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Bayesian Model Selection in High-Dimensional
Settings

Valen E. JOHNSON and David ROSSELL

Standard assumptions incorporated into Bayesian model selection procedures result in procedures that are not competitive with commonly
used penalized likelihood methods. We propose modifications of these methods by imposing nonlocal prior densities on model parameters.
We show that the resulting model selection procedures are consistent in linear model settings when the number of possible covariates p
is bounded by the number of observations n, a property that has not been extended to other model selection procedures. In addition to
consistently identifying the true model, the proposed procedures provide accurate estimates of the posterior probability that each identified
model is correct. Through simulation studies, we demonstrate that these model selection procedures perform as well or better than commonly
used penalized likelihood methods in a range of simulation settings. Proofs of the primary theorems are provided in the Supplementary
Material that is available online.

KEY WORDS: Adaptive LASSO; Dantzig selector; Elastic net; g-prior; Intrinsic Bayes factor; Intrinsic prior; Nonlocal prior; Nonnegative
garrote; Oracle.

1. INTRODUCTION

We propose a new class of Bayesian model selection proce-
dures by imposing nonlocal prior densities (Johnson and Rossell
2010) on model parameters. Nonlocal prior densities are density
functions that are identically zero whenever a model parameter
is equal to its null value, which is typically 0 in model selec-
tion settings. Conversely, local prior densities are positive at
null parameter values; most current Bayesian model selection
procedures employ local prior densities. We demonstrate that
model selection procedures based on nonlocal prior densities
assign a posterior probability of 1 to the true model as the sam-
ple size n increases when the number of possible covariates p
is bounded by n and certain regularity conditions on the design
matrix pertain. Under the same conditions, we show that stan-
dard Bayesian approaches based on local prior specifications
result in the asymptotic assignment of a posterior probability
of 0 to the true model. Among the Bayesian model selection
procedures that share this deficiency are procedures based on
intrinsic Bayes factors (Berger and Pericchi 1996), fractional
Bayes factors (O’Hagan 1995), and g-priors (Liang et al. 2008).

We also compare the proposed selection procedures to re-
lated frequentist methods. Previous research has demonstrated
that the smoothly clipped absolute deviation (SCAD) algorithm
(Fan and Li 2001), the adaptive LASSO (Zou 2006), the nonneg-
ative garotte (Breiman 1995), the elastic net algorithm (Zou and
Hastie 2005), and the Dantzig selector (Candes and Tao 2007)
consistently identify the correct model when the number of pos-
sible covariates is fixed a priori. Fan and Peng (2004) extended
this consistency property to certain penalized-likelihood-based
model selection procedures by showing that they achieve ora-
cle properties when p < O(n1/3). We show that the proposed
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classes of Bayesian model selection procedures have a similar
consistency property even when p = O(n). Numerical compar-
isons between several model selection procedures and Bayesian
procedures based on nonlocal priors are presented in Section 4.
In large sample settings, these comparisons demonstrate that
model selection procedures based on nonlocal prior densities
are often better able to identify the correct model and have
smaller prediction errors than competing methods.

In practice, it is usually important to identify not only the
most probable model for a given set of data, but also the prob-
ability that the identified model is correct. An important ad-
vantage of the model selection procedures proposed in this ar-
ticle is that they naturally provide an estimate of the posterior
probability that each model is correct. In simulation studies,
we show that these posterior probabilities closely approximate
the empirical probabilities that the selected model is true. In
contrast, most common frequentist algorithms identify only the
model that maximizes a penalized version of the likelihood func-
tion, whereas most Bayesian algorithms provide posterior model
probabilities that cannot reasonably be interpreted as posterior
probabilities at all. For instance, common Bayesian procedures
assign vanishingly small posterior probabilities to all models in
high-dimensional settings, even when the maximum probability
model assigns relatively high probability to the true model. It
is for this reason that articles describing Bayesian model selec-
tion algorithms usually do not report the posterior probability
assigned to the most probable model, often opting instead to
report the marginal probabilities that individual covariates were
included in models sampled from the posterior distribution.

The primary innovation of this article is the manner in which
prior densities are defined on regression coefficients. Although
our methodology can be extended to more general model selec-
tion settings, we restrict attention herein to the study of linear
models. We also make the assumption that the true model is an
element of the model space. Letting Yn = (y1, . . . , yn)′ denote
a random vector, Xn an n× p matrix of real numbers, and β a
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Figure 1. Nonlocal prior densities for a single regression coefficient. These densities correspond to the default nonlocal priors used in the
simulation study in Section 4.

p × 1 regression vector having ith component β i , we examine
linear models of the form

Yn ∼ N
(
Xnβ, σ

2In
)
. (1)

We consider two classes of nonlocal prior densities. The first
class of prior densities for β consists of product moment
(pMOM) densities, which we define as

π (β | τ, σ 2, r) = dp(2π )−p/2(τσ 2)−rp−p/2|Ap|1/2

× exp

[
− 1

2τσ 2
β ′Apβ

] p∏
i=1

β2r
i , (2)

for τ > 0, Ap a p × p nonsingular scale matrix, and r =
1, 2, . . . . The normalizing constant dp is independent of σ 2 and
τ . The parameter r is called the order of the density. Consonni
and La Rocca (2010) proposed a similar class of prior densities
for application to graphical models, though in their proposal the
densities corresponding to Equation (2) are not proper.

The second class of prior densities we examine are product
inverse moment (piMOM) densities, which we define to have
the general form

π (β | τ, σ 2, r) = (τσ 2)rp/2

�(r/2)p

p∏
i=1

|β i |−(r+1) exp

(
−τσ

2

β2
i

)
, (3)

for τ > 0 and r = 1, 2, . . . . When r = 1, this class of densities
possesses Cauchy-like tails.

The parameter τ in both the pMOM and piMOM densities
represents a scale parameter that determines the dispersion of
the prior densities on β around 0. In setting the value of this
hyperparameter, it is critical to consider the scale of the corre-
sponding columns of Xn. For simplicity, we have assumed that
the columns of Xn have been standardized so that a single value

of τ is appropriate for each component of β. If this assump-
tion is not valid, then separate hyperparameters τi should be
introduced to reflect the anticipated effect of each component
of β on the expected value of Yn.

The densities in Equations (2) and (3) are nonlocal densities
at 0 because they are identically 0 when any component of β

is 0. This feature of the densities is illustrated in the univariate
setting in Figure 1. It is this property that permits model
selection procedures based on these nonlocal prior densities to
efficiently eliminate regression models that contain unnecessary
explanatory variables. In contrast, Bayesian model selection
procedures based on local prior densities assign positive density
values to regression coefficient vectors that contain components
that are equal to 0.

The nonlocal prior densities specified in Equations (2) and (3)
differ in a crucial way from the multivariate MOM and iMOM
densities proposed by Johnson and Rossell (2010; JR10) for
hypothesis testing. The multivariate MOM and iMOM densities
proposed in JR10 are 0 only when all components of the param-
eter vector are 0. As a result, those densities may impose little
or no penalty on models that contain many parameters that have
estimates that are close to 0, provided only that one or more of
the included model parameters are not 0. In contrast pMOM and
piMOM densities arise as the independent products of the MOM
and iMOM prior densities proposed in JR10, and are 0 if any
component of the parameter vector is 0. This property repre-
sents a much stronger penalty on the regression vector when
any one of its components is close to 0. As we demonstrate
in Section 2, this stronger penalty is necessary to achieve con-
sistency of posterior model probabilities when the number of
potential covariates p increases linearly with n.

In the next section, we describe the properties of our proposed
model selection procedures and contrast these properties to those
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obtained using standard Bayesian methods. In Section 3, we de-
scribe simulation algorithms to explore the posterior distribution
on the model space. In Section 4, we report simulation studies
that compare the finite sampling performance of several model
selection procedures in situations in which the number of poten-
tial covariates is of the same order of magnitude as the number
of observations. Section 5 provides several new insights into
the connections between commonly used penalized likelihood
procedures and related Bayesian model selection algorithms,
paying particular attention to extensions of penalized likelihood
methods that follow from the Bayesian models proposed in this
article.

2. MAIN RESULTS

Let Yn = (y1, . . . , yn)′ denote a random vector, Xn an n× p

matrix of real numbers, and β a p × 1 regression vector. The
goal of the model selection procedures proposed in this arti-
cle is to select the nonzero components of β when it is as-
sumed that Yn ∼ N (Xnβ, σ

2In) and p < n. Bayesian model
selection is based on the comparison of the posterior model
probabilities for each possible model. To fix the terminology,
we assume that a component of β is excluded from the true
model if its value is 0, and denote a model by j = {j1, . . . , jk}
(1 ≤ j1 < · · · < jk ≤ p) if and only ifβj1 �= 0, . . . , βjk �= 0 and
all other elements of β are 0. We write k ⊆ j to indicate that
model j contains all components of β present in model k, with
⊂ denoting a proper subset. The cardinality of model j is de-
noted by |j|, or more simply by j when there is no risk of
confusion. We let t denote the true model with t = |t|. The
dimension of the true model is regarded as fixed. The regres-
sion coefficient for model j is denoted by βj = (βj1 , . . . , βj|j | )

′,
and the set of 2p possible models that can be defined from
the p components of β is denoted by J . Ignoring depen-
dence on n, we let Xj denote the design matrix formed from
the columns of Xn corresponding to model j, and we denote
the eigenvalues of an arbitrary positive definite matrix B of
rank m by λ1(B) ≥ · · · ≥ λm(B). Finally, we denote the re-
gression coefficient for the true model by β0

t = (β0
t1
, . . . , β0

tt
)′,

and we define � = 2 maxi(|β0
ti
|) and δ = 0.5 mini(|β0

ti
|). Under

each model k, the sampling density for the data is assumed
to be

Yn | βk, σ
2 ∼ N

(
Xkβk, σ

2In
)
. (4)

The sampling properties of posterior probabilities based on
nonlocal prior densities in linear model settings are easiest to
study in the known variance case and for pMOM priors. There-
fore, we examine the known variance case first, and then extend
these properties to situations in which the variance is not known
a priori, and then to models where piMOM prior densities are
specified on the regression parameters.

From Equations (1) and (2), it follows that the marginal den-
sity of the data under a pMOM prior density on βk can be
expressed as

mk(yn) = dk(2π )−n/2τ−k/2−rk(σ 2)−n/2−rk
[ |Ak|
|Ck|

]1/2

× exp

[
− Rk

2σ 2

]
Ek

(
k∏
i=1

β2r
ki

)
, (5)

where

Ck = X′
kXk + 1

τ
Ak, β̃k = C−1

k X′
kyn,

Rk = y′
n

(
In − XkC−1

k X′
k

)
yn,

and Ek(·) denotes expectation with respect to a multivariate nor-
mal distribution with mean β̃k and covariance matrix σ 2Ck

−1.
It follows that the posterior probability of model t, p(t | yn), is
defined by

p(t | yn) = p(t)mt(yn)∑
k∈J p(k)mk(yn)

,

where p(k), k ∈ J , denotes the prior probability assigned to
model k. Based on these expressions, the asymptotic sampling
properties of p(t | yn) obtained under pMOM priors imposed
on regression coefficients are characterized in the following
theorem.

Theorem 1. Suppose there exists ε > 0 such thatp(t)/p(k) >
ε for all k ∈ J . Assume further that p ≤ n and that there exist
M > c > 0 and N such that λ1(X′

nXn) < nM and λp(X′
nXn) >

nc for all n > N , and that there exist constants a1 and a2 such
that λ1(Ak) < a1 and λk(Ak) > a2 for all k ∈ J . If the prior
density on the regression vector βk under each model is specified
by Equation (2) and r ≥ 2, then

p(t | yn)
p−→ 1.

The proofs of the theorems and the corollaries that follow ap-
pear in the online Supplementary Material. Heuristically, con-
sistency under pMOM priors of order r ≥ 2 can be understood
by examining the form of their marginal densities in Equa-
tion (5). When t ⊂ k, each component of βk not in t reduces
Ek(

∏k
i=1 β

2r
ki

) by a factor that is Op(n−r ), which is enough
to overcome the potential addition of p ≤ n covariates to the
model. (Note that this factor does not arise from the multivari-
ate generalizations of the MOM and iMOM densities proposed
in JR10.) When t �⊂ k and |k| is moderate in size, the factor
exp(−Rk/2σ 2) drives the ratio of the marginal density of the
data under model k to model t to 0 exponentially fast. For large
|k| and t �⊂ k, a balance of these effects drives the ratio of the
marginal densities to 0.

Next, we consider the case in which σ 2 is not known. In
this setting, a common inverse gamma density with shape and
scale parameters (α,ψ) is assumed for the value of σ 2 under
all models k ∈ J . Then, the marginal density of the data under
model k ∈ J is

mk(yn) = dk (2π )−
n
2 2

ν
2 τ−rk− k

2

[ |Ak|
|Ck|

] 1
2

× ψα

�(α)

(
νks

2
k

)− νk
2 �

(νk

2

)
ETk

(∏
i∈k

β2r
i

)
, (6)

where

νk = n+ 2rk + 2α, s2
k = 2ψ + Rk

νk
,

dk =
[∫

Rk

(2π )−k/2|Ak|1/2 exp

(
−1

2
γ ′Akγ

) k∏
i

γ 2r
i dγ

]−1

,

D
ow

nl
oa

de
d 

by
 [

Fo
nd

re
n 

L
ib

ra
ry

, R
ic

e 
U

ni
ve

rs
ity

 ]
 a

t 1
3:

18
 1

0 
Se

pt
em

be
r 

20
12

 



652 Journal of the American Statistical Association, June 2012

and ETk denotes the expectation taken with respect to a multi-
variate t-density with mean β̃k, scale matrix s2

k(Ck)−1, and νk

degrees of freedom.

Corollary 1. Assume that the conditions of Theorem 1 apply,
except that the value of σ 2 under all models k ∈ J is assumed
to be drawn from a common inverse gamma density with shape
and scale parameters (α,ψ). If the number of possible covariates
p is further restricted so that p < bn for some b < 1 as n → ∞
and r ≥ 2, then

p(t | yn)
p−→ 1.

Analytic expressions are not available for the marginal densi-
ties of the data when piMOM priors are imposed on the regres-
sion coefficients. However, we know that the posterior model
probability assigned to the true model possesses the same con-
sistency property as that under pMOM densities of order r ≥ 2,
as indicated in the next corollary.

Corollary 2. Assume the conditions of Corollary 1 hold, ex-
cept that the prior density on the regression vector βk under
each model is now specified according to Equation (3). Then,

p(t | yn)
p−→ 1.

These results show that Bayesian model selection procedures
based on either the specification of piMOM prior densities or
pMOM prior densities of order r ≥ 2 on regression coefficients
result in consistent estimation of the true model as p increases
with n. The next theorem demonstrates that this property may
not hold when local prior densities are specified on regression
coefficients. This lack of consistency provides theoretical in-
sight into the well-known fact that in high-dimensional settings,
common Bayesian model selection procedures assign negligible
posterior probability to any given model.

Theorem 2. Define J1 = {k ∈ J : t ⊂ k, |k| − |t| = 1}, that
is, models k that contain the true model plus one additional co-
variate. For each k ∈ J1, suppose that the prior density imposed
on βk, say πLk (βk), is a continuous local prior; that is, that there
exist constants δ, cL > 0 such that

πLk (γ k)

πLt (βt)
> cL,

{
γ k : |γkj − β0

ti
| < δ, kj

= ti ∈ t; |γkj | < δ, kj /∈ t
}
. (7)

Suppose further that the conditions of Theorem 1 apply, and that
the sampling density for the data is described by Equation (4).
If the prior densities assumed for model t and k ∈ J1 satisfy
p(k)/p(t) > δ > 0, and there exists an N such that p > n1/2+ε

for some δ, ε > 0 and all n > N , then p(t | yn)
a.s.−→ 0.

Theorem 2 states that the posterior probability of the true
model goes to 0 whenever the following conditions apply:
(1) the number of possible covariates is greater than O(

√
n),

(2) local prior densities are imposed on the regression coef-
ficients in each model, and (3) the relative prior probabilities
assigned to all models are bounded away from 0.

Because the conclusion of this theorem differs dramatically
from the consistency results reported by other authors (e.g.,
Moreno, Giron, and Casella 2010), it is important to distinguish
between our notion of consistency and the pairwise consistency

reported elsewhere. The conclusions of Theorems 1 and 2 con-
cern the asymptotic behavior of the posterior probability of the
true model t as the sample size increases. Other authors have fo-
cused on what might be called pairwise consistency, which refers
to the Bayes factor between the true model and any single model
k ∈ J becoming large as n increases. It is important to note that
pairwise consistency is a much weaker property than model con-
sistency since it is possible to achieve pairwise consistency even
when the posterior probability of the true model approaches 0.
Indeed, it is not necessarily the case that pairwise consistency is
enough to guarantee even the convergence to 1 of the probability
that the maximum a posteriori model equals the true model.

Using this weaker notion of pairwise consistency, Moreno,
Giron, and Casella (2010) proved that intrinsic Bayes factors in
favor of the true model compared to any other model become
unbounded as n increases when p = O(n), and that a similar
result holds for model selection based on the Bayesian infor-
mation criterion (BIC; Schwarz 1978) when p = O(nα) and
α < 1. However, it is our view that pairwise consistency is of
limited practical importance. For instance, pairwise consistency
provides no advantage for those interested in Bayesian predic-
tion or inferential procedures that require model averaging. If
a modeling procedure obtains only pairwise consistency, then
the number of possible models that must be averaged for valid
Bayesian inference increases rapidly with increasing p. This fact
may preclude the use of such models in ultrahigh-dimensional
settings (i.e., p � n.) From a more philosophical perspective,
the assignment of decreasingly small probabilities to the true
model as the sample size increases raises questions regarding
the interpretation of posterior model probabilities.

3. COMPUTATIONAL STRATEGIES

Identifying high posterior probability models is computation-
ally challenging for two reasons. First, the model space has 2p

dimensions, which often makes it impossible to compute the
marginal densities for all possible models. Second, the evalu-
ation of the marginal density for each model may require the
numerical evaluation of a potentially high-dimensional integral.

We might address the high-dimension problem by adapting
one of the search algorithms proposed for classical model se-
lection (e.g., least angle regression, Efron et al. 2004; local
quadratic approximation, Fan and Li 2001). However, in addi-
tion to identifying the most probable model, we are interested
in assessing its probability and perhaps the probability of other
high-probability models. For this reason, we propose a Markov
chain Monte Carlo (MCMC) scheme to obtain posterior samples
from the model space.

The computational difficulties associated with evaluating the
marginal density of the data under each model vary according
to the choice of nonlocal prior imposed on the regression coef-
ficients. In the case of pMOM prior densities, exact expressions
for the moments appearing in Equations (5) and (6) are available
in the literature, for example, by Kan (2008). However, the com-
putational effort associated with these expressions increases ex-
ponentially with increasing model size. In addition, if Ak is not
an identity matrix, the prior normalization constant dk can also
be difficult to evaluate. For piMOM prior densities, analytic ex-
pressions are not available for the marginal densities. To address
these problems, we propose setting Ak = Ik whenever there is no
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subjective information regarding the prior correlation between
regression coefficients in model k. We also recommend the use
of Laplace approximations (Tierney and Kadane 1986) to ap-
proximate the marginal likelihood of the data under each model.

For pMOM densities with unknown variance and Ak = Ik ,
the normalization constant dk is given by

dk = [(2r − 1)!!]−k ,

and the Laplace approximation to the marginal likelihood func-
tion under model k can be expressed as

�( νk
2 )ψα2

νk
2 (2ψ + y′y −β̃

′
kCkβ̃k)−

νk
2

�(α) [(2r − 1)!!]k (2π )
n
2 τ

k
2 +rk

×
(∏

i∈k(β∗
i )2r

)
exp

{
− νk−2

2νk

(
β∗

k −β̃k

)′ Ck

s2
k

(
β∗

k −β̃k

)}
∣∣Ck + 2r νks

2
k

(νk−2)D
(
β∗

k

)∣∣ 1
2

, (8)

where D(β∗
k) is the diagonal matrix with entry (i, i) given by

1/(β∗
i )2 and

β∗
k = argmaxβk

{
N

(
βk; β̃k,

νk

νk − 2
s2

kC−1
k

)∏
i∈k

β2r
i

}
.

Equation (8) is obtained by approximating the multivariate t
density in Equation (6) by its limiting normal distribution and
using a standard Laplace approximation.

For piMOM densities and unknown variance, the correspond-
ing Laplace approximation to the marginal density of the data
under model k is

ψα(2τ )
k
2

(2π )
n
2� (α)

ef (β∗
k,η

∗)

|V (β∗
k, η

∗)| 1
2

, (9)

where

(β∗
k, η

∗) = argmax(βk,η)f (βk, η), η = log(σ 2),

f (βk, η) = −2ψ + (yn − Xkβk)′X′
kXk(yn − Xkβk)

2eη

− η(n− k + 2α)

2
−
∑
i∈k

τeη

β2
i

+ log(β2
i ), (10)

and V (βk, η) is a (k + 1) × (k + 1) matrix with the following
blocks:

V11 = −e−ηX′
kXk − diag

(
6τeηβ−4

k − 2β−2
k

)
V12 = 2τeη

β3
k

+ e−η(X′
kXkβk − X′

kyn)

V22 = −2ψ + (yn − Xkβk)′X′
kXk(yn − Xkβk)

2e−η
−
∑
i∈k

τeη

β2
i

.

(11)

The quantity β−a
k in Equation (11) denotes the vector with com-

ponents β−a
i . These Laplace approximations have been imple-

mented in the R software package mombf, by Rossell.
Based on these approximations to the marginal likelihoods

of the data, we propose the following MCMC algorithm for
exploring the model space.

1. Choose an initial model kcurr

2. For i = 1, . . . , p,
(a) Define model kcand by excluding or including β i from

model kcurr, according to whether β i is currently in-
cluded or excluded from kcurr.

(b) Compute

r = mkcand (y)p(kcand)

mkcand (y)p(kcand) +mkcurr (y)p(kcurr)
(12)

using either Equation (8) or (9).
(c) Draw u ∼ U (0, 1). If r > u, define kcurr = kcand.

3. Repeat Step 2 until a sufficiently long chain is acquired.

The sequence of sampled models obtained from the chain
produced by this algorithm can be used to identify the maximum
a posteriori (MAP) model, as well as to estimate the posterior
probabilities of the MAP and other high-probability models.

To choose an initial model, we recommend starting at the
null model (k = 0) and making several passes (a)–(c), deter-
ministically moving to kcand when r > 0.5 in Equation (12).
The process stops when no movements are made in a complete
pass (a)–(c), that is, a local maximum is found.

4. SIMULATION STUDIES

In this section, we assess the sampling properties of p(t|yn)
for local and nonlocal priors in several simulation experiments,
and we compare these properties to the corresponding properties
of two penalized likelihood procedures, SCAD and LASSO. We
determined regularization parameters for SCAD and LASSO
using 10-fold cross-validation, as implemented in the R software
packages ncvreg, by Breheny, and parcor, by Kraemer and
Schaefer (available at http://cran.r-project.org/web/packages).

We implemented the Metropolis-Hastings algorithm de-
scribed in Section 3 to estimate p(t|yn). Because this algorithm
had to be implemented for a large number of simulated datasets
(rather than a single application), we did not attempt to sample
extensively from each posterior distribution. For each simulated
dataset, we performed 500 burn-in iterations and 5000 subse-
quent updates for posterior inference.

The MCMC algorithm was initialized as described in Sec-
tion 3. The truly nonzero regression coefficients were the last
variables to be considered for inclusion in the initial model to
avoid bias in the initial updates of the chain toward the true
model. The MAP model was typically visited in fewer than
50 updates in all simulation settings. Coupling diagnostics pro-
posed by Johnson (1996, 1998) were applied to the resulting
chains, which led to the following two findings: (1) iterates in
the MCMC algorithms based on the nonlocal prior densities dif-
fered in total variation distance from the stationary distribution
by less than 0.1 within 100 iterations under all simulation set-
tings; and (2) the total variation distance between two indepen-
dent draws from the posterior distribution and iterates separated
by more than 100 iterations in a chain also differed by less than
0.1 under all simulation scenarios.

We considered σ 2 = 1.0, 1.5, and 2.0 and generated the com-
ponents of the design matrix X from a multivariate normal dis-
tribution. In each simulation, the variance of each column of X
was set to 1, and the correlations between columns were set to
either ρ = 0 or 0.25. That is, we set X = ZC1/2, where Z was
an n× p matrix of independent standard normal deviates and C
was a p × p matrix with diagonal elements 1 and off-diagonal
elements ρ. To determine a practically relevant range for corre-
lations between the columns of X, we relied on our experience
in analyzing microarray data. For example, in the GSE5206
and GSE2109 datasets (available from the Gene Expression
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Omnibus, http://www.ncbi.nlm.nih.gov/geo), the mean absolute
pairwise correlations between gene expression values are, re-
spectively, 0.16 and 0.18 (75th percentiles = 0.23 and 0.18).
Based on these values, we set the mean correlation between
columns in our experiments to be either ρ = 0 or ρ = 0.25.
When ρ = 0.25, the maximum sample correlation between any
pair of columns of X typically exceeded 0.5 for p = 100 and
0.4 for p = 500. We assumed a vague IG(0.001, 0.001) prior
for σ 2 in all procedures based on the nonlocal priors. Posterior
model probabilities were insensitive to the choice of the inverse
gamma density parameters provided only that both parameters
were much smaller than the minimum of 1 and the residual sums
of squares Rk for all models.

We tested three classes of nonlocal prior models: pMOM den-
sities of the first order (r = 1), pMOM densities of the second
order (r = 2), and piMOM densities. We note that pMOM den-
sities of the first order are not guaranteed to provide consistent
model selection under the assumptions of Theorem 1. However,
these densities are less spiked around their prior modes than
are higher-order pMOM densities, which often leads to better
finite sample properties. We also tested the local, intrinsic prior
model proposed by Casella et al. (2009) and the Bayesian infor-
mation criterion (BIC; Schwarz 1978), which was suggested by
Moreno, Giron, and Casella (2010) as an asymptotic approxi-
mation to the intrinsic prior.

To set the value of the hyperparameter τ for the nonlocal
priors, we adopted the default recommendations proposed in
JR10. When all columns of Xn have been standardized, the de-
fault value for the first-order pMOM prior is τ = 0.348; for
the second-order pMOM prior, it is τ = 0.072, and for the pi-
MOM prior, the default value is τ = 0.113. At these values of
τ , the nonlocal priors assign 0.99 marginal prior probability to
|βi |/ ≥ 0.2σ , which is an approximate range of interest in many
applications. In actual applications, the choice of τ should be
determined after a subjective evaluation of the magnitude of sub-
stantively important effect sizes. Together with the sample size,
the choice of τ implicitly determines the magnitude of the re-
gression coefficients that will be shrunk to 0; the marginal prior
density for each regression coefficient should thus be carefully
considered when setting the value of τ for application of our
method to real datasets. The marginal density assigned to each
component of βk by the default priors is depicted in Figure 1.

For each class of prior densities, we adopted the beta-binomial
prior model proposed by Scott and Berger (2010) on the model
space. Letting γ denote a value between 0 and 1, this prior
is obtained by assuming that the prior probability assigned to
model k is specified as

p(k | γ ) = γ k(1 − γ )n−k, γ ∼ Beta(ζ0, ζ1). (13)

We further assumed that ζ0 = ζ1 = 1. As Scott and Berger noted,
this prior imposes a strong penalty on model size, which is an
important feature when it is used in model selection algorithms
that do not otherwise impose such penalties through the priors
specified on model parameters. For sparse models, the effect
of this prior is to add a penalty on the addition of spurious
covariates that is approximatelyO(p−1), which, according to the
heuristic justification of the proof of Theorem 1 in Section 2, is
enough to provide consistency of the pMOM priors of order r =
1. Extending this logic to Theorem 2, the beta-binomial prior

combines with local priors to impose a penalty of orderO(n−3/2)
for the addition of spurious covariates, which isO(

√
n) too small

to make model selection based on local priors consistent when
p = O(n).

4.1 Comparison of Bayesian Model Selection
Procedures

We first compared the posterior probability assigned to the
true model obtained under the first- and second-order pMOM,
piMOM, intrinsic prior densities, and the BIC. We simulated
data from linear models for values of n between 10 and 500, in
each case setting p = n, ρ = 0, and σ 2 = 1.0, 1.5, 2.0. We set
five components of the regression coefficient to the values 0.6,
1.2, 1.8, 2.4, and 3; all remaining components were set to 0.

Figure 2 displays, on the logit scale, the average of the pos-
terior model probability p(t|yn) as a function of n from the
pMOM, piMOM, intrinsic prior, and BIC-based selection proce-
dures. As suggested by theory, the average posterior probability
assigned to the true model increases with n under the nonlocal
prior specifications, whereas it decreases to 0 under the intrinsic
prior specification and its BIC approximation. For instance, the
average value of p(t|yn) typically exceeds 0.5 when n ≈ 100
under the nonlocal priors. At the same value of n, the average
posterior probability of the true model under the intrinsic prior
and BIC specifications is less than 0.05. When n = 500, the
average posterior probability assigned to the true model is es-
sentially 1 under the nonlocal priors, whereas it is approximately
0.01 under the local priors.

4.2 Comparison to Penalized Likelihood Selection
Procedures

In practice, most model selection procedures are tackled using
penalized likelihood methods. In the following simulation study,
we compare Bayesian model selection procedures based on non-
local priors to two common frequentist procedures, SCAD and
LASSO.

We considered the six simulation scenarios described in Sec-
tion 4.1. In each scenario, we obtained 10,000 simulations for
SCAD and LASSO. Due to the computationally intensive nature
of our MCMC algorithm, in the Bayesian approaches we sim-
ulated 1000 datasets for the nonlocal priors and BIC, and 500
datasets for the intrinsic priors. (For n = 500, it took approxi-
mately 7 min to obtain the results for one dataset on a cluster
machine with 12-core CPUs and 32 GB RAM for each of the
Bayesian methods.)

We denote by t̂ the model selected by a procedure for a simu-
lated dataset. For Bayesian methods, t̂ is defined as the posterior
mode, whereas for SCAD and LASSO it is defined from coef-
ficients that are estimated to be nonzero. Figure 3 shows, on
the logit scale, the average of P(t̂ = t) obtained under each of
the scenarios for each of the model selection procedures. From
these plots, it is clear that model selection procedures based
on the nonlocal priors provided substantially higher empirical
probabilities of identifying the true model for sample sizes of
200 or greater.

Out-of-sample prediction root mean square errors (RMSE)
are displayed in Figure 4. To make the comparison of the pre-
diction errors commensurate, the values displayed in Figure 4
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Figure 2. p(t|yn) versus n. Top: σ 2 = 1; middle: σ 2 = 1.5; bottom: σ 2 = 2.
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Figure 3. P(t̂ = t) versus n. Top: σ 2 = 1; middle: σ 2 = 1.5; bottom: σ 2 = 2.
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Figure 4. Out-of-sample RMSE versus n. Top: σ 2 = 1; middle: σ 2 = 1.5; bottom: σ 2 = 2.
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were based on the MAP estimates of the regression parame-
ters obtained under the MAP model for the nonlocal priors, and
were based on the maximum penalized likelihood estimates for
SCAD and LASSO. Prediction errors are not presented for the
BIC and intrinsic prior procedures owing to the formal lack of
a prior density for the BIC and the difficulty in obtaining the
MAP estimate for the intrinsic prior. As the panels in Figure 4
indicate, the piMOM procedure’s prediction errors were typi-
cally slightly smaller than those obtained under SCAD; SCAD
had slightly smaller prediction errors than the pMOM proce-
dures when r = 1 and n < 200; and the pMOM procedure with
r = 1 usually outperformed SCAD for n ≥ 200. The pMOM
procedure with r = 2 was generally not competitive with any
procedure except the LASSO for sample sizes smaller than 300.

The results in Figure 4 can be explained by noting that the
true model provides the most accurate out-of-sample predic-
tions. Thus, model selection algorithms that identify the “true”
predictors are also likely to provide the best predictions, pro-
vided that the biases of the associated regression coefficients
are small. For Bayesian procedures that employ proper priors,
these biases are known to be of order O(1/n), so in large sam-
ples it follows that Bayesian procedures that provide the highest
probability of selecting the true model are likely to also provide
optimal, or nearly optimal, out-of-sample prediction errors. For
this reason, the default piMOM prior (which has the heaviest
tails and so the smallest biases) tends to provide the smallest
prediction error.

The performance of the selection procedure based on the
second-order pMOM prior densities was less impressive. We
attribute its poor performance in both identifying the correct
model and in out-of-sample prediction to the choice of τ and
the lighter tails of the pMOM density at larger values of β. This
problem is illustrated in Figure 1, which shows that this density
assigns little weight to values of regression coefficients greater
than about 1.2.

The similarities of the curves in Figures 2 and 3 warrant ad-
ditional emphasis. From these figures, we see that the Bayesian
procedures based on nonlocal priors provide estimates ofp(t|yn)
that correlate well with P(t̂ = t). That is, the posterior probabil-
ity assigned to the maximum a posteriori model provides a bona
fide estimate of the probability (in the frequentist sense) that
the chosen model is correct. This is an important feature of our
model selection procedures that is not shared by other methods.
For example, this property does not hold for model selection
based on the intrinsic priors. Even though the maximum a pos-
teriori model obtained under the intrinsic prior specification is
generally around 70% for large values of n, it assigns to the true
model an average posterior probability that is always close to 0.

Further details concerning the simulation studies, including
marginal probabilities of inclusion for nonzero and zero coeffi-
cients, false discovery rates, and the numerical values of points
displayed in the figures (Tables S1–S7), can be found in the
online Supplementary Material.

5. DISCUSSION

The Bayesian model selection procedures described in
Section 2 provide consistent estimation of the true regression
model in the sense that the Bayesian posterior probability of the
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Figure 5. Nonlocal prior density versus LASSO prior density. The
density depicted by the solid line represents an equal mixture of a
one-dimensional pMOM density and a point mass at 0. The density
illustrated by the dashed line represents the double exponential prior
density associated with the LASSO procedure.

true model converges to 1 in probability when the conditions of
Theorem 1 are satisfied. In stating this finding, we also note
that most Bayesian model selection procedures, including those
based on local priors, provide consistent estimation of the
true model under the conditions of Theorem 1 for fixed p as
n → ∞. This fact follows from the consistency of the Bayes
factor when the number of covariates is fixed a priori (e.g.,
Casella et al. 2009) and the posterior normality conditions cited
by Walker (1969).

An explanation of how the proposed Bayesian model selec-
tion procedures are able to achieve consistency for p = O(n)
can be found by comparing nonlocal prior densities to the double
exponential prior distribution implicit to the Bayesian LASSO
procedure (Park and Casella 2008). To simplify matters, we
consider the test of whether a single regression coefficient β1 is
equal to 0. If the prior probability that β1 = 0 is 0.5, and there
is a 0.5 probability that it is drawn from a pMOM prior, then
the marginal prior on β1 can be depicted by the solid curve in
Figure 5. This prior density is an equal mixture of a point mass
at 0 and a pMOM density. In contrast, the double exponential
prior associated with the LASSO is depicted as a dashed line in
Figure 5.

The most salient differences between the prior densities pic-
tured in Figure 5 are seen in their behavior near the value β1 = 0.
Although the double exponential prior peaks at 0, it also places
substantial mass in neighborhoods around 0. Small but nonzero
values of the parameter can thereby be assigned high probability
under the LASSO prior. On the other hand, the marginal prior
obtained from the mixture of the pMOM density and point mass
prior assigns negligible probability to small, nonzero values of
β1. As a consequence, the pMOM mixture provides more shrink-
age toward 0 for regression coefficients that are not supported
by the data.
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To extend the analogy between the LASSO and Bayesian pro-
cedures based on double exponential priors to other classical and
Bayesian model selection methods, note that the LASSO and
SCAD procedures select models by minimizing |L1| objective
functions of the general form

l(β̂) −
∑
i

wi |β̂ i |, (14)

where l(β̂) denotes the log-likelihood function evaluated at an
optimal value of β̂, and {wi} denotes weights. Ridge regres-
sion and related L2 estimation procedures determine regression
coefficients that maximize objective functions of the form

l(β̂) −
∑
i

wi β̂
2
i , (15)

which, from a Bayesian perspective, correspond to imposing a
(local) Gaussian prior on the regression parameter β. By max-
imizing rather than integrating, the BIC can be justified as an
approximation to Bayes factors obtained by imposing Gaussian
(or other local) priors on the regression coefficients included
in each model (e.g., Kass and Raftery 1995). The objective
function associated with model selection using the BIC can be
expressed as

l(β̂) − cp log(n) (16)

for some positive constant c.
Using similar reasoning, an objective function that might be

associated with pMOM priors can be expressed as

l(β) − cp log(n) + d
∑
i

log

[(
β2
i

τσ 2

)r]
, (17)

for some d > 0, whereas the objective function associated with
the piMOM priors might be expressed as

l(β) − cp log(n) − d
∑
i

(
τσ 2

β2
i

)r
. (18)

In both cases, the model that maximizes the objective function
over all components of β included in the model is selected as
the best model. By comparing Equations (17) and (18) with
Equation (16), we see that the effect of the nonlocal objective
functions is to add to the standard BIC a penalty term that
can become arbitrarily large in models that contain regression
coefficients that are close to 0.

It is important to note, however, that Equations (17) and (18)
do not add an additional penalty to models that contain coeffi-
cients that are large in magnitude. This feature makes it possible
to avoid stiff prior penalties on models that contain many param-
eters. In contrast, Theorem 2 shows that severe prior penalties
are required on the model space to obtain consistent results when
local priors are imposed on regression coefficients.

With regard to the choice between maximizing an objective
function or integrating over a prior density to obtain a Bayes fac-
tor, we feel that the Bayesian approach offers two advantages.
First, the specification of normalized prior densities provides
an automatic guide to the selection of the constants c and d that
appear in the objective functions in Equations (17) and (18).
Second, as discussed previously, posing the model selection

problem within the Bayesian context facilitates inference
regarding the posterior probability that each model is true.

Extensions of the results from our simulation study to the
p � n setting will require substantial reformulation of the
model selection problem. In such settings, the columns of
the design matrix X cannot be independent, which means that
the definition of a true model will generally be ambiguous.
This implies that further constraints are needed to define the
true model, or that an alternative formulation of the inferential
problem must be posited. We are currently investigating such
extensions using alternative Bayesian interpretations of model
selection procedures combined with screening techniques sug-
gested by, for example, Fan and Lv (2008).

In practice, we find that the pMOM priors of order r = 1
and piMOM priors perform well in applications, although we
recommend that the former be used only in conjunction with
beta-binomial priors on the model space. The pMOM priors of-
fer some advantage in computational speed over piMOM priors,
particularly if Ak is chosen to be the identity matrix (thus elim-
inating the need to compute the prior normalization constant).
This choice of Ak also stabilizes the posterior covariance matrix
of βk when the columns of Xk are highly correlated. However,
the piMOM prior introduces a smaller bias in the estimation of
large components of β. We recommend that τ be chosen based
on scientific considerations whenever possible, but have found
that the default values recommended in JR10 work well in a vari-
ety of simulation settings, provided that the columns of Xn have
been standardized so as to have unit variance (see Section 4).

The model selection procedures described in this article have
been implemented in the R package mombf. The R code based
on this package that was used to obtain the simulation re-
sults in Section 4 is included in the article’s online Supple-
mentary Material. Instructions for implementing these model
selection procedures for an arbitrary dataset using R can be ob-
tained by typing vignette(“mombf”) in the R command line
(http://cran.r-project.org/web/packages/mombf/index.html).

SUPPLEMENTARY MATERIAL

Proof of Theorem 1 and Corollaries: This supplement consists
of the proof of the primary theorems and details concerning
the simulation studies, including marginal probabilities of
inclusion for nonzero and zero coefficients and the numerical
values of points displayed in the figures given in the main
text. The R code that was used to obtain the simulation results
in Section 4 is also included.

[Received May 2011. Revised January 2012.]
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