $S(\mathbf{X})$  is one dimensional satisfying 1, 2, 3.
  - A(X) is a vector of functional ancillary statistics  $\left(\frac{\partial}{\partial \epsilon} \mathbf{A} \circ \mathbf{G}(\boldsymbol{U}, \xi) = \mathbf{0}\right).$

# Theorem (Majumder, 2015)

If (4) is satisfied GFI derived from  $(S, \mathbf{A})$  is exact.

- ▶ Idea: The GFD is the same as FD based on  $S = G_{S|\mathbf{a}}(\mathbf{U}_{\mathbf{a}},\xi)$ 
  - $\blacktriangleright$  **U**<sub>a</sub> ~ **U** | **a** = A(**G**(**U**,  $\xi$ ))
  - $G_{S|\mathbf{a}}$  is the restriction of G to the domain of  $U_{\mathbf{a}}$ .
- Same argument works for p > 1.



Confidence sets need to be linked across potential data sets

- Confidence sets need to be linked across potential data sets
- Confidence Curves provide both confidence distribution and confidence sets



Figure 4.11 from Schweder & Hjort (2017) x = 1.333, y = 0.333

What is needed about asymptoticly correct coverage?

- What is needed about asymptoticly correct coverage?
  - Convergence of the posteriors to something nice (Bernstein von Mises)

- What is needed about asymptoticly correct coverage?
  - Convergence of the posteriors to something nice (Bernstein von Mises)
  - Linkage of credible sets across all potential data (one sided CI)

# Various Asymptotic Results (Frequentist)

 $r_{\boldsymbol{x}}(\xi) \propto f_{\mathbf{X}}(\mathbf{x}|\xi) J(\mathbf{x},\xi)$  where  $J(\mathbf{x},\xi) = D\left( \left. \nabla_{\xi} \mathbf{G}(\mathbf{u},\xi) \right|_{\mathbf{u}=\mathbf{G}^{-1}(\mathbf{x},\xi)} \right)$ 

- Most start with  $C_n^{-1}J(\mathbf{x},\xi) \to J(\xi_0,\xi)$
- Bernstein-von Mises theorem for fiducial distributions. provides asymptotic correctness of fiducial CIs H (2009, 2013), Sonderegger & H (2013).
- Consistency of model selection H & Lee (2009), Lai, H & Lee (2015), H. Iyer, Lai & Lee (2016).
- Fiducial non-parametrics Cui & H (2019, 2020+, 2021+)

# Outline

- Introduction
- Definition
- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

# Outline

- Introduction
- Definition
- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

$$\blacktriangleright \mathbf{Y} = \mathbf{G}(M, \boldsymbol{\xi}_M, \boldsymbol{U}), \qquad M \in \mathcal{M}, \, \boldsymbol{\xi}_M \in \boldsymbol{\xi}_M$$

Theorem: (H, Iyer, Lai, Lee 2016) Under assumptions

$$r_{oldsymbol{y}}(M) \propto q^{|M|} \int_{oldsymbol{\xi}_M} f_M(oldsymbol{y},oldsymbol{\xi}_M) J_M(oldsymbol{y},oldsymbol{\xi}_M) \, doldsymbol{\xi}_M$$

$$\blacktriangleright \mathbf{Y} = \mathbf{G}(M, \boldsymbol{\xi}_M, \boldsymbol{U}), \qquad M \in \mathcal{M}, \, \boldsymbol{\xi}_M \in \boldsymbol{\xi}_M$$

Theorem: (H, Iyer, Lai, Lee 2016) Under assumptions

$$r_{oldsymbol{y}}(M) \propto q^{|M|} \int_{oldsymbol{\xi}_M} f_M(oldsymbol{y},oldsymbol{\xi}_M) J_M(oldsymbol{y},oldsymbol{\xi}_M) \, doldsymbol{\xi}_M$$

▶ Need for penalty – in fiducial framework additional equations  $0 = P_k$ ,  $k = 1, ..., \min(|M|, n)$ 

 $\blacktriangleright \mathbf{Y} = \mathbf{G}(M, \boldsymbol{\xi}_M, \boldsymbol{U}), \qquad M \in \mathcal{M}, \, \boldsymbol{\xi}_M \in \boldsymbol{\xi}_M$ 

Theorem: (H, Iyer, Lai, Lee 2016) Under assumptions

$$r_{oldsymbol{y}}(M) \propto q^{|M|} \int_{oldsymbol{\xi}_M} f_M(oldsymbol{y},oldsymbol{\xi}_M) J_M(oldsymbol{y},oldsymbol{\xi}_M) \, doldsymbol{\xi}_M$$

▶ Need for penalty – in fiducial framework additional equations  $0 = P_k$ , k = 1, ..., min(|M|, n)

• Default value  $q = n^{-1/2}$  (motivated by MDL)

#### Penalty is used to discourage models with many parameters

- Penalty is used to discourage models with many parameters
- Real issue: Not too many parameters but a smaller model can do almost the same job

- Penalty is used to discourage models with many parameters
- Real issue: Not too many parameters but a smaller model can do almost the same job

$$r_{\boldsymbol{y}}(M) \propto \int_{\Xi_M} f_M(\boldsymbol{y}, \boldsymbol{\xi}_M) J_M(\boldsymbol{y}, \boldsymbol{\xi}_M) h_M(\boldsymbol{\xi}_M) d\boldsymbol{\xi}_M,$$

 $h_M(\boldsymbol{\xi}_M) = \begin{cases} 0 & \text{a smaller model predicts nearly as well} \\ 1 & \text{otherwise} \end{cases}$ 

- Penalty is used to discourage models with many parameters
- Real issue: Not too many parameters but a smaller model can do almost the same job

$$r_{oldsymbol{y}}(M) \propto \int_{\Xi_M} f_M(oldsymbol{y},oldsymbol{\xi}_M) J_M(oldsymbol{y},oldsymbol{\xi}_M) h_M(oldsymbol{\xi}_M) \, doldsymbol{\xi}_M,$$

 $h_M(\boldsymbol{\xi}_M) = \begin{cases} 0 & \text{a smaller model predicts nearly as well} \\ 1 & \text{otherwise} \end{cases}$ 

Motivated by non-local priors of Johnson & Rossell (2009)

#### Regression

- $\blacktriangleright \mathbf{Y} = X\beta + \sigma Z$
- ▶ First idea  $h_M(\beta_M) = I_{\{|\beta_i| > \epsilon, i \in M\}}$  issue: collinearity

#### Regression

- $\blacktriangleright \mathbf{Y} = X\beta + \sigma Z$
- ► First idea  $h_M(\beta_M) = I_{\{|\beta_i| > \epsilon, i \in M\}}$  issue: collinearity

Better:

$$h_M(\beta_M) := I_{\left\{\frac{1}{2} \| X^T(X_M \beta_M - X b_{min}) \|_2^2 \ge \varepsilon_M \right\}}$$

where  $b_{min}$  solves

 $\min_{b \in R^p} \frac{1}{2} \| X^T (X_M \beta_M - Xb) \|_2^2 \quad \text{subject to} \quad \|b\|_0 \le |M| - 1.$ 

algorithm – Bertsimas et al (2016)

### Regression

- $\blacktriangleright \mathbf{Y} = X\beta + \sigma Z$
- ► First idea  $h_M(\beta_M) = I_{\{|\beta_i| > \epsilon, i \in M\}}$  issue: collinearity

Better:

$$h_M(\beta_M) := I_{\left\{\frac{1}{2} \| X^T(X_M \beta_M - X b_{min}) \|_2^2 \ge \varepsilon_M \right\}}$$

where  $b_{min}$  solves

 $\min_{b \in R^p} \frac{1}{2} \| X^T (X_M \beta_M - Xb) \|_2^2 \quad \text{subject to} \quad \|b\|_0 \le |M| - 1.$ 

- algorithm Bertsimas et al (2016)
- similar to Dantzig selector Candes & Tao (2007)
### Regression

- $\blacktriangleright \mathbf{Y} = X\beta + \sigma Z$
- ► First idea  $h_M(\beta_M) = I_{\{|\beta_i| > \epsilon, i \in M\}}$  issue: collinearity

Better:

$$h_M(\beta_M) := I_{\left\{\frac{1}{2} \| X^T(X_M \beta_M - X b_{min}) \|_2^2 \ge \varepsilon_M \right\}}$$

where  $b_{min}$  solves

 $\min_{b \in R^p} \frac{1}{2} \| X^T (X_M \beta_M - Xb) \|_2^2 \quad \text{subject to} \quad \|b\|_0 \le |M| - 1.$ 

- algorithm Bertsimas et al (2016)
- similar to Dantzig selector Candes & Tao (2007)
- Call this: ε-admissible subset

$$r_{\boldsymbol{y}}(M) \propto \pi^{\frac{|M|}{2}} \Gamma\Big(\frac{n-|M|}{2}\Big) RSS_M^{-(\frac{n-|M|-1}{2})} E[h_M^{\varepsilon}(\beta_M^{\star})]$$

Observations:

Expectation with respect to within model GFD (usual T)

$$r_{\boldsymbol{y}}(M) \propto \pi^{\frac{|M|}{2}} \Gamma\Big(\frac{n-|M|}{2}\Big) RSS_M^{-(\frac{n-|M|-1}{2})} E[h_M^{\varepsilon}(\beta_M^{\star})]$$

Observations:

- Expectation with respect to within model GFD (usual T)
- ▶  $r_y(M \text{ negligibly small for large models because of } h,$ e.g., |M| > n implies  $r_y(M) = 0$ .

$$r_{\boldsymbol{y}}(M) \propto \pi^{\frac{|M|}{2}} \Gamma\Big(\frac{n-|M|}{2}\Big) RSS_M^{-(\frac{n-|M|-1}{2})} E[h_M^{\varepsilon}(\beta_M^{\star})]$$

Observations:

- Expectation with respect to within model GFD (usual T)
- ▶  $r_y(M \text{ negligibly small for large models because of } h,$ e.g., |M| > n implies  $r_y(M) = 0$ .
- Implemented using Grouped Independence Metropolis Hastings (Andrieu & Roberts, 2009).

#### Theorem Williams & H (2017+)

Suppose the true model is given by  $M_T$ . Then under certain conditions, for a fixed positive constant  $\alpha < 1$ ,

$$r_{\boldsymbol{y}}(M_T) = \frac{r_{\boldsymbol{y}}(M_T)}{\sum_{j=1}^{n^{\alpha}} \sum_{M:|M|=j} r_{\boldsymbol{y}}(M)} \stackrel{P}{\longrightarrow} 1 \text{ as } n, p \to \infty.$$

# Some Conditions

▶ Number of Predictors:  $\liminf_{p\to\infty} \frac{n^{1-\alpha}}{\log(p)} > 2$ ,

# Some Conditions

▶ Number of Predictors:  $\liminf_{p\to\infty} \frac{n^{1-\alpha}}{\log(p)} > 2$ ,

▶ For the true model/parameter  $p_T < \log n^{\gamma}$ 

$$\varepsilon_{M_T} \le \frac{1}{18} \| X^T (\mu_T - X b_{min}) \|_2^2$$

where  $b_{min}$  minimizes the norm subject to  $||b||_0 \le p_T - 1$ .

# Some Conditions

▶ Number of Predictors:  $\liminf_{p\to\infty} \frac{n^{1-\alpha}}{\log(p)} > 2$ ,

▶ For the true model/parameter  $p_T < \log n^{\gamma}$ 

$$\varepsilon_{M_T} \le \frac{1}{18} \| X^T (\mu_T - X b_{min}) \|_2^2$$

where  $b_{min}$  minimizes the norm subject to  $||b||_0 \le p_T - 1$ .

▶ For a large model  $|M| > p_T$  and large enough n or p,

$$\frac{9}{2} \|X^T (H_M - H_{M(-1)}) \mu_T\|_2^2 < \varepsilon_M,$$

where  $H_M$  and  $H_{M(-1)}$  are the projection matrix for M and M with a covariate removed respectively.

$$\varepsilon = \Lambda_M \widehat{\sigma}_M^2 \left( \frac{n^{0.51}}{9} + |M| \frac{\log(p\pi)^{1.1}}{9} - p_T \right)_+,$$

• 
$$\Lambda_M := \operatorname{tr} \left( (H_M X)' H_M X \right)$$
 with  $H_M := X_M (X'_M X_M)^{-1} X'_M$   
•  $\widehat{\sigma}^2_M := \operatorname{RSS}_M / (n - |M|)$ 

$$\varepsilon = \Lambda_M \widehat{\sigma}_M^2 \left( \frac{n^{0.51}}{9} + |M| \frac{\log(p\pi)^{1.1}}{9} - p_T \right)_+,$$

• 
$$\Lambda_M := \operatorname{tr} \left( (H_M X)' H_M X \right)$$
 with  $H_M := X_M (X'_M X_M)^{-1} X'_M$   
•  $\widehat{\sigma}_M^2 := \operatorname{RSS}_M / (n - |M|)$ 

• Tuning parameter  $p_T$  represents belief about true  $|M_T|$ .

# Simulation setup 1

• Generate 1000 data vectors y from linear model with  $\beta^0_{M_o} = (-1.5, -1, -.8, -.6, .6, .8, 1, 1.5)'$ , and  $\sigma^0_{M_o} = 1$ .

- Generate 1000 data vectors y from linear model with  $\beta^0_{M_o} = (-1.5, -1, -.8, -.6, .6, .8, 1, 1.5)'$ , and  $\sigma^0_{M_o} = 1$ .
- The  $n \times p$  design matrix X is generated with rows from the  $N_p(0, \Sigma)$  distribution, where the diagonal components  $\Sigma_{ii} = 1$  and the off-diagonal components  $\Sigma_{ij} = \rho$  for  $i \neq j$ .

- Generate 1000 data vectors y from linear model with  $\beta^0_{M_o} = (-1.5, -1, -.8, -.6, .6, .8, 1, 1.5)'$ , and  $\sigma^0_{M_o} = 1$ .
- The  $n \times p$  design matrix X is generated with rows from the  $N_p(0, \Sigma)$  distribution, where the diagonal components  $\Sigma_{ii} = 1$  and the off-diagonal components  $\Sigma_{ij} = \rho$  for  $i \neq j$ .
- Implement 10-fold cross-validation scheme for choosing the tuning parameter  $p_o$  (prior to starting the algorithm).

- Generate 1000 data vectors y from linear model with  $\beta^0_{M_o} = (-1.5, -1, -.8, -.6, .6, .8, 1, 1.5)'$ , and  $\sigma^0_{M_o} = 1$ .
- The  $n \times p$  design matrix X is generated with rows from the  $N_p(0, \Sigma)$  distribution, where the diagonal components  $\Sigma_{ii} = 1$  and the off-diagonal components  $\Sigma_{ij} = \rho$  for  $i \neq j$ .
- Implement 10-fold cross-validation scheme for choosing the tuning parameter  $p_o$  (prior to starting the algorithm).
- Set n = 100, and consider p = 100, 200, 300, 400, 500.

High D Regression

# Simulation results 1



### Simulation setup 2

To illustrate the difference from the nonlocal prior approach, for n=30, generate data from the following model.

$$Y \sim N_n \left( 1 \cdot x^{(1)} + 1 \cdot x^{(2)} + \dots + 1 \cdot x^{(9)}, I_n \right),$$

where  $x^{(1)}, x^{(2)}, x^{(3)} \stackrel{\mathrm{iid}}{\sim} \mathsf{N}_n(0, I_n)$  , and

|                              | MAP size | RMSE  | $P(M_{MAP} y)$ |
|------------------------------|----------|-------|----------------|
| arepsilon-admissible subsets | 3.476    | 1.138 | .365           |
| nonlocal prior               | 8.997    | 1.197 | .333           |

- RMSE of an out-of-sample test set of 30 observations
- Averaged over 1000 synthetic data sets

|                                   | MAP size | RMSE  | $P(M_{MAP} y)$ |
|-----------------------------------|----------|-------|----------------|
| $\varepsilon$ -admissible subsets | 3.476    | 1.138 | .365           |
| nonlocal prior                    | 8.997    | 1.197 | .333           |

- RMSE of an out-of-sample test set of 30 observations
- Averaged over 1000 synthetic data sets
- Nonlocal prior procedure typically includes all 9 covariates even though the y can be mostly explained by 3.

# Outline

- Introduction
- Definition
- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

### • DGE $X = G(U, \xi)$ ; do inference on $\xi$

- DGE  $X = G(U, \xi)$ ; do inference on  $\xi$
- Issues:
  - $\blacktriangleright$  *n* is so big that the *X*'s cannot be loaded to one computer

- DGE  $X = G(U, \xi)$ ; do inference on  $\xi$
- Issues:
  - $\blacktriangleright$  *n* is so big that the *X*'s cannot be loaded to one computer
  - the data are at different sites

- DGE  $X = G(U, \xi)$ ; do inference on  $\xi$
- Issues:
  - n is so big that the X's cannot be loaded to one computer
  - the data are at different sites
  - data cannot be released off site for privacy concerns

- DGE  $X = G(U, \xi)$ ; do inference on  $\xi$
- Issues:
  - $\blacktriangleright$  *n* is so big that the *X*'s cannot be loaded to one computer
  - the data are at different sites
  - data cannot be released off site for privacy concerns
- $\blacktriangleright$  partition  $\pmb{x}$  into K subsets, where each subsets can be analyzed

- DGE  $X = G(U, \xi)$ ; do inference on  $\xi$
- Issues:
  - $\blacktriangleright$  *n* is so big that the *X*'s cannot be loaded to one computer
  - the data are at different sites
  - data cannot be released off site for privacy concerns
- $\blacktriangleright$  partition  $\pmb{x}$  into K subsets, where each subsets can be analyzed
  - e.g., use a computer cluster for parallel processing, where K is the number of nodes (or workers)

- DGE  $X = G(U, \xi)$ ; do inference on  $\xi$
- Issues:
  - $\blacktriangleright \ n$  is so big that the  ${oldsymbol X}$ 's cannot be loaded to one computer
  - the data are at different sites
  - data cannot be released off site for privacy concerns
- $\blacktriangleright$  partition  $\pmb{x}$  into K subsets, where each subsets can be analyzed
  - e.g., use a computer cluster for parallel processing, where K is the number of nodes (or workers)
  - merge results from different nodes

$$\blacktriangleright x = x_1 \cup x_2 \cup \ldots \cup x_K$$

- $\blacktriangleright \ \boldsymbol{x} = \boldsymbol{x}_1 \cup \boldsymbol{x}_2 \cup \ldots \cup \boldsymbol{x}_K$
- $\blacktriangleright r_{m{x}}(m{\xi})$  the generalized fiducial density of  $m{x}$
- $\blacktriangleright r_{oldsymbol{x}_k}(oldsymbol{\xi})$  the generalized fiducial density of  $oldsymbol{x}_k$

- $\blacktriangleright \ \boldsymbol{x} = \boldsymbol{x}_1 \cup \boldsymbol{x}_2 \cup \ldots \cup \boldsymbol{x}_K$
- $\blacktriangleright r_{m{x}}(m{\xi})$  the generalized fiducial density of  $m{x}$
- $\blacktriangleright r_{oldsymbol{x}_k}(oldsymbol{\xi})$  the generalized fiducial density of  $oldsymbol{x}_k$
- On each worker sample from  $q_k(\boldsymbol{\xi})$

$$r_{oldsymbol{x}}(oldsymbol{\xi}) \propto \sum_k$$
 'importance weight'  $imes q_k(oldsymbol{\xi})$ 

 generate a fiducial sample for data on each node (MCMC, SMC, ...)

- generate a fiducial sample for data on each node (MCMC, SMC, ...)
- compute the weight  $w_k(\boldsymbol{\xi}) = \frac{r_{\boldsymbol{x}}(\boldsymbol{\xi})}{r_{\boldsymbol{x}_k}(\boldsymbol{\xi})}$

- generate a fiducial sample for data on each node (MCMC, SMC, ...)
- compute the weight  $w_k(\boldsymbol{\xi}) = \frac{r_{\boldsymbol{x}}(\boldsymbol{\xi})}{r_{\boldsymbol{x}_k}(\boldsymbol{\xi})}$
- Not feasible and very inefficient!

- generate a fiducial sample for data on each node (MCMC, SMC, ...)
- compute the weight  $w_k(\boldsymbol{\xi}) = \frac{r_{\boldsymbol{x}}(\boldsymbol{\xi})}{r_{\boldsymbol{x}_k}(\boldsymbol{\xi})}$
- Not feasible and very inefficient!
  - Target of order  $n^{-1/2}$
  - Fiducial sample on each worker of order  $n_k^{-1/2}$ .
  - Most realizations get extremely small weights.

# Improved scheme

• Each worker computes MLE  $\hat{\theta}_k$  and empirical Fisher Information  $\hat{I}_k$  and passes it to other workers
- Each worker computes MLE  $\hat{\theta}_k$  and empirical Fisher Information  $\hat{I}_k$  and passes it to other workers
- ► Each worker simulates a sample from  $q(\mathbf{x}_k) \propto r_{\mathbf{x}_k}(\boldsymbol{\xi}) \times \prod_{j \neq k} g(\boldsymbol{\xi} | \hat{\theta}_j, \hat{I}_j)$

- Each worker computes MLE  $\hat{\theta}_k$  and empirical Fisher Information  $\hat{I}_k$  and passes it to other workers
- Each worker simulates a sample from  $q(\mathbf{x}_k) \propto r_{\mathbf{x}_k}(\boldsymbol{\xi}) \times \prod_{j \neq k} g(\boldsymbol{\xi} | \hat{\theta}_j, \hat{I}_j)$

• Practical choice  $g \sim \text{Normal}(\hat{\theta}_j, \gamma \hat{I}_k^{-1})$ .

- Each worker computes MLE  $\hat{\theta}_k$  and empirical Fisher Information  $\hat{I}_k$  and passes it to other workers
- ► Each worker simulates a sample from  $q(\mathbf{x}_k) \propto r_{\mathbf{x}_k}(\boldsymbol{\xi}) \times \prod_{j \neq k} g(\boldsymbol{\xi} | \hat{\theta}_j, \hat{I}_j)$

• Practical choice  $g \sim \text{Normal}(\hat{\theta}_j, \gamma \hat{I}_k^{-1})$ .

► Weight  $w_k(\boldsymbol{\xi}) \approx \prod_{j \neq k} \frac{f(\mathbf{x}_k, \boldsymbol{\xi})}{g(\boldsymbol{\xi}|\theta_j, I_j)}$ (Computed and thinned in parallel.)

- Each worker computes MLE  $\hat{\theta}_k$  and empirical Fisher Information  $\hat{I}_k$  and passes it to other workers
- ► Each worker simulates a sample from  $q(\mathbf{x}_k) \propto r_{\mathbf{x}_k}(\boldsymbol{\xi}) \times \prod_{j \neq k} g(\boldsymbol{\xi} | \hat{\theta}_j, \hat{I}_j)$

• Practical choice  $g \sim \text{Normal}(\hat{\theta}_j, \gamma \hat{I}_k^{-1})$ .

- ► Weight  $w_k(\boldsymbol{\xi}) \approx \prod_{j \neq k} \frac{f(\mathbf{x}_k, \boldsymbol{\xi})}{g(\boldsymbol{\xi}|\theta_j, I_j)}$ (Computed and thinned in parallel.)
- We have shown consistency and asymptotic normality of the error of our importance sampling scheme.

- All good performance
  - ▶ linear regression with Cauchy errors ( $n = 10^4$ , K = 5, N = -200)
    - $N_{\rm rep} = 200)$

- ► All good performance
  - ▶ linear regression with Cauchy errors ( $n = 10^4$ , K = 5,  $N_{\rm rep} = 200$ )
  - ► nonlinear regression  $Y = (\beta_0 + \beta_1 X)^{-1} + \sigma Z$   $(n = 10^4, K = 5, N_{rep} = 200)$

- All good performance
  - ▶ linear regression with Cauchy errors ( $n = 10^4$ , K = 5,  $N_{\rm rep} = 200$ )
  - ► nonlinear regression  $Y = (\beta_0 + \beta_1 X)^{-1} + \sigma Z$   $(n = 10^4, K = 5, N_{rep} = 200)$
  - Gaussian mixture:  $0.6N(\mu_0, \sigma) + 0.4N(\mu_1, \sigma)$  ( $n = 10^4$ , K = 5,  $N_{rep} = 200$ )

- All good performance
  - ▶ linear regression with Cauchy errors ( $n = 10^4$ , K = 5,  $N_{\rm rep} = 200$ )
  - ► nonlinear regression  $Y = (\beta_0 + \beta_1 X)^{-1} + \sigma Z$   $(n = 10^4, K = 5, N_{rep} = 200)$
  - Gaussian mixture:  $0.6N(\mu_0, \sigma) + 0.4N(\mu_1, \sigma)$   $(n = 10^4, K = 5, N_{rep} = 200)$
  - Generalized pareto, prediction of out of sample quantiles  $(n = 10^6, K = 10, N_{rep} = 100)$

# Computational time



## Computational time



• Speed improves until K = 16 then deteriorates. (Cheng & Shang, 2015)



low activity



high activity





low activity

high activity

▶ The bright flare on the right has value 253. Is this high?

## Solar Dynamics Observatory (SDO), launched on 2010

### Data

- Solar Dynamics Observatory (SDO), launched on 2010
- one instrument is Atmospheric Imaging Assembly (AIA) (Schuh et al. 2013)
  - photographs the sun in 8 wavelengths every 12s
  - ▶ image size: 4096×4096
  - 1.5 TB compressed data per day
  - same as 3 TB raw (i.e., uncompressed) data per day

## Data

- Solar Dynamics Observatory (SDO), launched on 2010
- one instrument is Atmospheric Imaging Assembly (AIA) (Schuh et al. 2013)
  - photographs the sun in 8 wavelengths every 12s
  - ▶ image size: 4096×4096
  - 1.5 TB compressed data per day
  - same as 3 TB raw (i.e., uncompressed) data per day
- ultimate goal: detect and predict solar flares

## Data

- Solar Dynamics Observatory (SDO), launched on 2010
- one instrument is Atmospheric Imaging Assembly (AIA) (Schuh et al. 2013)
  - photographs the sun in 8 wavelengths every 12s
  - ▶ image size: 4096×4096
  - 1.5 TB compressed data per day
  - same as 3 TB raw (i.e., uncompressed) data per day
- ultimate goal: detect and predict solar flares
- ► Tool: GFD for Generalized Pareto (Wandler & H, 2012)

Distributed Data

## GFD for extreme quantiles





Fiducial probability of exceeding 253

# Outline

• Introduction

## • Definition

- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

## Deep Neural Network (DNN)

## Idea: Use deep neural network in fiducial computations

# Deep Neural Network (DNN)

- ▶ Idea: Use deep neural network in fiducial computations
  - Universal approximation theorem: A large enough network with a linear output layer and at least one hidden layer can approximate any Borel measurable function.

# Deep Neural Network (DNN)

- Idea: Use deep neural network in fiducial computations
  - Universal approximation theorem: A large enough network with a linear output layer and at least one hidden layer can approximate any Borel measurable function.
  - Idea: Use Auto-encoder to approximate fiducial inverse







DNN architecture (fully connected, convolution, auto-encoder, adversarial + combination ...)





- DNN architecture (fully connected, convolution, auto-encoder, adversarial + combination ...)
- Number of layers, number of nodes per layers, activation function (RELU, sigmoid, softmax,...)





- DNN architecture (fully connected, convolution, auto-encoder, adversarial + combination ...)
- Number of layers, number of nodes per layers, activation function (RELU, sigmoid, softmax,...)
- Optimization algorithm (stochastic gradient descent, Adaptive Subgradient Methods, ADAM (Kingma & Ba 2014), ...)





- DNN architecture (fully connected, convolution, auto-encoder, adversarial + combination ...)
- Number of layers, number of nodes per layers, activation function (RELU, sigmoid, softmax,...)
- Optimization algorithm (stochastic gradient descent, Adaptive Subgradient Methods, ADAM (Kingma & Ba 2014), ...)
- Host of other sensitivities (data generation, stopping rules, anti-over fitting measures,...)



- Encoder: Fully connected layers,
- Decoder: DGE  $X = G(Z, \xi)$



- Encoder: Fully connected layers,
- Decoder: DGE  $X = G(Z, \xi)$
- Training data: Generated from DGE with different values of  $\boldsymbol{\xi}_t, \boldsymbol{Z}_t$ .



- Encoder: Fully connected layers,
- Decoder: DGE  $X = G(Z, \xi)$
- Training data: Generated from DGE with different values of \$\xi\_t\$, \$\mathbf{Z}\_t\$.
- Loss function:  $L = w_1 \| \boldsymbol{x} \hat{\boldsymbol{x}} \|^2 + w_2 \| \boldsymbol{\xi} \hat{\boldsymbol{\xi}} \|^2$



- Encoder: Fully connected layers,
- Decoder: DGE  $X = G(Z, \xi)$
- Training data: Generated from DGE with different values of \$\xi\_t\$, \$\mathbf{Z}\_t\$.
- ► Loss function:  $L = w_1 \| \boldsymbol{x} \hat{\boldsymbol{x}} \|^2 + w_2 \| \boldsymbol{\xi} \hat{\boldsymbol{\xi}} \|^2$
- Trained encoder used for inference

# Inference

- Model:  $\boldsymbol{X} = \boldsymbol{\mu} + \boldsymbol{\mu}^{q/2} \boldsymbol{Z}$
- Use encoder repeatedly
- ► Inputs: Observed X, multiple independent  $Z^*$
- ► Output: Approximate fiducial sample  $\mu^*$



# Inference

- Model:  $\boldsymbol{X} = \boldsymbol{\mu} + \boldsymbol{\mu}^{q/2} \boldsymbol{Z}$
- Use encoder repeatedly
- ► Inputs: Observed X, multiple independent  $oldsymbol{Z}^*$
- ► Output: Approximate fiducial sample  $\mu^*$
- ► Issues: conservative, biased



## Approximate Fiducial Calculations

- ► Following AE: X<sup>\*</sup> = G(Z<sup>\*</sup>, µ<sup>\*</sup>) needs to replicate X.
- Keep  $\mu^*$  when  $\|X^* X\| \le \epsilon$ .
- Big improvement in coverage and length



## Approximate Fiducial Calculations

- ► Following AE: X<sup>\*</sup> = G(Z<sup>\*</sup>, µ<sup>\*</sup>) needs to replicate X.
- Keep  $\mu^*$  when  $\|X^* X\| \le \epsilon$ .
- Big improvement in coverage and length
- Future work: GAN improve efficiency?



# Biological Oxygen Demand



# Outline

- Introduction
- Definition
- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

## Forensic Science

 In criminal cases, experts encouraged to summarize evidence using LR (e.g., ENFSI guidelines)
#### Forensic Science

 In criminal cases, experts encouraged to summarize evidence using LR (e.g., ENFSI guidelines)

# US FRE Rule 702

A witness who is qualified as an expert by knowledge, skill, experience, training, or education may testify in the form of an opinion or otherwise if:

- the expert's scientific, technical, or other specialized knowledge will help the trier of fact to understand the evidence or to determine a fact in issue;
- 2. the testimony is based on sufficient facts or data;
- 3. the testimony is the product of reliable principles and methods; and
- 4. the expert has reliably applied the principles and methods to the facts of the case.

https://www.law.cornell.edu/rules/fre/rule\_702

#### Forensic Science

 In criminal cases, experts encouraged to summarize evidence using LR (e.g., ENFSI guidelines)

# US FRE Rule 702

A witness who is qualified as an expert by knowledge, skill, experience, training, or education may testify in the form of an opinion or otherwise if:

- the expert's scientific, technical, or other specialized knowledge will help the trier of fact to understand the evidence or to determine a fact in issue;
- 2. the testimony is based on sufficient facts or data;
- 3. the testimony is the product of reliable principles and methods; and
- 4. the expert has reliably applied the principles and methods to the facts of the case.

https://www.law.cornell.edu/rules/fre/rule\_702

Reliable = Can be trusted

#### Examples of data

| Likelihood<br>ratio                                         | Hotelling T <sup>2</sup> lunivariate<br>kernel, equations (6)l(7) | Normal,<br>equations (11)/(12) | MVK kernel,<br>equations (14)1(15) |                                                                      |                                                                   |                                |                          |
|-------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|--------------------------|
| >107                                                        | 0                                                                 | 1                              | 0                                  | Likelihood<br>ratio                                                  | Hotelling T <sup>2</sup> lunivariate<br>kernel, equations (6)1(7) | Normal,<br>equations (11)/(12) | MVK ker<br>equations (14 |
| $10'-10^{6}$<br>$10^{6}-10^{5}$<br>$10^{5}-10^{4}$          | 0<br>0<br>0                                                       | 3<br>8<br>9                    | 0<br>0<br>0                        | <1                                                                   | 0                                                                 | 0                              | 0                        |
| $10^{4}-10^{3}$<br>$10^{3}-10^{2}$<br>$10^{2}$ $10^{1}$     | 22<br>10                                                          | 11<br>17                       | 16<br>19                           | $10^{2}-10^{3}$<br>$10^{2}-10^{3}$<br>$10^{3}-10^{4}$                | 18<br>35                                                          | 8<br>17                        | 13<br>48                 |
| $10^{-10^{-1}}$<br>$10^{1}-1$<br>$1-10^{-1}$                | 5 3                                                               | 8<br>10                        | 13<br>5<br>10                      | $10^{4}-10^{5}$<br>$10^{5}-10^{6}$<br>$10^{6}-10^{7}$                | 8<br>0                                                            | 16<br>11                       | 1                        |
| $10^{-1}-10^{-2}$<br>$10^{-2}-10^{-3}$<br>$10^{-3}-10^{-4}$ | 5<br>3<br>6                                                       | 7<br>3<br>6                    | 9<br>8<br>6                        | $10^{-10}$<br>$10^{7}$ -10 <sup>8</sup><br>$10^{8}$ -10 <sup>9</sup> | 0                                                                 | 0<br>1                         | 0                        |
| $^{10^{-4}-10^{-5}}_{<10^{-5}}$                             | 4<br>1821                                                         | 6<br>1797                      | 3<br>1802                          | $>10^{9}-10^{10}$<br>$>10^{10}$                                      | 0<br>0                                                            | 1 3                            | 0                        |
| Total                                                       | 1891                                                              | 1891                           | 1891                               | Total                                                                | 62                                                                | 62                             | 62                       |

Figure: Glass evidence from Aitken & Lucy (2004)

not mated

mated

#### Examples of data

| Likelihood<br>ratio                                                  | Hotelling T <sup>2</sup> lunivariate<br>kernel, equations (6)!(7) | Normal,<br>equations (11)1(12) | MVK kernel,<br>equations (14)1(15) |
|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|------------------------------------|
| >10 <sup>7</sup><br>10 <sup>7</sup> -10 <sup>6</sup>                 | 0<br>0                                                            | 1 3                            | 0<br>0                             |
| 10 <sup>6</sup> -10 <sup>5</sup><br>10 <sup>5</sup> -10 <sup>4</sup> | 0                                                                 | 8                              | 0                                  |
| $10^{4}-10^{3}$                                                      | 22                                                                | 11                             | 16                                 |
| $10^{3}-10^{2}$<br>$10^{2}-10^{1}$                                   | 10                                                                | 17                             | 19                                 |
| 10 <sup>1</sup> -1                                                   | 5                                                                 | 8                              | 5                                  |
| $10^{-1} - 10^{-2}$                                                  | 5                                                                 | 7                              | 9                                  |
| $10^{-2}-10^{-3}$<br>$10^{-3}-10^{-4}$                               | 3                                                                 | 3                              | 8                                  |
| 10-4-10-5                                                            | 4                                                                 | 6                              | 3                                  |
| <10-5                                                                | 1821                                                              | 1/9/                           | 1802                               |
| Total                                                                | 1891                                                              | 1891                           | 1891                               |

Figure: Glass evidence from Aitken & Lucy (2004)

#### not mated

mated

- Our mathematical abstraction:
  - Two streams of data (mated/non mated). Algorithms produce LR-like measure.

▶ When is 1,000,000:1 more like 100:1? Does it matter?

- ▶ When is 1,000,000 : 1 more like 100 : 1? Does it matter?
- ▶ The LR value may have an effect on verdict
  - Barrie et al (2018) report LR values across different labs of 172 to 3.2 × 10<sup>14</sup> starting from the same EPG!



*H<sub>P</sub>*: Defendant a contributor to the sample
 *H<sub>D</sub>*: Defendant not a contributor to the sample

- *H<sub>P</sub>*: Defendant a contributor to the sample
  *H<sub>D</sub>*: Defendant not a contributor to the sample
- ▶ Reported LR density: g(l) under  $H_P$ , f(l) under  $H_D$ .

- *H<sub>P</sub>*: Defendant a contributor to the sample
  *H<sub>D</sub>*: Defendant not a contributor to the sample
- ▶ Reported LR density: g(l) under  $H_P$ , f(l) under  $H_D$ .
- Key observation: well-calibrated if and only if

$$g(l) = lf(l) \tag{2}$$



- *H<sub>P</sub>* : Defendant a contributor to the sample
  *H<sub>D</sub>* : Defendant not a contributor to the sample
- ▶ Reported LR density: g(l) under  $H_P$ , f(l) under  $H_D$ .
- Key observation: well-calibrated if and only if

$$g(l) = lf(l) \tag{2}$$

► Integrating (2)

$$G(b) - G(a) = bF(b) - aF(a) - \int_{a}^{b} F(l)dl, \quad 0 < a < b < \infty.$$

#### **Calibration Statistic**



#### Calibration Statistic

Select grid a<sub>i</sub> covering "mated data" (usually powers of 10)
 Define

$$d(G,F) = \left(\log_{10}\left(\frac{G(a_i) - G(a_{i-1})}{a_i F(a_i) - a_{i-1} F(a_{i-1}) - \int_{a_{i-1}}^{a_i} F(l) dl}\right), \quad i = 2, \dots k\right)^\top$$

#### Calibration Statistic

Select grid a<sub>i</sub> covering "mated data" (usually powers of 10)
 Define

$$d(G,F) = \left(\log_{10}\left(\frac{G(a_i) - G(a_{i-1})}{a_i F(a_i) - a_{i-1} F(a_{i-1}) - \int_{a_{i-1}}^{a_i} F(l) dl}\right), \quad i = 2, \dots k\right)^\top$$

Estimation and uncertainty quantification via GFD

• Data generating equation  $L_i = F^{-1}(U_i)$ 

- Data generating equation  $L_i = F^{-1}(U_i)$
- inverts to  $\{F^* : F^*(l_i \epsilon) < U_i^* \le F^*(l_i)\}$

• Data generating equation  $L_i = F^{-1}(U_i)$ 

inverts to 
$$\{F^*: F^*(l_i - \epsilon) < U_i^\star \leq F^*(l_i)\}$$



• Data generating equation  $L_i = F^{-1}(U_i)$ 

inverts to 
$$\{F^*: F^*(l_i - \epsilon) < U_i^\star \leq F^*(l_i)\}$$



 $F^*$  is any cdf between bounds

• Data generating equation  $L_i = F^{-1}(U_i)$ 

inverts to 
$$\{F^*: F^*(l_i - \epsilon) < U_i^\star \leq F^*(l_i)\}$$



 $F^*$  is any cdf between bounds

• Data generating equation  $L_i = F^{-1}(U_i)$ 

inverts to 
$$\{F^*: F^*(l_i - \epsilon) < U_i^{\star} \leq F^*(l_i)\}$$



 $F^*$  is any cdf between bounds

h

• Data generating equation  $L_i = F^{-1}(U_i)$ 

inverts to 
$$\{F^*: F^*(l_i - \epsilon) < U_i^\star \leq F^*(l_i)\}$$



 $F^\ast$  is any cdf between bounds

- ▶ Facts (Cui & H, 2019)
  - $\blacktriangleright \ EF^{\star}_{lower}(l) < \hat{F}(l) < EF^{\star}_{upper}(l)$
  - Bernstein-von Mises theorem, good small sample properties

#### Calibration Confidence Intervals

Recall

$$d(G,F) = \left(\log_{10}\left(\frac{G(a_i) - G(a_{i-1})}{a_i F(a_i) - a_{i-1} F(a_{i-1}) - \int_{a_{i-1}}^{a_i} F(l) dl}\right), \quad i = 2, \dots k\right)^{\top}$$

Theorem (H, Iyer, 2020+)

Assume obs LRs independent;  $0 < F(a_1) < \cdots < F(a_k) < 1$ ,  $0 < G(a_1) < \cdots < G(a_k) < 1$ ,  $n = \min(n_g, n_f)$ ,  $n/n_f \rightarrow p_f$ ,  $n/n_g \rightarrow p_g$ . Then

$$\sqrt{n}(d(\hat{G},\hat{F}) - d(G,F)) \xrightarrow{\mathcal{D}} N(0,\Sigma_{g,f}),$$

and conditionally on the observed LRs

$$\sqrt{n}(d(G^{\star}, F^{\star}) - d(\hat{G}, \hat{F})) \xrightarrow{\mathcal{D}} N(0, \Sigma_{g,f}) \quad a.s.$$

#### Calibration -- glass LR

Fiducial Calibration Discrepancy Plot: Glass Example



Glass (classical)

target median fiducial CI fid cband

#### Calibration -- glass LR



**GFF Calibration Plot** 

Glass (Williams, H., Omen)

target median fiducial CI fid cband

# Extrapolation via Generalized Pareto Distribution (GPD)

#### DNA: Little overlap between mated and non-mated LR



## Extrapolation via Generalized Pareto Distribution (GPD)

- DNA: Little overlap between mated and non-mated LR
- Data above large threshold follow GPD
  - GPD interpolates bounded, exponential and Pareto tails

$$f(x)=\frac{1}{\sigma}\left(1+\frac{kx}{\sigma}\right)^{-1-1/k}\,,\quad x>0\quad\text{and if }k<0\text{ then also }x<-\frac{\sigma}{k}$$

## Extrapolation via Generalized Pareto Distribution (GPD)

- DNA: Little overlap between mated and non-mated LR
- Data above large threshold follow GPD
  - GPD interpolates bounded, exponential and Pareto tails

$$f(x)=\frac{1}{\sigma}\left(1+\frac{kx}{\sigma}\right)^{-1-1/k}\,,\quad x>0\quad\text{and if }k<0\text{ then also }x<-\frac{\sigma}{k}$$

Above threshold use GFD for GPD (Wandler & H, 2012)

# DNA calibration





# Outline

- Introduction
- Definition
- Theoretical Results
- Applications
  - High D Regression
  - Distributed Data
  - Fiducial Autoencoder
  - Likelihood ratio in Forensic Science
- Conclusions

#### BFF

Many great minds contributed to foundations of statistics in the past – Fisher, Neyman, de Finetti, Lindley, Savage, LeCam, Cox, Efron, Berger, Fraser, Reid, Dempster, Dawid, ...

#### BFF

- Many great minds contributed to foundations of statistics in the past – Fisher, Neyman, de Finetti, Lindley, Savage, LeCam, Cox, Efron, Berger, Fraser, Reid, Dempster, Dawid, ...
  - Area was not known for harmonious relationships and respectful discourse

the "protracted battle" among leading statistics founding fathers "has left statistics without a philosophy that matches contemporary attitudes." (Kass, 2011)

#### BFF

- Many great minds contributed to foundations of statistics in the past – Fisher, Neyman, de Finetti, Lindley, Savage, LeCam, Cox, Efron, Berger, Fraser, Reid, Dempster, Dawid, ...
  - Area was not known for harmonious relationships and respectful discourse

the "protracted battle" among leading statistics founding fathers "has left statistics without a philosophy that matches contemporary attitudes." (Kass, 2011)

Can Bayesian, Fiducial and Frequentist

become Best Friends Forever?



- Can BFF collaboration solve bring unique breakthroughs?
  - Understanding of Deep Learning?

- Can BFF collaboration solve bring unique breakthroughs?
  - Understanding of Deep Learning?
- Computational convenience and efficiency
  - Presence in Probabilistic Programing Languages
  - Scalability

- Can BFF collaboration solve bring unique breakthroughs?
  - Understanding of Deep Learning?
- Computational convenience and efficiency
  - Presence in Probabilistic Programing Languages
  - Scalability
- New kind of theoretical guarantees
  - How safely and efficiently marginalize Bayes/fiducial/confidence distributions in complex models?
  - Going beyond probability theory?

- Can BFF collaboration solve bring unique breakthroughs?
  - Understanding of Deep Learning?
- Computational convenience and efficiency
  - Presence in Probabilistic Programing Languages
  - Scalability
- New kind of theoretical guarantees
  - How safely and efficiently marginalize Bayes/fiducial/confidence distributions in complex models?
  - Going beyond probability theory?
- Applications
  - The proof is in the pudding!
## I have a dream ...

## One famous statistician said (I paraphrase) "I use Bayes because there is no need to prove asymptotic theorem; it is correct."

- One famous statistician said (I paraphrase)
  "I use Bayes because there is no need to prove asymptotic theorem; it is correct."
- I have a dream that people will one day soon gain similar trust in fiducial inspired approaches.

- One famous statistician said (I paraphrase)
  "I use Bayes because there is no need to prove asymptotic theorem; it is correct."
- I have a dream that people will one day soon gain similar trust in fiducial inspired approaches.

Thank you!