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introduction

Fiducial?

▶ Oxford English Dictionary
▶ adjective technical (of a point or line) used as a fixed basis of

comparison.
▶ Origin from Latin fiducia ‘trust, confidence’

▶ Merriam-Webster dictionary
1. taken as standard of reference a fiducial mark
2. founded on faith or trust
3. having the nature of a trust : fiduciary
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introduction

Aims

▶ Explain the definition of generalized fiducial distribution

▶ Discuss theoretical results
▶ Show successful applications

▶ My point of view is frequentist
▶ Justified using asymptotic theorems and simulations.
▶ GFI shows very good repeated sampling performance in

applications.
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introduction History

Long, long, long time ago…

▶ Probabilistic uncertainty via Bayes Theorem:

P (ξ|X) =
f(X|ξ)π(ξ)∫

Ξ f(X|ξ)π(ξ)dξ
.

▶ Bayes-Laplace postulate:
When nothing is known about the parameter in advance,
let the prior be so that all values of the parameter are
equally likely.
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introduction History

Long, long, time ago…

“Not knowing the chance ofmutually exclusive events and
knowing the chance to be equal are two quite different
states of knowledge” R. A. Fisher

It was a wild ride after that!

5



introduction History

Long, long, time ago…

“Not knowing the chance ofmutually exclusive events and
knowing the chance to be equal are two quite different
states of knowledge” R. A. Fisher

It was a wild ride after that!

5



introduction History

Brief history of fiducial inference

▶ Fisher (1922, 1930, 1935) no formal definition
▶ Lindley (1958) fiducial vs Bayes
▶ Fraser (1966) structural inference
▶ Dempster (1967) upper and lower probabilities
▶ Dawid and Stone (1982) theoretical results for simple cases.
▶ Barnard (1995) pivotal based methods.
▶ Weerahandi (1989, 1993), Krishnamoorthy generalized

inference.
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introduction History

Fiducial Inspired Work in the New Millennium

▶ Dempster-Shafer calculus; Dempster (2008), Edlefsen, Liu &
Dempster (2009)

▶ Inferential Models; Liu & Martin (2015)
▶ Confidence Distributions; Xie, Singh & Strawderman (2011),

Schweder & Hjort (2016)
▶ Higher order likelihood, tangent exponential family, r⋆,

Reid & Fraser (2010)
▶ Objective Bayesian inference, e.g., reference prior Berger,

Bernardo & Sun (2009, 2012).
▶ Fiducial Inference H, Iyer & Patterson (2006), H (2009,

2013), H & Lee (2009), Taraldsen & Lindqvist (2013),
Veronese & Melilli (2015), H, Iyer, Lai & Lee (2016)…
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introduction Bird’s Eye View

Bird's Eye View of Statistical Inferencel

▶ Common: quantify uncertainty using adequate data
generating mechanism

▶ Difference: math details, interpretation, replication
▶ My subjective opinion: If the underlying optimization problem

is the same, the methods are the same.

8



introduction Bird’s Eye View

Bird's Eye View of Statistical Inferencel

▶ Common: quantify uncertainty using adequate data
generating mechanism

▶ Difference: math details, interpretation, replication
▶ My subjective opinion: If the underlying optimization problem

is the same, the methods are the same.

8



introduction Bird’s Eye View

Bird's Eye View of Statistical Inferencel

▶ Common: quantify uncertainty using adequate data
generating mechanism

▶ Difference: math details, interpretation, replication

▶ My subjective opinion: If the underlying optimization problem
is the same, the methods are the same.

8



introduction Bird’s Eye View

Bird's Eye View of Statistical Inferencel

▶ Common: quantify uncertainty using adequate data
generating mechanism

▶ Difference: math details, interpretation, replication
▶ My subjective opinion: If the underlying optimization problem

is the same, the methods are the same.

8



introduction Bird’s Eye View

Frequentist

▶ Modeling: collection of distributions P = {Pξ}ξ∈Ξ.
▶ Replication: parameter ξ0 fixed, data x replicated

ξ0

x0x∗ x∗ x∗ x∗x∗x∗

▶ Issues:
▶ Quality judged by averaging over unobserved data x∗

(SLLN + Cournot’s principle)
▶ Each problem requires its own solution
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introduction Bird’s Eye View

Bayesian

▶ Modeling: One joint distribution f(x|ξ) · π(ξ).
▶ Replication: data x0 fixed, parameter ξ replicated

ξ0ξ∗ ξ∗ ξ∗ ξ∗ξ∗ξ∗

x0

▶ Issues:
▶ Averaging over unused parameters ξ∗ needs prior
▶ Unique solution using Bayes theorem (conditional probability)
▶ Axiomatic system for all of inference, subjective

interpretation (de Finetti, Savage).
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introduction Bird’s Eye View

Fiducial

▶ Modeling: Data generating algorithm: x = G(u, ξ)

▶ Replication: data x & parameter ξ linked through DGA,
auxiliary variable u replicated

▶ Issues
▶ Fix either x0 or ξ0. Under symmetry “fiducial←→ frequentist”.
▶ Break in symmetry: some u∗ incompatible with observed x0.

Still useful, frequentist properties need to be established.
▶ Does not satisfy likelihood principle.

Philosophical interpretation subject to argument
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definition

Comparison to likelihood

▶ Density is the function f(x, ξ), where ξ is fixed and x is
variable.

▶ Likelihood is the function f(x, ξ), where ξ is variable and x is
fixed.
▶ Likelihood as a distribution?

12



definition

Comparison to likelihood

▶ Density is the function f(x, ξ), where ξ is fixed and x is
variable.

▶ Likelihood is the function f(x, ξ), where ξ is variable and x is
fixed.

▶ Likelihood as a distribution?

12



definition

Comparison to likelihood

▶ Density is the function f(x, ξ), where ξ is fixed and x is
variable.

▶ Likelihood is the function f(x, ξ), where ξ is variable and x is
fixed.
▶ Likelihood as a distribution?

12



definition

Data generating algorithm

▶ Data generating algorithm (DGA)

X = G(U, ξ),

▶ U is a random with known distribution (iid U(0, 1))
▶ Parameter ξ is fixed.

▶ GenerateXs by generatingUs and DGA.
▶ This determines sampling distribution
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definition

Data generating algorithm

▶ Data generating equation (DGA)

x = G(U⋆, ξ⋆),

▶ U is a random with known distribution (iid U(0, 1))
▶ Data x is fixed

▶ Generate ξ∗ by generatingU⋆s and inverting DGA.
▶ This determines fiducial distribution
▶ Denote the inverseQx(U∗).
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definition Main Idea

Example -- Bernoulli trials

▶ Data generating algorithm

Xi = 1{Ui ≤ p}, Ui ∼ Uniform(0,1)

Generating Ui samples Bernoulli(p).
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definition Main Idea

Example -- Binomial

▶ Data generating algorithm

X1 = 1{U1 ≤ p}, X2 = 1{U2 ≤ p} U1, U2 i.i.d. Uniform(0,1)
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Example -- Binomial

▶ Data generating algorithm

X1 = 1{U1 ≤ p}, X2 = 1{U2 ≤ p} U1, U2 i.i.d. Uniform(0,1)

▶ IfX1 = 0, X2 = 1 and U⋆
1 < U⋆

2

p⋆ : [ ]] [

0 1U∗
1 U∗

2

x1 = 0 x2 = 1

▶ No solution! Remove (U⋆
1 , U

⋆
2 ) inconsistent with data.
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x1 = 0 x2 = 1

▶ (U⋆
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definition Main Idea

Example -- Binomial

▶ (X1, . . . Xn)
iid∼ Bernoulli(p), S =

∑n
i=1Xi ∼ Binomial(n, p)

▶ ConditionU∗ on having a solution for p

p⋆ : [ ][ [ [ ] ]

0 1U∗
1:n U∗

2:n · · · U∗
s:n

U∗
(s+1):n · · · Un:n

Qx(U
∗) ̸= ∅

▶ Select a point in the interval.
▶ A particular choice results in Beta(s+ 1/2, n− s+ 1/2)
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definition Main Idea

Example -- Location Cauchy

▶ ConsiderXi = µ+ Ui where Ui are i.i.d. standard Cauchy.

▶ Solve:

Qx(u) =

{
x1 − u1 if x2 − x1 = u2 − u⋆1, . . . , xn − x1 = un − u1

∅ otherwise

▶ Estimate u by

U⋆ truncated to {x2−x1 = U⋆
2 −U⋆

1 , . . . , xn−x1 = U⋆
n−U⋆

1 }

▶ Fiducial density rx(µ) ∝
∏n

i=1(1 + (µ− xi)
2)−1.

▶ Location problem – same as posterior computed using
Jeffreys prior

17
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definition Formal Defintion

General Definition

▶ Data generating equationX = G(U , ξ).
▶ e.g. Xi = µ+ σUi

▶ Generalized Fiducial Distribution defined as distribution of

ξ(x,U⋆) = arg min
ξ

∥x−G(U⋆, ξ)∥ (1)

whereU⋆ is truncated to

{U⋆ : ∥x−G(U⋆, ξ(x,U⋆))∥ ≤ ε}

Take a limit as ε ↓ 0.
▶ Similar to ABC; generating from prior replaced bymin.
▶ Computations?

18
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definition Formal Defintion

Explicit limit (1)

▶ AssumeX ∈ Rn is continuous; parameter ξ ∈ Rp

▶ The limit in (1) has density (H, Iyer, Lai & Lee, 2016)

rx(ξ) =
fX(x|ξ)J(x, ξ)∫

Ξ fX(x|ξ′)J(x, ξ′) dξ′
,

where J(x, ξ) = D
(
∇ξG(u, ξ)|u=G−1(x,ξ)

)
▶ n = p givesD(A) = | detA|

▶ ∥· ∥2 givesD(A) = (detA⊤A)1/2

▶ ∥· ∥∞ givesD(A) =
∑

i=(i1,...,ip)

|det(A)i|

▶ ∥· ∥1 givesD(A) =
∑

i=(i1,...,ip)

wi |det(A)i|
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definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Xi i.i.d. U(θ, θ2), θ > 1

▶ Data generating algorithmXi = θ + (θ2 − θ)Ui, Ui ∼ U(0, 1).

▶ d
dθ [θ + (θ2 − θ)Ui] = 1 + (2θ − 1)Ui, with Ui =

Xi−θ
θ2−θ

.
▶ Jacobian

J(x, θ) = D


1 + (2θ−1)(x1−θ)

θ2−θ
...

1 + (2θ−1)(xn−θ)
θ2−θ

 =
1

θ2 − θ
D

x1(2θ − 1)− θ2

...
xn(2θ − 1)− θ2


▶ = n x̄(2θ−1)−θ2

θ2−θ for L∞.
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definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Reference prior (Berger, Bernardo & Sun, 2009)

π(θ) = e
ψ( 2θ

2θ−1)(2θ−1)
θ2−θ

.

▶ reference prior vs fiducial Jacobian

▶ In simulations fiducial was marginally better than reference
prior which was much better than flat prior.
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definition Formal Defintion

Example -- Linear Regression

▶ Data generating algorithm Y = Xβ + σZ

▶ d
dθY = (X,Z) and Z = (Y −Xβ)/σ.

▶ Jacobian J(y, β, σ) = D
(
X, y−Xβ

σ

)
= σ−1D(X,y)

▶ = σ−1|det(XTX)|1/2(RSS)1/2 for L2.

▶ Same as independence Jeffreys, explicit normalizing
constant

22
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definition Formal Defintion

Example -- Generalized Pareto

▶ Xi = G(Ui, γ, σ) = σ
U−γ
i −1
γ

▶ Models excedances over a large threshold.

▶ Likelihood f(x, γ, σ) =
∏n

i=1
1

σ(1+ γxi
σ )

1+1/γ .

▶ Jacobian evaluated at ui =
(
1 + γxi

σ

)−1/γ

▶ d
dσG(ui, γ, σ) =

xi

σ .

▶ d
dγG(ui, γ, σ) = −xi

γ +
σ(1+ γxi

σ ) log(1+ γxi
σ )

γ2 .

▶ J(x, γ, σ) = γ−2D

x1

(
1 + γx1

σ

)
log

(
1 + γx1

σ

)
...

...
xn

(
1 + γxn

σ

)
log

(
1 + γxn

σ

)


▶ =
∑

i<j

∣∣∣∣∣∣∣
xj

(
1+

γxi
σ

)
log

(
1+

γxi
σ

)
−xi

(
1+

γxj
σ

)
log

(
1+

γxj
σ

)
γ2

∣∣∣∣∣∣∣ forL∞ .
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definition Formal Defintion

Exercise

Derive a GFD for:

▶ Weibull distribution

▶ Negative Binomial Distribution (compare to Binomial)
▶ T distribution (might not have a pretty form)
▶ Your favorite model

Open problem:

▶ Derive Jacobian formula on manifolds

24
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theoretical results Basic Observations

Important Observations (Bayesian)

▶ GFD is always proper

▶ GFD is invariant to re-parametrizations (same as Jeffreys)

▶ GFD is not invariant to smooth transformation of the data if
n > p

▶ Consequently:
▶ GFD does not satisfy likelihood principle.
▶ Adding a multiple of a column to another column does not

alterD(A). Row operations not allowed!
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theoretical results Basic Observations

Classical Result (n=1, p=1; Frequentist)

Data generating algorithm S = GS(U, ξ) (1-dimensional
statistic)

1. GS(u, ξ) is non-decreasing in ξ for all u

2. For all u and s the inverseQs(u) = {ξ : s = GS(u, ξ)} ̸= ∅.
3. For all ξ the cdf FS(s, ξ) is continuous.

Then one has “unique” fiducial distribution and exact coverage of
one-sided confidence intervals, i.e.,

P (Qs(U
⋆) ≤ ξ) = 1− FS(s, ξ).

▶ If S ∼ ξ0 then 1− FS(S, ξ0) ∼ U(0, 1) – fiducial p-value.
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theoretical results Basic Observations

Exact frequentist coverage

▶ Set P (Qs(U
⋆) ≤ Cα(s)) = 1− α.

▶ Coverage of upper confidence limit:

Pξ(ξ ≤ Cα(S)) = Pξ(P (QS(U
⋆) ≤ ξ|S) ≤ 1− α)

= P (U(0, 1) ≤ 1− α)= 1− α

▶ This is general: simulatem fiducial p-values

exact
conservative
liberal

27
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theoretical results Basic Observations

Exact frequentist coverage (p > 1)

▶ Which set of fiducial probability 1− αwill be confidence set?

▶ Follow pivots and Inferential Models (Liu & Martin, 2015)
▶ Select a P (U∗ ∈ U) = α
▶ SetQS(U) has both fiducial probability and confidence 1− α
▶ p = 1 above: ξ ∈ (−∞, C(s))←→ u ∈ (α, 1)

▶ Comments:
▶ Links sets of 1− α fiducial probability for differentX .
▶ Reverse: Map C(S) of fiducial probability 1− α to U .

If invariant inX then exact coverage.
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theoretical results Basic Observations

Example -- Bliss-Fieller-Creasy's Problem

▶ X ∼ N(µx, 1), Y ∼ N(µy, 1), parameter of interest η = µx
µy

▶ DGA 1: X = µx + Ux, Y = µy + Uy

▶ Marginal Fiducial RVQx,y(U
∗
x , U

∗
y ) =

x−U∗
x

y−U∗
y

▶ Consider equal tailed regions of fiducial probability 90%:
▶ When |µy| >> 0 good frequentist performance, when µy ≈ 0

poor performance.
▶ Visualize U = {(ux, uy) : c1 ≤ x−u∗

x

y−u∗
y
≤ c2}

29
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theoretical results Basic Observations

Example -- Better Solution

▶ DGA 2: X = ηµy +
−ηU1+U2√

1+η2
, Y = µy +

U1+ηU2√
1+η2

▶ Fiducial density rx,y(η) =
e
− (x−ηy)2

2(η2+1) |y+xη|√
2π(η2+1)3/2

▶ Jacobian J(x, y, η, µy) =
|y+xη|
1+η2

▶ Fieller picked the set of fiducial probability 90%
corresponding to U = {|u1| < 1.96}
▶ Pros: Fiducial sets are linked, exact coverage is guaranteed
▶ Cons: The shape of the sets is strange (interval, complement

of interval, whole real line)

▶ GFD1≈ GFD2 if |y| >> 0.
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theoretical results Basic Observations

Ancillary Representation (n > 1, p = 1)

4. Let (S(X),A(X)) be a smooth 1-1 transformation of
X = G(U , ξ).
▶ S(X) is one dimensional satisfying 1, 2, 3.
▶ A(X) is a vector of functional ancillary statistics

( ∂
∂ξA ◦G(U , ξ) = 0).

Theorem (Majumder, 2015)

If (4) is satisfied GFI derived from (S,A) is exact.

▶ Idea: The GFD is the same as FD based on S = GS|a(Ua, ξ)
▶ Ua ∼ U | a = A(G(U, ξ))
▶ GS|a is the restriction ofG to the domain of Ua.

▶ Same argument works for p > 1.
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theoretical results Basic Observations

Take home

▶ Confidence sets need to be linked across potential data sets

▶ Confidence Curves provide both confidence distribution and
confidence sets

Figure 4.11 from Schweder & Hjort (2017) x = 1.333, y = 0.333
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theoretical results Asymptotic results

Another look

▶ What is needed about asymptoticly correct coverage?

▶ Convergence of the posteriors to something nice (Bernstein -
von Mises)

▶ Linkage of credible sets across all potential data (one sided
CI)
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theoretical results Asymptotic results

Various Asymptotic Results (Frequentist)

rx(ξ) ∝ fX(x|ξ)J(x, ξ)where J(x, ξ) = D
(
∇ξG(u, ξ)

∣∣
u=G−1(x,ξ)

)
▶ Most start with C−1

n J(x, ξ)→ J(ξ0, ξ)

▶ Bernstein-von Mises theorem for fiducial distributions
provides asymptotic correctness of fiducial CIs H (2009,
2013), Sonderegger & H (2013) .

▶ Consistency of model selection H & Lee (2009), Lai, H & Lee
(2015), H, Iyer, Lai & Lee (2016).

▶ Fiducial non-parametrics Cui & H (2019, 2020+, 2021+)
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applications High D Regression

Model Selection

▶ Y = G(M, ξM ,U), M ∈M, ξM ∈ ξM

Theorem: (H, Iyer, Lai, Lee 2016) Under assumptions

ry(M) ∝ q|M |
∫
ξM

fM (y, ξM )JM (y, ξM ) dξM

▶ Need for penalty – in fiducial framework additional equations
0 = Pk, k = 1, . . . ,min(|M |, n)
▶ Default value q = n−1/2 (motivated by MDL)
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applications High D Regression

Alternative to penalty

▶ Penalty is used to discourage models with many parameters

▶ Real issue: Not too many parameters but a smaller model
can do almost the same job

ry(M) ∝
∫
ΞM

fM (y, ξM )JM (y, ξM )hM (ξM ) dξM ,

hM (ξM ) =

{
0 a smaller model predicts nearly as well

1 otherwise

▶ Motivated by non-local priors of Johnson & Rossell (2009)
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applications High D Regression

Regression

▶ Y = Xβ + σZ

▶ First idea hM (βM ) = I{|βi|>ϵ, i∈M} – issue: collinearity

▶ Better:

hM (βM ) := I{ 1
2
∥XT (XMβM−Xbmin)∥22≥εM}

where bmin solves

min
b∈Rp

1

2
∥XT (XMβM −Xb)∥22 subject to ∥b∥0 ≤ |M | − 1.

▶ algorithm – Bertsimas et al (2016)
▶ similar to Dantzig selector Candes & Tao (2007)
▶ Call this: ε-admissible subset
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applications High D Regression

GFD

ry(M) ∝ π
|M|
2 Γ

(n− |M |
2

)
RSS

−(
n−|M|−1

2
)

M E[hεM (β⋆
M )]

Observations:

▶ Expectation with respect to within model GFD (usual T)

▶ ry(M negligibly small for large models because of h,
e.g., |M | > n implies ry(M) = 0.

▶ Implemented using Grouped Independence Metropolis
Hastings (Andrieu & Roberts, 2009).
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applications High D Regression

Main Result

TheoremWilliams & H (2017+)
Suppose the true model is given byMT . Then under certain
conditions, for a fixed positive constant α < 1,

ry(MT ) =
ry(MT )∑nα

j=1

∑
M :|M |=j ry(M)

P−→ 1 as n, p→∞.
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applications High D Regression

Some Conditions

▶ Number of Predictors: lim infn→∞
p→∞

n1−α

log(p) > 2,

▶ For the true model/parameter pT < log nγ

εMT
≤ 1

18
∥XT (µT −Xbmin)∥22

where bmin minimizes the norm subject to ∥b∥0 ≤ pT − 1.
▶ For a large model |M | > pT and large enough n or p,

9

2
∥XT (HM −HM(−1))µT ∥22 < εM ,

whereHM andHM(−1) are the projection matrix forM and
M with a covariate removed respectively.
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Default ε

ε = ΛM σ̂2
M

(n0.51

9
+ |M | log(pπ)

1.1

9
− pT

)
+
,

▶ ΛM := tr
(
(HMX)′HMX

)
withHM := XM (X ′

MXM )−1X ′
M

▶ σ̂2
M := RSSM/(n− |M |)

▶ Tuning parameter pT represents belief about true |MT |.
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applications High D Regression

Simulation setup 1

▶ Generate 1000 data vectors y from linear model with
β0
Mo

= (−1.5,−1,−.8,−.6, .6, .8, 1, 1.5)′, and σ0
Mo

= 1.

▶ The n× p design matrixX is generated with rows from the
Np(0,Σ) distribution, where the diagonal components Σii = 1
and the off-diagonal components Σij = ρ for i ̸= j.

▶ Implement 10-fold cross-validation scheme for choosing the
tuning parameter po (prior to starting the algorithm).

▶ Set n = 100, and consider p = 100, 200, 300, 400, 500.
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Simulation results 1
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Simulation setup 2

To illustrate the difference from the nonlocal prior approach, for
n = 30, generate data from the following model.

Y ∼ Nn
(
1 · x(1) + 1 · x(2) + · · ·+ 1 · x(9), In

)
,

where x(1), x(2), x(3) iid∼ Nn(0, In), and

x(4) ∼ Nn
(

.25 · x(1) , .12In
)

x(5) ∼ Nn
(

.5 · x(2) , .12In
)

x(6) ∼ Nn
(

− .75 · x(3) , .12In
)

x(7) ∼ Nn
(

x(1) + x(3) , .12In
)

x(8) ∼ Nn
(

x(2) − x(3) , .12In
)

x(9) ∼ Nn
(

x(1) + x(2) + x(3) , .12In
)
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Simulation results 2

MAP size RMSE P (MMAP|y)
ε-admissible subsets 3.476 1.138 .365

nonlocal prior 8.997 1.197 .333

▶ RMSE of an out-of-sample test set of 30 observations
▶ Averaged over 1000 synthetic data sets

▶ Nonlocal prior procedure typically includes all 9 covariates
even though the y can be mostly explained by 3.
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applications Distributed Data

Distributed Data

▶ DGEX = G(U, ξ); do inference on ξ

▶ Issues:
▶ n is so big that theX ’s cannot be loaded to one computer
▶ the data are at different sites
▶ data cannot be released off site for privacy concerns

▶ partition x intoK subsets, where each subsets can be
analyzed
▶ e.g., use a computer cluster for parallel processing, whereK

is the number of nodes (or workers)
▶ merge results from different nodes
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applications Distributed Data

Importance sampling for Massive Data

▶ x = x1 ∪ x2 ∪ . . . ∪ xK

▶ rx(ξ) – the generalized fiducial density of x
▶ rxk(ξ) – the generalized fiducial density of xk

▶ On each worker sample from qk(ξ)

rx(ξ) ∝
∑
k

’importance weight’× qk(ξ)
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applications Distributed Data

Naive scheme

▶ generate a fiducial sample for data on each node
(MCMC, SMC, …)

▶ compute the weight wk(ξ) =
rx(ξ)
rxk (ξ)

▶ Not feasible and very inefficient!
▶ Target of order n−1/2

▶ Fiducial sample on each worker of order n−1/2
k .

▶ Most realizations get extremely small weights.
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applications Distributed Data

Improved scheme

▶ Each worker computes MLE θ̂k and empirical Fisher
Information Îk and passes it to other workers

▶ Each worker simulates a sample from
q(xk) ∝ rxk(ξ)×

∏
j ̸=k g(ξ|θ̂j , Îj)

▶ Practical choice g ∼ Normal(θ̂j , γÎ−1
k ).

▶ Weight wk(ξ) ≈
∏

j ̸=k
f(xk,ξ)
g(ξ|θj ,Ij)

(Computed and thinned in parallel.)

▶ We have shown consistency and asymptotic normality of the
error of our importance sampling scheme.
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applications Distributed Data

Experiments

▶ All good performance
▶ linear regression with Cauchy errors (n = 104,K = 5,

Nrep = 200)

▶ nonlinear regression Y = (β0 + β1X)−1 + σZ (n = 104,
K = 5,Nrep = 200)

▶ Gaussian mixture: 0.6N(µ0, σ) + 0.4N(µ1, σ) (n = 104,
K = 5,Nrep = 200)

▶ Generalized pareto, prediction of out of sample quantiles
(n = 106,K = 10,Nrep = 100)
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applications Distributed Data

Computational time

▶ Speed improves untilK = 16 then deteriorates.
(Cheng & Shang, 2015)
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applications Distributed Data

Sun Spots

low activity high activity

▶ The bright flare on the right has value 253. Is this high?
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Data

▶ Solar Dynamics Observatory (SDO), launched on 2010

▶ one instrument is Atmospheric Imaging Assembly (AIA)
(Schuh et al. 2013)
▶ photographs the sun in 8 wavelengths every 12s
▶ image size: 4096×4096
▶ 1.5 TB compressed data per day
▶ same as 3 TB raw (i.e., uncompressed) data per day

▶ ultimate goal: detect and predict solar flares
▶ Tool: GFD for Generalized Pareto (Wandler & H, 2012)
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GFD for extreme quantiles

Large Quantiles Fiducial probability of
exceeding 253

54



applications Fiducial Autoencoder

Outline

Introduction

Definition

Theoretical Results

Applications

High D Regression

Distributed Data

Fiducial Autoencoder

Likelihood ratio in Forensic Science

Conclusions



applications Fiducial Autoencoder

Deep Neural Network (DNN)

▶ Idea: Use deep neural network in fiducial computations

▶ Universal approximation theorem: A large enough network
with a linear output layer and at least one hidden layer can
approximate any Borel measurable function.

▶ Idea: Use Auto-encoder to approximate fiducial inverse
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applications Fiducial Autoencoder

Challenges

▶ A large number of choices
▶ DNN architecture (fully connected, convolution, auto-encoder,

adversarial + combination …)

▶ Number of layers, number of nodes per layers, activation
function (RELU, sigmoid, softmax,…)

▶ Optimization algorithm (stochastic gradient descent, Adaptive
Subgradient Methods, ADAM (Kingma & Ba 2014), …)

▶ Host of other sensitivities (data generation, stopping rules,
anti-over fitting measures,…)
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applications Fiducial Autoencoder

Fiducial Auto Encoder

▶ Encoder: Fully connected layers,
▶ Decoder: DGEX = G(Z, ξ)

▶ Training data: Generated from DGE with different values of
ξt,Zt.

▶ Loss function: L = w1∥x− x̂∥2 + w2∥ξ − ξ̂∥2

▶ Trained encoder used for inference
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applications Fiducial Autoencoder

Inference

▶ Model:
X = µ+ µq/2Z

▶ Use encoder
repeatedly

▶ Inputs: Observed
X , multiple
independentZ∗

▶ Output:
Approximate
fiducial sample µ∗

▶ Issues:
conservative,
biased
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applications Fiducial Autoencoder

Approximate Fiducial Calculations

▶ Following AE:
X⋆ = G(Z⋆, µ⋆)
needs to replicate
X .

▶ Keep µ∗ when
∥X∗ −X∥ ≤ ϵ.

▶ Big improvement
in coverage and
length

▶ Future work: GAN
improve
efficiency?
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Biological Oxygen Demand

▶ Y = ξ1(1− e−ξ2X)+Z

▶ x = (2, 4, 6, 8, 10),
y =
(0.15, 0.30, 0.41, 0.48, 0.57),
Z ∼ N(0, 0.015I)

▶ Methods:

a FAE
b GFD-HMC
c bootstrap
d Bayes ROT

(Bardsley et al,
2014)
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applications Likelihood ratio in Forensic Science

Forensic Science

▶ In criminal cases, experts encouraged to summarize
evidence using LR (e.g., ENFSI guidelines)

US FRE Rule 702
A witness who is qualified as an expert by knowledge, skill, experience, training, or edu-

cation may testify in the form of an opinion or otherwise if:

1. the expert’s scientific, technical, or other specialized knowledge
will help the trier of fact to understand the evidence or to
determine a fact in issue;

2. the testimony is based on sufficient facts or data;
3. the testimony is the product of reliable principles and methods; and
4. the expert has reliably applied the principles and methods to the

facts of the case.
https://www.law.cornell.edu/rules/fre/rule_702

▶ Reliable = Can be trusted
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applications Likelihood ratio in Forensic Science

Examples of data

Figure: Glass evidence from Aitken & Lucy (2004)
not mated mated

▶ Our mathematical abstraction:
▶ Two streams of data (mated/non mated). Algorithms produce

LR-like measure.

62



applications Likelihood ratio in Forensic Science

Examples of data

Figure: Glass evidence from Aitken & Lucy (2004)
not mated mated

▶ Our mathematical abstraction:
▶ Two streams of data (mated/non mated). Algorithms produce

LR-like measure.

62



applications Likelihood ratio in Forensic Science

Well-calibrated?

▶ When is 1, 000, 000 : 1more like 100 : 1? Does it matter?

▶ The LR value may have an effect on verdict
▶ Barrie et al (2018) report LR values across different labs of

172 to 3.2× 1014 starting from the same EPG!
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LR of LR = LR

▶ HP : Defendant a contributor to the sample
HD : Defendant not a contributor to the sample

▶ Reported LR density: g(l) underHP , f(l) underHD .
▶ Key observation: well-calibrated if and only if

g(l) = lf(l) (2)

▶ Integrating (2)

G(b)−G(a) = bF (b)− aF (a)−
∫ b

a
F (l)dl, 0 < a < b < ∞.
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Calibration Statistic

▶ Select grid ai covering “mated data” (usually powers of 10)

▶ Define

d(G,F ) =

(
log10

(
G(ai)−G(ai−1)

aiF (ai)− ai−1F (ai−1)−
∫ ai
ai−1

F (l)dl

)
, i = 2, . . . k

)⊤

▶ Estimation and uncertainty quantification via GFD
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Fiducial Non-Parametric

▶ Data generating equation Li = F−1(Ui)

▶ inverts to {F ∗ : F ∗(li − ϵ) < U⋆
i ≤ F ∗(li)}

▶ Facts (Cui & H, 2019)

▶ EF ⋆
lower(l) < F̂ (l) < EF ⋆

upper(l)
▶ Bernstein-von Mises theorem, good small sample properties
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Calibration Confidence Intervals

▶ Recall

d(G,F ) =

(
log10

(
G(ai)−G(ai−1)

aiF (ai)− ai−1F (ai−1)−
∫ ai
ai−1

F (l)dl

)
, i = 2, . . . k

)⊤

Theorem (H, Iyer, 2020+)

Assume obs LRs independent; 0 < F (a1) < · · · < F (ak) < 1,
0 < G(a1) < · · · < G(ak) < 1, n = min(ng, nf ), n/nf → pf ,
n/ng → pg . Then

√
n(d(Ĝ, F̂ )− d(G,F ))

D−→ N(0,Σg,f ),

and conditionally on the observed LRs

√
n(d(G⋆, F ⋆)− d(Ĝ, F̂ ))

D−→ N(0,Σg,f ) a.s.
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Calibration -- glass LR

Glass
(classical)

target
median
fiducial CI
fid cband
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Glass
(Williams,
H., Omen)
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median
fiducial CI
fid cband
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Extrapolation via Generalized Pareto Distribution (GPD)

▶ DNA: Little overlap between mated and non-mated LR

.

▶ Data above large threshold follow GPD

▶ GPD interpolates bounded, exponential and Pareto tails

▶ Above threshold use GFD for GPD (Wandler & H, 2012)
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DNA calibration

target
median
fiducial CI
threshold
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conclusions

BFF

▶ Many great minds contributed to foundations of statistics in
the past – Fisher, Neyman, de Finetti, Lindley, Savage, LeCam,
Cox, Efron, Berger, Fraser, Reid, Dempster, Dawid, …

▶ Area was not known for harmonious relationships and
respectful discourse

the “protracted battle” among leading statistics found-
ing fathers “has left statistics without a philosophy that
matches contemporary attitudes.” (Kass, 2011)

Can Bayesian, Fiducial and Frequentist
become Best Friends Forever?
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conclusions

BFF Future

▶ Can BFF collaboration solve bring unique breakthroughs?
▶ Understanding of Deep Learning?

▶ Computational convenience and efficiency
▶ Presence in Probabilistic Programing Languages
▶ Scalability

▶ New kind of theoretical guarantees
▶ How safely and efficiently marginalize

Bayes/fiducial/confidence distributions in complex models?
▶ Going beyond probability theory?

▶ Applications
▶ The proof is in the pudding!
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conclusions

I have a dream …

▶ One famous statistician said (I paraphrase)
“I useBayes because there is no need to prove asymptotic
theorem; it is correct.”

▶ I have a dream that people will one day soon gain similar
trust in fiducial inspired approaches.

Thank you!
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