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CRITERIA FOR BAYESIAN MODEL CHOICE WITH

APPLICATION TO VARIABLE SELECTION∗

By M.J. Bayarri†, J.O. Berger‡ A. Forte§ and G.

Garćıa-Donato¶

In objective Bayesian model selection, no single criterion has

emerged as dominant in defining objective prior distributions. In-

deed, many criteria have been separately proposed and utilized to

propose differing prior choices. We first formalize the most general

and compelling of the various criteria that have been suggested, to-

gether with a new criterion. We then illustrate the potential of these

criteria in determining objective model selection priors by consider-

ing their application to the problem of variable selection in normal

linear models. This results in a new model selection objective prior

with a number of compelling properties.

1. Introduction.

1.1. Background. A key feature of Bayesian model selection, when the

models have differing dimensions and non-common parameters, is that re-

sults are typically highly sensitive to the choice of priors for the non-common

parameters and, unlike the scenario for estimation, this sensitivity does not

vanish as the sample size grows (see Kass and Raftery, 1995; Berger and

Pericchi, 2001). Furthermore, improper priors cannot typically be used for

non-common parameters, nor can ‘vague proper priors’ (see the above ref-

erences, for example, and the brief discussion in Section 2.2), ruling out use

of the main tools developed in objective Bayesian estimation theory.
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Because of the difficulty in assessing subjective priors for numerous mod-

els, there have been many efforts (over more than 30 years) to develop

‘conventional’ or ‘objective’ priors for model selection; we will term these

‘objective model selection priors,’ the word objective simply meant to indi-

cate that they are not subjective priors, and are chosen conventionally based

on the models being considered. A few of the many references most related

to this paper are Jeffreys (1961); Zellner and Siow (1980, 1984); Laud and

Ibrahim (1995); Kass and Wasserman (1995); Berger and Pericchi (1996);

Moreno, Bertolino and Racugno (1998); De Santis and Spezzaferri (1999);

Pérez and Berger (2002); Bayarri and Garćıa-Donato (2008); Liang et al.

(2008); Cui and George (2008); Maruyama and George (2008); Maruyama

and Strawderman (2010).

For the most part, these efforts have started with a good idea, used it

to develop the priors, and then studied the behavior of the priors. Yet, in

spite of the apparent success of many of these methods, there has been no

agreement as to which are most appealing or most successful.

This lack of progress in reaching consensus on objective priors for model

selection resulted in our approaching the problem from a different direction,

namely formally formulating the various criteria that have been deemed

essential for model selection priors (such as consistency of the resulting pro-

cedure), and seeing if these criteria can essentially determine the priors.

The criteria are stated for general model selection problems in Section 2,

which also discusses their historical antecedents. To illustrate that applica-

tion of the criteria can largely determine model selection priors, we turn to

a specific problem in Section 3 – variable selection in normal linear models.

The resulting priors for variable selection are new and result in closed form

Bayes factors; for those primarily interested in the methodology itself, the

resulting priors and Bayes factors are given in Section 4.

1.2. Notation. Let y be a data vector of size n from one of the models

M0 : f0(y | α), Mi : fi(y | α,βi), i = 1, 2, . . . , N − 1 ,(1)

where α and the βi are unknown model parameters, the latter having di-

mension ki. M0 will be called the null model and is nested in all of the
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considered models.

Under the null model, the prior is π0(α); under model Mi, and without

loss of generality, we express the model selection prior as

πi(α,βi) = πi(α)πi(βi | α).

Note that the parameter α occurs in all of the models, so that α is usu-

ally referred to as the common parameters; the βi are called model specific

parameters.

Assuming that one of the entertained models is true, the posterior prob-

ability of each of the models Mi can be written in the convenient form

(2) Pr(Mi | y) =
Bi0

1 +
(∑N−1

j=1 Bj0 Pj0
) ,

where Pj0 is the prior odds Pj0 = Pr(Mj)/Pr(M0), with Pr(Mj) being the

prior probability of model Mj , and Bj0 is the Bayes factor of model Mj to

M0 defined by

(3) Bj0 =
mj(y)

m0(y)
, with mj(y) =

∫
fj(y | α,βi)πj(α, βj) dα dβj

and m0(y) =
∫
f0(y | α)π0(α)dα being the marginal likelihoods of model

Mj and M0 corresponding to the model prior densities πj(α, βj) and π0(α).

(Any model could serve as the base model for computation of the Bayes

factors in (2), but use of the null model is common and convenient.) The

focus in this paper is on choice of model priors π0(α) and πj(α, βj).

2. Criteria for objective model selection priors.

2.1. Introduction. The arguments concerning prior choice in testing and

model selection in Jeffreys (1961) are often called Jeffreys’ desiderata (see

Berger and Pericchi, 2001) and are the precursors to the criteria developed

herein. (Robert, Chopin and Rousseau, 2009, is a comprehensive and modern

review of Jeffreys’ book.) These and related ideas have been repeatedly used

to evaluate or guide development of objective model priors (see e.g. Berger

and Pericchi, 2001; Bayarri and Garćıa-Donato, 2008; Liang et al., 2008;

and Forte, 2011). We group the criteria into four classes: basic, consistency

criteria, predictive matching criteria, and invariance criteria.
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2.2. Basic criteria. As mentioned in the Introduction, priors for the non-

common parameters βi should be proper, because they only occur in the

numerator of the Bayes factors Bi0 and hence, if using an improper prior,

the arbitrary constant for the improper prior would not cancel, making Bi0

ill-defined. There have been various efforts at using improper priors and

defining a meaningful scaling (Ghosh and Samanta, 2002; Spiegelhalter and

Smith, 1982); and other methods have been proposed that can be inter-

preted as implicitly scaling the improper prior Bayes factor (see details and

references in Bayarri and Garćıa-Donato, 2008), but we are restricting con-

sideration here to real Bayesian procedures.

Similarly, vague proper priors cannot be used in determining the Bi0,

since the arbitrary scale of vagueness appears as a multiplicative term in

the Bayes factor, again rendering the Bayes factor arbitrary. Thus we have

Criterion 1 - Basic: Each conditional prior πi(βi | α) must be proper

(integrating to one) and cannot be arbitrarily vague in the sense of almost

all of its mass being outside any believable compact set.

2.3. Consistency criteria. Following Liang et al. (2008), we consider two

primary consistency criteria – model selection consistency and information

consistency:

Criterion 2 - Model selection consistency: If data y have been gener-

ated by Mi, then the posterior probability of Mi should converge to 1 as the

sample size n→∞.

Model selection consistency is not particularly controversial, although it

can be argued that the true model is never one of the entertained models,

so that the criterion is vacuous. Still, it would be philosophically troubling

to be in a situation with infinite data generated from one of the models

being considered, and not choosing the correct model. A number of recent

references concerning this criterion are Fernández, Ley and Steel (2001);

Berger, Ghosh and Mukhopadhyay (2003); Liang et al. (2008); Casella et al.

(2009); Guo and Speckman (2009).

Criterion 3 - Information consistency: For any model Mi, if {ym,m =
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1, . . .} is a sequence of data vectors of fixed size such that, as m→∞,

(4) Λi0(ym) =
supα,βi fi(ym | α, βi)

supα f0(ym | α)
→∞ , then Bi0(ym)→∞ .

In normal linear models, this is equivalent to saying that, if one considers

a sequence of data vectors for which the corresponding F (or t) statistic goes

to infinity, then the Bayes factor should also do so for this sequence. Jeffreys

(1961) used this argument to justify a Cauchy prior in testing that a normal

mean is zero, and the argument has also been highlighted in Berger and

Pericchi (2001); Bayarri and Garćıa-Donato (2008); Liang et al. (2008). One

can construct examples in which a real Bayesian answer violates information

consistency, but the examples are based on very small sample sizes and priors

with extremely flat tails. Furthermore, violation of information consistency

would place frequentists and Bayesians in a particularly troubling conflict,

which many would view as unattractive.

A third type of consistency has been proposed to address the fact that

objective model selection priors typically depend on specific features of the

model, such as the sample size or the particular covariates being considered.

Criterion 4 - Intrinsic prior consistency: Let πi(βi | α, n) denote the

prior for the model specific parameters of model Mi with sample size n. Then,

as n→∞ and under suitable conditions on the evolution of the model with

n, πi(βi | α, n) should converge to a proper prior πi(βi | α).

The idea here is that, while features of the model, sample size (and possi-

bly even data) frequently affect model selection priors, such features should

disappear for large n. If there is such a limiting prior it is called an intrinsic

prior; see Berger and Pericchi (2001) for extensive discussion and previous

references. (Note that some have used the phrase ‘intrinsic prior’ to refer

to specific priors arising from a specific model selection method, but we use

the term here generically.)

2.4. Predictive matching criteria. The most crucial aspect of objective

model selection priors is that they be appropriately ‘matched’ across models

of different dimensions. Having a prior scale factor ‘wrong’ by a factor of 2
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does not matter much in one dimension, but in 50 dimensions that becomes

an error of 250 in the Bayes factor. There have been many efforts to achieve

such matching in model selection, including Spiegelhalter and Smith (1982);

Suzuki (1983); Laud and Ibrahim (1995); Ghosh and Samanta (2002).

The standard approach to predictive matching is modeled after Jeffreys

(1961). For example, Jeffreys defined a ‘minimal sample size’ for which

one would logically be unable to discriminate between two hypotheses and

argued that the prior distributions should be chosen to then yield equal

marginal likelihoods for the two hypotheses. Here is an illustration of this

type of argument, from Berger, Pericchi and Varshavsky (1998).

Example: Suppose one is comparing two location-scale models

M1 : y ∼ 1

σ
p1

(
y − µ
σ

)
and M2 : y ∼ 1

σ
p2

(
y − µ
σ

)
.

Intuitively, two independent observations (y1, y2) should not allow for dis-

crimination between these models, since two observations only allow setting

of the center and scale of the distribution; there are no ‘degrees of free-

dom’ left for model discrimination. Now consider the choice of prior (for

both models) π(µ, σ) = 1/σ. It is shown in Berger, Pericchi and Varshavsky

(1998) that ∫
1

σ2
p1

(
y1 − µ
σ

)
p1

(
y2 − µ
σ

)
π(µ, σ)dµdσ

=

∫
1

σ2
p2

(
y1 − µ
σ

)
p2

(
y2 − µ
σ

)
π(µ, σ) dµdσ =

1

2|y1 − y2|
,

for any pair of observations y1 6= y2, so that the models would be said to

be predictively matched for all minimal samples. The Bayes factor between

the models is then obviously 1, agreeing with the earlier intuition that a

minimal sample should not allow for model discrimination.

This argument was formalized by Berger and Pericchi (2001) as follows.

Definition 1. The model/prior pairs {Mi, πi} and {Mj , πj} are pre-

dictive matching at sample size n∗ if the predictive distributions mi(y
∗) and

mj(y
∗) are close in terms of some distance measure for data of that sam-

ple size. The model/prior pairs {Mi, πi} and {Mj , πj} are exact predictive

matching at sample size n∗ if mi(y
∗) = mj(y

∗) for all y∗ of sample size n∗.
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One only wants predictive matching for ‘minimal’ sample sizes, since, for

larger sample sizes, the discrimination between models occurs through the

marginal densities; they must differ for discrimination.

Criterion 5 - Predictive matching: For appropriately defined ‘minimal

sample size’ in comparing Mi with Mj, one should have model selection

priors that are predictive matching. Optimal (though not always obtainable)

is exact predictive matching.

In Berger and Pericchi (2001), minimal sample size was defined as the

smallest sample size for which the models under consideration have finite

marginal densities when objective estimation priors are used. Typically this

minimal sample size equals the number of parameters in the model or, more

generally, is the number of observations needed for all parameters to be

identifiable. For model selection, however, minimal sample size needs to be

defined relative to the model selection priors being utilized. Hence we have

the following general definition.

Definition 2 (Minimal training sample). A minimal training sam-

ple y∗i for {Mi, πi} is a sample of minimal size n∗i ≥ 1 with a finite non-zero

marginal density mi(y
∗
i ).

There are many possibilities for even exact predictive matching. We here

highlight two types of exact predictive matching, which are of particular

relevance to the development of objective model selection priors for the

variable selection problem discussed in Section 3.

Definition 3 (Null predictive matching). The model selection pri-

ors are null predictive matching if each of the model/prior pairs {Mi, πi}
and {M0, π0} are exact predictive matching for all minimal training samples

y∗i for {Mi, πi}.

Definition 3 reflects the common view – starting with Jeffreys (1961) – that

data of a minimal size should not allow one to distinguish between the null

and alternative models. Null predictive matching arguments have also been

used by Ghosh and Samanta (2002) and Spiegelhalter and Smith (1982)

among others.
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Definition 4 (Dimensional predictive matching). The model se-

lection priors are dimensional predictive matching if each of the model/prior

pairs {Mi, πi} and {Mj , πj} of the same complexity/dimension (i.e. ki = kj)

are exact predictive matching for all minimal training samples y∗i for models

of that dimension.

The next section gives the most prominent example of dimensional predictive

matching.

2.5. Invariance criteria. Invariance arguments have played a prominent

role in statistics (cf. Berger, 1985), especially in objective Bayesian estima-

tion theory. They are also extremely helpful in part of the specification of

objective Bayesian model selection priors.

A basic type of invariance that is almost always relevant for model selec-

tion is invariance to the units of measurement being used:

Criterion 6 - Measurement invariance: The units of measurement used

for the observations or model parameters should not affect Bayesian answers.

A much more powerful, but special, type of invariance arises when the

family of models under consideration are such that the model structures are

invariant to group transformations. Following the notation in Berger (1985),

we formally state

Definition 5. The family of densities for y ∈ Rn, F := {f(y | θ) :

θ ∈ Θ} is said to be invariant under the group of transformations G := {g :

Rn → Rn} if, for every g ∈ G and θ ∈ Θ, there exists a unique θ∗ ∈ Θ such

that X = g(Y ) has density f(x | θ∗) ∈ F. In such a situation, θ∗ will be

denoted ḡ(θ).

There are two consequences of applying invariance here. The first is a new

criterion:

Criterion 7 - Group invariance: If all models are invariant under a group

of transformations G0, then the conditional distributions, πi(βi | α), should

be chosen in such a way that the conditional marginal distributions

(5) fi(y | α) =

∫
fi(y | α,βi)πi(βi | α) dβi,
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are also invariant under G0. (Here, (α,βi, i) would correspond to θ in the

definition of invariance.)

Indeed, the πi(βi | α) could hardly be called objective model selection

priors if they eliminated an invariance structure that was possessed by all

of the original models. This can also be viewed as a formalization of the

Jeffreys (1961) requirement that the prior for a non-null parameter should

be “centered at the simple model.”

The second use of invariance is in determining the objective prior for the

common model parameters πi(α). Since all of the marginal models, fi(y | α),

will be invariant under G0 if the Group invariance criterion is applied, there

are compelling reasons to choose the prior

(6) πi(α) = πH(α) for all i ,

where πH(·) is the right-Haar density corresponding to the group G0. The

reason is given in Berger, Pericchi and Varshavsky (1998), namely that under

commonly satisfied conditions (satisfied for the variable selection problem –

see Result 2 in Section 3), use of a common πH(α) for all marginal models

then ensures exact predictive matching among the models for the minimal

training sample size, as in the example given in Section 2.4.

The most surprising feature of this result is that πH(α) is typically im-

proper (and hence could be multiplied by an arbitrary constant) and yet, if

the same πH(α) is used for all marginal models, the prior is appropriately

calibrated across models in the strong sense of exact predictive matching.

(For any improper prior that occurred in both the numerator and denomina-

tor of a Bayes factor, any arbitrary multiplicative constant would obviously

cancel but, this is not nearly as compelling a justification as exact predic-

tive matching.) The right-Haar prior is also the objective estimation prior

for such models, and so has been extensively studied in invariant situations.

Thus, for invariant models, the combination of the Group invariance crite-

rion and (exact) Predictive matching criterion allows complete specification

of the prior for α in all models. It is also surprising that this argument does

not require orthogonality of α and βi (i.e., cross-information of zero in the

Fisher information matrix) which, since Jeffreys (1961), has been viewed
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as a necessary condition to say that one can use a common prior for α in

different models (see, e.g., Hsiao, 1997; Kass and Vaidyanathan, 1992).

There might be concern here as to use of improper priors, even if they are

exact predictive matching, especially because of the discussion in Section 2.2.

This concern is obviated by the realization that use of any series of proper

priors approximating πH(α) will, in the limit, yield Bayes factors equal to

that obtained directly from πH(α); see Lemma 1 in Appendix 1.

3. Objective prior distributions for variable selection in normal

linear models.

3.1. Introduction. We now turn to a particular scenario – variable selec-

tion in normal linear models – to illustrate application of the criterion in

Section 2. Consider a response variable Y known to be explained by k0 vari-

ables (e.g. an intercept) and by some subset of p other possible explanatory

variables. This can formally be stated as a model selection problem with the

following 2p competing models for data y = (y1, . . . , yn):

M0 : f0(y | β0, σ) = Nn(y |X0β0, σ
2I)

Mi : fi(y | βi, β0, σ) = Nn(y |X0β0 +Xiβi, σ
2I), i = 1, . . . , 2p − 1 ,(7)

where β0, σ, and the βi are unknown. Here X0 is a n × k0 design matrix

corresponding to the k0 variables common to all models; often X0 = 1 so

M0 contains only the intercept. Finally, the Xi are n × ki design matrices

corresponding to ki of the p other possible explanatory variables. We make

the usual assumption that all design matrices are full rank (without loss of

generality). Note that, if the covariance matrix is of the form σ2Λ with Λ

known, simply transform Y so that the covariance matrix is proportional to

the identity; note that this does not alter the meaning of the β’s and hence

the meaning of the models. Also, setting α = (β0, σ) and N = 2p puts this

in the general framework discussed earlier, with M0 being the null model.

The primary development is for the most common situation of σ unknown

and k0 ≥ 1, but the simpler cases where either σ is known or k0 = 0 (i.e., the

null model only contains the error term) are briefly treated in Section 3.5.
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In this setting and following Jeffreys desiderata, Zellner and Siow (1980)

recommended use of common objective estimation priors for α (after or-

thogonalization) and multivariate Cauchy priors for πi(βi | α), centered at

zero and with prior scale matrix σ2n(X ′iXi)
−1; a similar scale matrix was

used in Zellner (1986) for the g-prior.

3.2. Proposed prior (the ‘robust prior’). It is useful to first write down

the specific form of the prior that will result from applying the criteria.

Indeed, under model Mi, the prior is of the form

πRi (β0,βi, σ) = π(β0, σ) × πRi (βi | β0, σ)(8)

= σ−1 ×
∫ ∞
0
Nki(βi | 0, gΣi) p

R
i (g) dg,

where Σi = Cov(β̂i) = σ2 (V t
i Vi)

−1 is the covariance of the maximum

likelihood estimator of βi, with

(9) Vi = (In −X0(X
t
0X0)

−1Xt
0)Xi

and

(10) pRi (g) = a [ρi(b+ n)]a (g + b)−(a+1)1{g>ρi(b+n)−b} ,

(11) with a > 0, b > 0, and ρi ≥
b

b+ n
.

Note that these conditions ensure that pRi (g) is a proper density and g is

positive (necessary in (8)), so that πRi (βi | β0, σ) is proper, satisfying the

first part of the Basic criterion of Section 2.2. The particular choices of

hyperparameters that we favor are discussed in Section 3.4.

The prior (8) has its origins in the robust prior introduced by Strawder-

man (1971) and Berger (1980, 1985), for estimating a k-variate normal mean

β in the sampling scheme β̂ ∼ Nk(β,Σ). More precisely, the full conditional

of βi induced by (8) generalizes the above mentioned robust prior consider-

ing the sampling distribution of the maximum likelihood estimator, namely

β̂i ∼ Nki(βi, σ2 (V t
i Vi)

−1). The primary reasons for Strawderman (1971)

and Berger (1980, 1985) to consider such priors was that it results in closed
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form inferences, including closed form Bayes factors, and results in estimates

that are robust in various senses. For this reason, we continue the tradition

of calling (8) the robust prior and use a superindex R to denote it. Note also

that priors of this form have been previously considered. The priors proposed

by Liang et al. (2008) are particular cases with a = 1/2, b = 1, ρi = 1/(1+n)

(the hyper-g prior) and a = 1/2, b = n, ρi = 1/2 (the hyper-g/n prior).

The prior in Cui and George (2008) has a = 1, b = 1, ρi = 1/(1 + n).

The original Berger’s prior for robust estimation is the particular case with

a = 1/2, b = 1, ρi = (ki + 1)/(ki + 3); closely related priors are those of

Maruyama and Strawderman (2010); Maruyama and George (2008).

Finally, it is useful to note that πRi (βi | β0, σ) behaves in the tails as a

multivariate Student distribution (already noticed for a particular case in

Berger, 1980, and the reason for its robust estimation properties).

Proposition 1. Writing ‖βi‖2 = βti(V
t
i Vi)βi,

lim
‖βi‖2→∞

πRi (β | β0, σ)

Stki(β | 0, (aΓ(a))1/a ρiB∗(b, σ)/a, 2a)
= 1,

where B∗(b, σ) = σ2(b+ n)(V t
i Vi)

−1.

Proof. See Appendix 2.

In the model selection scenario, the thickness of the prior tails is related to

the information consistency criteria, and is the reason Jeffreys (1961) used

a Cauchy as the prior for testing a normal mean. Also, using this result,

we can see that πRi (βi | β0, σ) has close connections with the Zellner-Siow

priors; in fact, for a = 1/2, b = n, ρi = 2/π and large n, πRi (βi | β0, σ) and

the Zellner-Siow priors have exactly the same tails.

3.3. Justification of model selection priors of the form (8). We will use

the Group invariance criterion and Predictive matching criterion (along with

practical computational considerations) to justify use of model selection pri-

ors of the form (8). We first justify the use of πR(β0, σ) = 1/σ for the com-

mon parameters and then justify the choice πRi (β | β0, σ) for the model

specific parameters.
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3.3.1. Justification of the prior for the common parameters. It is conve-

nient, in this section, to consider a more general class of conditional priors,

(12) πi(βi | β0, σ) = σ−kihi(
βi
σ

) ,

where hi is any proper density with support Rki . The robust prior is the

particular case

(13) hRi (u) =

∫
Nki(u | 0, g (V t

i Vi)
−1) pRi (g) dg .

It is shown, in Appendix 3, that all models in (7) are invariant under the

group of transformations

G0 = {g = (c, b) ∈ (0,∞)×Rk0 : g(y)→ cy +X0b}.

The following establishes a necessary and sufficient condition on the condi-

tional prior πi(βi | β0, σ) for the Group invariance criterion to hold for this

group.

Result 1. The conditional marginals

(14) fi(y | β0, σ) =

∫
Nn(y |X0β0 +Xiβi, σ

2I)πi(βi | β0, σ) dβi

are invariant under G0 if and only if πi(βi | β0, σ) has the form (12).

Proof. See Appendix 3.

Based on the Group invariance criterion, Result 1 implies that, condition-

ally on the common parameters β0 and σ, βi must be scaled by σ, centered

at zero and not depend on β0 (as was argued for simple normal testing in

Jeffreys, 1961). Note, in particular, that the robust prior in (8) satisfies the

Group invariance criterion (although it is not the only prior that does so).

Next, since each marginal model fi(y | β0, σ) resulting from a prior in

(12) is invariant with respect to G0, the suggestion from Berger, Pericchi

and Varshavsky (1998) is to use the right-Haar density for the common

parameters (β0, σ), namely

πi(β0, σ) = πH(β0, σ) = σ−1,
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the right-Haar prior for the location-scale group. Using this, the overall

model prior would be of the form

(15) πi(β0,βi, σ) = σ−1−ki hi(
βi
σ

).

The justification for the right-Haar prior in Berger, Pericchi and Varshavsky

(1998) depends, however, on showing that it is predictive matching, in the

sense described in the following result.

Result 2. For Mi, let the prior πi(β0,βi, σ) be of the form (15), where

hi is symmetric about zero. Then all model/prior pairs {Mi, πi} are exact

predictive matching for n∗ = k0 + 1.

Proof. See Appendix 4.

The conclusion of the above development is that the Group invariance cri-

terion and Predictive matching criterion imply that model selection priors

should be of the form (15), with hi symmetric about zero. It would thus ap-

pear that the robust prior satisfies these criteria, as (13) is clearly symmetric

about zero. (Any scale mixture of Normals would also satisfy these criteria,

since the resulting h(·) would be symmetric about 0.) Note, however, that

hRi has scale matrix proportional to (V t
i Vi)

−1, and Vi in (9) requires both

X0 and Xi, which would seem to indicate that a sample size of k0 + ki is

required. Hence, Result 2 would seem to apply to the robust prior only if

ki = 1.

This is a situation, however, where the definition of a minimal sample size

is somewhat ambiguous. For instance, suppose one were presented X0 and

Xi for k0 + ki observations for each model Mi, but that only k0 + 1 of the

yi were reported for all models, with the rest being missing data. This is

still a minimal sample size in the sense that it is the smallest collection of yi

for which all marginal densities exist for the robust prior, and now Result 2

applies to say that the robust prior is predictive matching for all models.

3.3.2. Justification of the prior for the model specific parameters. While

the robust prior is thus validated as satisfying the Group invariance criterion

and a version of the Predictive matching criterion, there are many other
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model selection priors of the form (15) which also satisfy these criteria. There

are additional reasons, however, to focus on the robust priors with hRi (u) of

the form (13). The first is that only scale mixtures of normals seem to have

any possibility of yielding Bayes factors that have closed form. While we

have not focused on this as a necessary criterion, it is an attractive enough

property to justify the restriction. There are, however, two other features of

(13) that need justification: the use of the mixture density pRi (g), and the

choice of the conditional scale matrix (V t
i Vi)

−1.

The mixture density pRi (g) encompasses virtually all of the mixtures that

have been found which can lead to closed form expressions for Bayes factors;

for example, Zellner-Siow priors are scale mixtures of normals but with a

different mixing density which does not lead to close-form expressions. (The

choice of mixing density in Maruyama and George, 2008, is a very inter-

esting exception, in that it leads to a closed form expression for a different

reason than does pRi (g).) So, while not completely definitive, pRi (g) is an

attractive choice. The choice of (V t
i Vi)

−1 as the conditional scale matrix

seems much more arbitrary, but there is one standard argument and one

surprising argument in its favor.

The standard argument is the Measurement Invariance criterion; if the

conditional scale matrix is chosen to be (V t
i Vi)

−1, it is easy to see that

Bayes factors will be unaffected by changes in the units of measurement of

either y or the model parameters. But there are many other choices of the

conditional scale matrix which also have this property.

A quite surprising predictive matching result that supports use of (V t
i Vi)

−1

as the conditional scale matrix is as follows.

Result 3. For Mi, let the prior be as in (15) where hi is the scale

mixture of normals in (13). The priors are then null predictive matching

and dimensional predictive matching for samples of size k0 + ki, and no

choice of the conditional scale matrix other than (V t
i Vi)

−1 (or a multiple)

can achieve this predictive matching.

Proof. See Appendix 5.

This is surprising, in that it is a predictive matching result for larger sam-
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ple sizes (k0+ki) than are encountered in typical predictive matching results,

such as Result 2. That it only holds for conditional scale matrices propor-

tional to (V t
i Vi)

−1 is also surprising, but does strongly support choosing a

prior of the form (8).

3.4. Choosing the hyperparameters for pRi (g).

3.4.1. Introduction. The Bayes factor of Mi to M0 arising from the ro-

bust prior πRi in (8) can be compactly expressed as the following function

of the hyperparameters a, b and ρi:

(16) Bi0 = Q
−n−k0

2
i0

2a

ki + 2a
[ρi(n+ b)]−ki/2 APi,

where APi is the hypergeometric function of two variables (see Weisstein,

2009), or Apell hypergeometric function

APi = F1

[
a+

ki
2

;
ki + k0 − n

2
,
n− k0

2
; a+ 1 +

ki
2

;
(b− 1)

ρi(b+ n)
;
b−Q−1i0
ρi(b+ n)

]
,

and Qi0 = SSEi/SSE0 is the ratio of the sum of squared errors of models

Mi and M0. The details of this computation are given in Appendix 6.

Having a closed form expression for Bayes factors is not one of our formal

criteria for model selection priors, but it is certainly a desirable property,

especially when realizing that one is dealing with 2p models in variable

selection.

The values for the hyperparameters that will be recommended are a =

1/2, b = 1 and ρi = (ki + k0)
−1. The arguments justifying this specific

recommendation follow.

3.4.2. Implications of the consistency criteria. The consistency criteria

of Section 2.1 provide considerable guidance as to the choice of a, b and the

ρi. In particular, they lead to the following result.

Result 4. The three consistency criterion of Section 2.3 are satisfied

by the robust prior if a and ρi do not depend on n, limn→∞
b
n = c ≥ 0,

limn→∞ ρi (b+ n) =∞, and n ≥ ki + k0 + 2a.
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This result follows from (18), (20), and (22) below, which are presented as

separate results because they can be established in more generality than

simply for the robust prior.

Use of model selection consistency. Suppose Mi is the true model, and con-

sider any other model Mj . A key assumption for model selection consistency

(Fernández, Ley and Steel, 2001) is that, asymptotically, the design matrices

are such that the models are differentiated, in the sense that

(17) lim
n→∞

βtiV
t
i (I − Pj)Viβi

n
= bj ∈ (0,∞) ,

where Pj = Vj(V
t
j Vj)

−1V t
j .

Result 5. Suppose (17) is satisfied and that the priors πi(β0,βi, σ) are

of the form (15), with hi(u) =
∫
Nki(u | 0, g (V t

i Vi)
−1) pi(g) dg. If the pi(g)

are proper densities such that

lim
n→∞

∫ ∞
0

(1 + g)−ki/2 pi(g) dg = 0 ,

model selection consistency will result.

Proof. The proof follows directly from the proof of Theorem 3 in Liang

et al. (2008) and is, hence, omitted.

Corollary 1. The prior distributions in (8) are model selection con-

sistent if

(18) lim
n→∞

ρi (b+ n) =∞ .

Proof. See Appendix 7.

Use of intrinsic prior consistency. Related to (17) is the condition that

(19) lim
n→∞

1

n
V t
l Vl = Ξl ,

for some positive definite matrix Ξl. This would trivially happen if either

there is a fixed design with replicates, or when the covariates arise randomly

from a fixed distribution having second moments.
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Result 6. If (19) holds,

(20) a and ρi do not depend on n, and
b

n
→ c ,

then the conditional robust prior πRi (βi | β0, σ) in (8) converges to the fixed

intrinsic prior

(21) πi(βi | β0, σ) =

∫ ∞
0
Nki(βi | 0, g

∗ σ2Ξ−1) pi(g
∗) dg∗,

where pi(g
∗) = a[ρi(c+ 1)]a (g∗ + c)−(a+1)1{g∗>ρi(c+1)−c}.

Proof. Changing variables to g∗ = g/n, the integral in (8) becomes∫ ∞
0
Nki

(
βi | 0, g∗σ2

(
1

n
V t
l Vl

)−1)
a

[
ρi

(
b

n
+ 1

)]a
×
(
g∗ +

b

n

)−(a+1)

1{g∗>ρi( bn+1)− b
n
}dg
∗ .

For large n and using (19) and (20), it is easy to find an integrable function

dominating the integrand, so the dominated convergence theorem can be

applied to interchange the integral and limit, yielding the result.

Use of information consistency. For the variable selection problem, it is

easy to see that

sup
βl,β0, σ

fl(y | β0, βl, σ) = (2πSSEl/n)−n/2 exp (−n/2)

for model Ml. Hence, for any given data set y the estimated likelihood ratio

in (4) is

Λi0(y) = Qi0(y)−n/2 ,

where Qi0(y) is the ratio of the residual sum of squares of the two mod-

els for y. Therefore, having a sequence of data vectors {ym} such that

limm→∞ Λi0(ym) = ∞ is equivalent to having a sequence of data vectors

such that limm→∞Qi0(ym)→ 0.

Result 7. If ρi ≥ b/(b+ n), the prior in (8) results in an information

consistent Bayes factor for Mi versus M0, if and only if

(22) n ≥ ki + k0 + 2a .
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Proof. See Appendix 8.

3.4.3. Specific choices of hyperparameters.

The choice of a. Note that, with ki > kj and n ≥ ki+k0+1, the Bayes factor

Bij between Mi and Mj exists. It is desirable to have information consistency

for all such sample sizes, in which case (22) would require a ≤ 1/2. The choice

a = 1/2 is attractive, in that it coincides with the choice in Berger (1985)

and, with this choice, πRl has Cauchy tails, as do the popular proposals of

Jeffreys (1961) and Zellner and Siow (1980, 1984).

Additional motivation for this choice can be found by studying the be-

havior of Bi0 when the information favors M0, in the sense that Qi0 → 1.

Indeed, Forte (2011) shows that the limiting value of Bi0 is then bounded

above by 2a/(2a+ki) for any sample size, including a small sample size such

as k0+ki+1. A small value of a would imply strong evidence in favor of M0,

which does not seem reasonable when the sample size is small. In contrast,

the recommended choice would yield a bound of 1/(1 + ki), which certainly

favors M0, but in a sensibly modest fashion when the sample size is small.

The choice of b. To understand the effect of b and the ρi on the robust

prior, it is useful to begin by considering the approximating intrinsic prior

in Result 6, which depends on the hyperparameters only through the mixing

distribution pRi (g∗), which for a = 1/2 is given by (when b/n→ c)

(23) pRi (g∗) =
1

2
[ρi(c+ 1)]1/2 (g∗ + c)−3/21{g∗>ρi(c+1)−c} .

This is a very flat tailed distribution with median 4ρi(1 + c)− c. Because it

is so flat-tailed, the choice of c in (g∗+ c)−3/2 is not particularly influential,

so that the main issue is the choice of the median. For selecting a median,

however, ρi and c are confounded – i.e., we do not need both. For simplicity,

therefore, we will choose c = 0 (i.e., b such that b/n→ 0).

If b/n → c = 0, the intrinsic prior does not depend at all on b. Further-

more, there is very little dependence on b, in this case, for the actual robust

prior, as was verified for moderate and small n in Forte (2011) through an

extensive numerical study.

Since any choice of b for which b/n→ 0 makes little difference, it would be

reasonable to make such a choice based on pragmatic considerations. In this
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regard, note that the choice b = 1 has a notable computational advantage,

in that the hypergeometric function of two variables, APi, then becomes the

standard hypergeometric function of one variable (Abramowitz and Stegun,

1964). We thus choose b = 1.

The choice of ρi. This is the most difficult choice to make, since there is

only limited guidance from the various criteria. To review (and assuming

b = 1), we have that ρi ≥ 1/(1 + n) (so that g > 0); limn→∞ ρi(1 + n) =∞
(for model selection consistency); and ρi should not depend on n (for there

to be a limiting intrinsic prior). Also note that n is necessarily greater than

or equal to k0 + ki for the robust prior and marginal likelihood to exist;

supposing we wish to choose ρi so that the conditions are satisfied for all

such n, these restrictions only imply that

ρi must be a constant (independent of n) and ρi ≥ 1/(1 + k0 + ki) .

We present two arguments below for the specific choice ρi = 1/(k0 + ki).

Argument 1. Consider the Bayes factor Bi0 of Mi to M0. In Result 3, it

was established that Bi0 = 1 for a sample of size n = ki + k0, but a natural

question is – what should we expect for a sample of size n = ki+k0+1? Can

a single additional observation provide much information to discriminate

between Mi and M0? Intuition says no. To quantify the intuition, consider

the situation in which Qi0 → 1, which corresponds to information being

as supportive as possible of M0. It is straightforward to show that, when

n = ki + k0 + 1,

(24) lim
Qi0→1

BR
i0 =

1

ki + 1
[ρi(ki + k0 + 2)]−ki/2 .

As we should not expect a single extra observation to provide very strong

evidence, even in the case that Qi0 → 1, the implication is that we should

choose ρi to be as small as is reasonable. The choice ρi = 1/(k0 + ki + 1) is

the minimum value of ρi and is, hence, certainly a candidate.

Argument 2. Consider the intrinsic prior defined by (21) and (23). Note

that we have chosen c = 0 (through the choice of b = 1) and, after making

the transformation g̃ = g∗/ρi, the intrinsic prior can be written

(25) πi(β0,βi, σ) = σ−1 ×
∫ ∞
0
Nki(βi | 0, g̃ ρi Ξ

−1) pi(g̃) dg̃ ,
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where pi(g̃) = (1/2)(g̃)−3/21{g̃>1}. Thus we see that, in the intrinsic prior

approximation to the robust prior, ρi can be interpreted as simply a scale

factor to the conditional covariance matrix. This helps, in that there have

been previous suggestions related to ‘unit information priors’ (Kass and

Wasserman, 1995; Berger, Bayarri and Pericchi, 2012). For instance, Berger,

Bayarri and Pericchi (2012) considers the group means problem defined as

follows: the observations are

yij = µi + εij , i = 1, . . . , k and j = 1, . . . , r ,

with i.i.d. εij ∼ N(· | 0, σ2). Thus there are k different means, µi, and r

replicate observations for each. Applying the robust prior to this example

(considering the full model with all µi) results in a conditional covariance

matrix in (25) of ρ k I, which is much too diffuse if k is large and ρ is not

small. Selecting ρ = 1/k, on the other hand, restores a ‘unit information’

prior. Here k0=0, so the choice ρ = 1/k is equivalent to the overall choice

ρi = 1/(k0 + ki). This overall choice is obviously very close to earlier sug-

gested 1/(k0 + ki + 1).

3.5. Two simpler cases. We conclude with discussion of the modifica-

tions of the robust prior that are needed when β0 = 0 or when σ is known.

3.5.1. When β0 = 0 and σ is unknown. When β0 = 0, the robust prior

distribution is

πRi (βi, σ) = π(σ) × πRi (βi | σ) = σ−1 ×
∫ ∞
0
Nki(βi | 0, gΣi) p

R
i (g) dg,

where Σi = Cov(β̂i) = σ2 (Xt
iXi)

−1, the covariance of the maximum likeli-

hood estimator of βi and, as before,

pRi (g) = a[ρi(b+ n)]a (g + b)−(a+1), g > ρi(b+ n)− b.

The corresponding Bayes factor is as in (16) with k0 = 0; when we choose

a = 1/2, b = 1 and ρi = 1/(ki + k0) it assumes the simpler form in (26),

again with k0 = 0.

In regards to the Group invariance criterion, when β0 = 0 the models are

invariant under the scale group of transformations, G0 = {y → cy, c > 0},
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and it is easy to show that π(βi | β0, σ) still needs to be a scale prior, as

in (12), to preserve the invariance structure; also, the use of π(σ) = 1/σ is

again justified by predictive matching, as it is the Haar prior for the group.

Null and dimensional predictive matching also hold as well as the various

consistency criteria.

3.5.2. When σ is known and β0 6= 0. When σ is known, the robust prior

becomes

πRi (βi, β0, σ) = π(β0) × πRi (βi | β0) ∝
∫ ∞
0
Nki(βi | 0, gΣi) p

R
i (g) dg,

where Σi = Cov(β̂i) = σ2 (V t
i Vi)

−1, and pRi (g) is as before.

The models are now invariant under the location group G0 = {y →
y +X0 b, b ∈ Rk0}, and it is easy to show that π(βi | β0) just needs to be

independent of β0 to preserve the invariance structure; the use of the Haar

prior π(β0) = 1 is again justified through predictive matching arguments.

The Bayes factor can be expressed as

Bi0 =

∫ ∞
0

(g + 1)−ki/2Λ

(
1
g+1
−1

)
0i pi(g)dg ,

where Λ0i = exp
(
−[SSE0 − SSEi]/(2σ2)

)
. This is curiously difficult to ex-

press in closed-form in general but, for our preferred choice b = 1, change of

variables to h = 1/(1 + g) yields

Bi0 =

∫ ∞
0

(g + 1)−ki/2Λ

(
1
g+1
−1

)
0i a(ρi(1 + n))a (g + 1)−(a+1)1{g>ρi(1+n)−1}dg

= a(ρi(1 + n))aΛ−10i

∫ 1/[ρi(1+n)]

0
h(a−1+ki/2)e−h[SSE0−SSEi]/(2σ2)dh

= a(ρi(1 + n))aΛ−10i

(
[SSE0 − SSEi]

2σ2

)−(a−2+ ki
2
)

×
(

Γ

[
a+

ki
2

]
− Γ

[
a+

ki
2
,
[SSE0 − SSEi]

2σ2ρi(1 + n)

])
,

where Γ(ν1, ν2) is the incomplete gamma function,

Γ(ν1, ν2) =

∫ ∞
ν2

tν1−1e−t dt .
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All of the properties of the procedures for the σ unknown case also hold

here, except for null predictive matching.

4. Methodological summary for variable selection. Although the

primary purpose of the paper was to develop the criteria for choice of model

selection priors and study their implementation in an example, the method-

ological results obtained for the problem of variable selection in the normal

linear model, as outlined in Section 3.1, are of interest in their own right.

For ease of use, we summarize these developments here.

Using the notation of Section 3.1, the prior distribution recommended for

the parameters under model Mi is

πRi (β0,βi, σ) = σ−1 ×
∫ ∞
0
Nki(βi | 0, gΣi) p

R
i (g) dg,

where Σi = σ2 (V t
i Vi)

−1, Vi = (In −X0(X
t
0X0)

−1Xt
0)Xi, and

pRi (g) =
1

2

[
(1 + n)

(ki + k0)

] 1
2

(g + 1)−3/21{g>(ki+k0)−1(1+n)−1} .

The resulting Bayes factors have closed form expressions in terms of the

the hypergeometric function, namely

(26)

Bi0 =

[
n+ 1

ki + k0

]− ki
2 Q

−n−k0
2

i0

ki + 1
2F1

[ki + 1

2
;
n− k0

2
;
ki + 3

2
;
(1−Q−1i0 )(ki + k0)

(1 + n)

]
,

where 2F1 is the standard hypergeometric function (see Abramowitz and

Stegun, 1964) and Qi0 = SSEi/SSE0 is the ratio of the sum of squared

errors of models Mi and M0.

To implement Bayesian model selection through (2), one also needs the

prior odds ratios Pj0. A recommended objective Bayesian choice of these

odds ratios for the variable selection problem is Pj0 = kj !(p − kj)!/p!. For

extensive discussion and earlier references see Scott and Berger (2010).
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APPENDICES

A1. Approximations to improper priors.

Lemma 1. Consider πi(α) = ciψi(α), where ψi(α) increases mono-

tonically in i to π(α) and ci = 1/
∫
ψi(α)dα < ∞. Then, if

∫
fl(y |

α)π(α) dα <∞ for all densities fl(y | α),

lim
i→∞

∫
fl(y | α)πi(α) dα∫
fl′(y | α)πi(α) dα

=

∫
fl(y | α)π(α) dα∫
fl′(y | α)π(α) dα

.

Proof.∫
fl(y | α)πi(α) dα∫
fl′(y | α)πi(α) dα

=

∫
fl(y | α)ψi(α) dα∫
fl′(y | α)ψi(α) dα

−→
∫
fl(y | α)π(α) dα∫
fl′(y | α)π(α) dα

by the monotone convergence theorem.

Thus common proper priors can be used to approximate common im-

proper priors and, as the approximation improves, the Bayes factors for the

proper priors converge to the Bayes factor for the improper prior; this is why

Bayesians have always said that it is not illogical to use an improper prior for

a common parameter α in computing a Bayes factor. It is interesting that no

conditions are needed in lemma except that the marginal likelihoods exist

for the improper prior, which is clearly needed for the Bayes factor to even

be defined for the improper prior.

A2. Proof of Proposition 1. This proof requires the following lemma:

Lemma 2. If m > 1, p > 0, a > 0, and k ≥ 1, then

lim
z→∞

za+k
∫ 1

0
λa−1

( λ

m− λ

)k
e−

λ
m−λ ·p·zdλ = ma Γ(a+ k) p−(a+k).

Proof. For 0 < ε < 1 write

lim
z→∞

∫ 1

0
za+kλa−1

( λ

m− λ

)k
e−

λ
m−λ ·p·z dλ

= lim
z→∞

∫ ε

0
za+kλa−1

( λ

m− λ

)k
e−

λ
m−λ ·p·z dλ

+ lim
z→∞

∫ 1

ε
za+kλa−1

( λ

m− λ

)k
e−

λ
m−λ ·p·z dλ .(27)
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Note that

lim
z→∞

za+k λa−1
( λ

m− λ

)k
e−

λ
m−λ ·p·z = 0

and the integrand in the last integral in (28) is uniformly bounded over λ

and z. It follows from the dominated convergence theorem that the last term

is zero, so that

lim
z→∞

∫ 1

0
za+kλa−1

( λ

m− λ

)k
e−

λ
m−λ ·p·z dλ

= lim
z→∞

∫ ε

0
za+kλa−1

( λ

m− λ

)k
e−

λ
m−λ ·p·z dλ.(28)

Next, make the change of variables t = λ/(m− λ) to get∫ ε

0
λa−1

( λ

m− λ

)k
e−

λ
m−λ ·p·z dλ = ma

∫ ε
m−ε

0

tk+a−1

(1 + t)a+1
e−t·p·z dt.

To bound the integral of interest notice that, for t ∈ (0, ε/(m− ε)),

(29)
1

(1 + ε/(m− ε))a+1
≤ 1

(1 + t)a+1
≤ 1.

By integrating t out from (29) and multiplying the result by z(a+k) we get

both an upper and a lower bound for the integral of interest, namely

ma p−(a+k)
(

Γ(a+ k)− Γ(a+ k, ε
m−ε pz)

)
(1 + ε/(m− ε))a+1

≤ lim
z→∞

ma

∫ ε
m−ε

0
za+k

tk+a−1

(1 + t)a+1
e−t·p·z dt(30)

≤ ma p−(a+k)
(

Γ(a+ k)− Γ(a+ k,
ε

m− ε
pz)
)
,

where Γ(ν1, ν2) is the incomplete gamma function,

Γ(ν1, ν2) =

∫ ∞
ν2

tν1−1e−t dt,

which goes to zero as ν2 goes to infinity.

Taking limits in 30 as z →∞ gives

ma p−(a+k) Γ(a+ k)

(1 + ε/(m− ε))a+1
≤ lim

z→∞
ma

∫ ε
m−ε

0
za+k

tk+a−1

(1 + t)a+1
e−t·p·z dt

≤ ma p−(a+k) Γ(a+ k),
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The result follows from (28) the fact that the upper and lower bound are

equal as ε goes to 0.

Continuing with the proof of Proposition 1, we remove the subindex i for

simplicity in notation. Since the multivariate Student density can be written

as

Stk(β | 0, C∗, 2a) =
Γ(a+ k/2)

Γ(a)
(2π)−k/2

(
(aΓ(a))1/aσ2ρ (b+ n)

)−k/2
|V tV |1/2

(
1 +

(
2(aΓ(a))1/aρσ2(b+ n)

)−1
‖β‖2

)−(a+k/2)
,

it can be easily shown that:

lim
‖β‖2→∞

Stk(β | 0, C∗, 2a)

Γ(a+ k/2)(2π)−k/2 a
(
σ2ρ (b+ n)

)a |V tV |1/2 2a+k/2
(
‖β‖2

)−(a+k/2) =

=

(
2(aΓ(a))1/aρσ2(b+ n) lim

‖β‖2→∞

1 +
(
2(aΓ(a))1/aρσ2(b+ n)

)−1 ‖β‖2
‖β‖2

)−(a+k/2)
= 1.

It then follows that

lim
‖β‖2→∞

πR(β | β0, σ)

Stk(β | 0, C∗, 2a)
=

(2σ2)−(a+k/2) b−k/2

Γ(a+ k/2) (ρ(b+ n))a

· lim
‖β‖2→∞

(‖β‖2)a+k/2
∫ 1

0
λa−1

( λ

m− λ

)k/2
e−

λ
m−λ p ‖β‖

2

dλ,

where m = (ρ (b + n))/b and p = 1/(2σ2b). Since ρ > b/(b + n) and m > 1

we can apply Lemma 2 and the result follows.

A3. Proof of Result 1. To apply invariance, let θ = (β0, σ,βi, i) de-

note the parameter indexing all the models, and consider the location-scale

group defined by g = (c, b) ∈ G0 = (0,∞) × Rk0 acting on y through the

transformation ỹ = cy+X0b. It can be easily seen that ỹ ∼ f(· | θ∗), where

θ∗ = (β∗0, σ
∗,β∗i , i

∗) with β∗0 = b + cβ0, σ
∗ = cσ, β∗i = cβi, and i∗ = i, so

that the transformed model has exactly the same structure as the original

model. The Invariance-criterion thus says that the prior πi(βi | β0, σ) must
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be such that the marginal models in (5) are invariant with respect to the

group action, so that (keeping to the notation above)

f(ỹ | β∗0, σ∗, i∗) =

∫
Nn(ỹ |X0β

∗
0 +Xβ∗, (σ∗)2I)πi(β

∗ | β∗0, σ∗)dβ∗ ,

the fact that πi(· | ·, ·) must have the same functional form as in the orig-

inal parameterization following from the completeness of Nn(ỹ | X0β
∗
0 +

Xβ∗, (σ∗)2I), given that the design matrix is of full rank. But one can also

compute f(ỹ | β∗0, σ∗, i∗) by change of variables from the original density,

yielding

f(ỹ | β∗0, σ∗, i∗) =∫
Nn(ỹ |X0β

∗
0 +Xβ∗, (σ∗)2I)πi(β

∗/c | (β∗0 − b)/c, σ∗/c) c−k0 dβ∗ .

Again using the completeness of the normal density, these two expressions

can be equal only if

πi(β
∗ | β∗0, σ∗) = πi(β

∗/c | (β∗0 − b)/c, σ∗/c) c−k0 .

This condition is satisfied by the conditional prior in (12).

With respect to the only if part of the proof, note that for the particular

transformation in G0 given by b = β0 and c = σ∗, the above condition

becomes

πi(β
∗ | β∗0, σ∗) = σ−k0 π(β∗/σ∗ | 0, 1),

proving that being of the form in (12) is also a necessary condition.

A4. Proof of Result 2. With the use of the full conditional for βi asso-

ciated with this prior, the integrated models can be alternatively expressed

as

M I
i : Y ∗ = X0β0 + σε,

where ε ∼ f Ii (u), given by

f Ii (u) =

∫
Nn(u |Xit, I)hi(t) dt (i > 0) and f I0 (u) = Nn(u | 0, I).

This model selection problem was explicitly studied in Berger, Pericchi and

Varshavsky (1998), where it was shown that the minimal sample size asso-

ciated with the right-Haar prior for (β0, σ) is n∗i = k0 + 1 and that it is
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sufficient for exact predictive matching for f Ii (·) (or, equivalently, hi(·)) to

be symmetric about the origin.

A5. Proof of Result 3. It is convenient to work in terms of orthogonal

parameters so, for each model Mi, define γ = β0 + (Xt
0X0)

−1Xt
0Xi βi; this

will be ‘common’ to all models and orthogonal to βi in each model Mi,

which can be written in the new parameterization as y ∼ Nn(y | X0γ +

Viβi, σ
2In). Consider a scale mixture of normals prior of the form

π(βi | γ, σ) = π(βi | σ) =

∫ ∞
0
Nki(βi | 0, g σ

2Ai)h(g) dg .

Noting that the right-Haar prior for (α, σ) transforms into the same prior

(1/σ) for (γ, σ), it follows that the marginal likelihood under model Mi is

mi(y) =

∫
Nn(y |X0γ + Viβi, σ

2In)σ−1 πi(βi | γ, σ) d(βi, γ, σ)

=

∫ ∞
0

∫
Nn(y |X0γ + Viβi, σ

2In)σ−1Nki(βi | 0, g σ
2Ai)

h(g) d(βi, γ, σ)dg .

Using the fact that ytVi(V
t
i Vi)

−1V t
i y = SSE0 for any sample of size n =

ki + k0 and integrating out γ, βi, and σ yields

mi(y) =

∫ ∞
0
|Xt

0X0|−1/2
π−ki/2|(V t

i Vi)
−1|1/2

2|(V t
i Vi)

−1 + gAi|1/2(
β̂ti [(V

t
i Vi)

−1 + gAi]
−1β̂i

)−ki/2
Γ

(
ki
2

)
h(g) d(g).

For the robust prior, Ai = (V t
i Vi)

−1, and it follows that

mi(y) =
1

2
|Xt

0X0|−1/2π−ki/2Γ
(
ki
2

)
(SSE0)

−ki/2 ,

which is the same for all models of dimension ki, establishing that the robust

prior is dimension predictive matching for sample sizes k0+ki. Furthermore,

this last expression equals m0(y) (see Appendix 6), establishing that the

robust prior is null predictive matching for samples of size k0 + ki. (Note

that this result would hold for any proper choice of h(g), not just that for

the robust prior.)
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To see that null predictive matching does not occur if Ai is not a multiple

of (V t
i Vi)

−1, note that the expression to be established for null predictive

matching is (eliminating multiplicative constants)

0 =

∫ ∞
0

(
|(V t

i Vi)
−1|1/2(β̂ti [(V

t
i Vi)

−1 + gAi]
−1β̂i)

−ki/2

|(V t
i Vi)

−1 + gAi|1/2
− (β̂tiV

t
i Viβ̂i)

−ki/2

)
h(g) d(g).

Since (V t
i Vi)

−1 and Ai are positive definite, there is a matrix B such that

Bt(V t
i Vi)

−1B = I and BtAiB = D, with D being a diagonal matrix with

diagonal elements di. Also defining W = Btβ̂i, it follows that the above

expression can be written

0 =

∫ ∞
0

(
(W t[I + gD]−1W )−ki/2

|I + gD|1/2
− (|W |2)−ki/2

)
h(g) d(g) .

Let dj be the largest diagonal element and choose W to be the unit vector

in coordinate j. Then the above expression becomes

0 =

∫ ∞
0

(
(1 + gdj)

ki/2∏ki
l=1(1 + gdi)1/2

− 1

)
h(g) d(g) .

But the integrand is clearly greater than 0, unless all di are equal which is

equivalent to the statement that Ai is a multiple of (V t
i Vi)

−1.

A6. Computation of the Bayes factor in (16).

Proposition 2. For any (a, b, ρi) satisfying (11) and n ≥ ki + k0, the

prior predictive distribution for y under Mi using the robust prior is:

mR
i (y) = mR

0 (y)Q
−n−k0

2
i0

2a

ki + 2a
[ρi (n+ b)]−

ki
2 AP i0,

where

mR
0 (y) =

1

2
π−

n−k0
2 |Xt

0X0|−
1
2 Γ

[
n− k0

2

]
SSE

−n−k0
2

0

and APi defined in (3.4.1). Hence the Bayes factor obtained with prior πRi
in (8) can be compactly expressed as in (16).
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Proof. It is convenient to carry out the proof in the orthogonal trans-

formation of the parameters as in Appendix 5. Using standard normal com-

putations, the prior predictive distribution under M0 is

mR
0 (y) =

∫
Rk0

∫ ∞
0
Nn(y |X0γ, σ

2In)
1

σ
dγ dσ

=
1

2
π−

n−k0
2 |Xt

0X0|−
1
2 Γ

[
n− k0

2

]
SSE

−n−k0
2

0 .

Integrating out βi, γ and σ, the prior predictive distribution under Mi is

mR
i (y) =

∫
Nn(y |X0γ + Viβi, σ

2In)Nki(βi | 0,B(λ))

a λa−1 σ−1 d(γ, βi, σ, λ) =
1

2
π−

n−k0
2 |Xt

0X0|−
1
2 Γ

[
n− k0

2

]

×
∫ 1

0
aλa+

ki
2
−1(ρi(b+ n)− (b− 1)λ)

n−ki−k0
2

(SSEi(ρi(b+ n)− bλ) + λSSE0)
−n−k0

2 dλ ,

with B(λ) = (λ−1ρi(b+n)−b)σ2(V t
i Vi)

−1. This expression can be rewritten

as

mR
i (y) = aQ

−n−k0
2

i0 (ρi (n+ b))−ki/2mR
0 (y)

×
∫ 1

0
λa+

ki
2
−1
(

1− b− 1

ρi(b+ n)
λ

)n−ki−k0
2

(
1−

b−Q−1i0
ρi(b+ n)

λ

)−n−k0
2

dλ ,

and the result follows by noting that

APi =
2a+ ki

2

∫ 1

0
λa+

ki
2
−1
(

1− b− 1

ρi(b+ n)
λ

)n−ki−k0
2

(
1−

b−Q−1i0
ρi(b+ n)

λ

)−n−k0
2

dλ .

A7. Proof of Corollary 1.

Proof. For the prior in (8),∫ ∞
0

(1 + g)−ki/2 pRi (g) dg =

∫ ∞
ρi(b+n)−b

(1 + g)−ki/2
a [ρi(b+ n)]a

(g + b)(a+1)
dg.
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The change of variables z = g − [ρi(b+ n)− b] results in∫ ∞
0

(1 + g)−ki/2 pRi (g) dg =

∫ ∞
0

a[ρi(b+ n)]a

[z + ρi(b+ n)](a+1) [1 + z + ρi(b+ n)− b]ki/2
dz.

It is now easy to see that, if ρi(b + n) goes to ∞ with n, this integral vanishes as

n→∞ satisfying the condition of Result 5 .

A8. Proof of Result 7. For simplicity, the explicit dependence of Qi0
on ym will not be shown in this proof, and limm→∞Qi0(ym) = 0 will be

denoted by Qi0 → 0. The Robust Bayes factor can be written as

BRi0 = a (ρi(n+ b))−
ki
2 (Qi0)−

n−k0
2

∫ 1

0

λa+
ki
2 −1

[
1− b− 1

ρi(b+ n)
λ

]n−ki−k0
2

[
1− b−Q−1i0

ρi(b+ n)
λ

]−n−k0
2

dλ

= a (ρi(n+ b))−
ki
2

∫ 1

0

λa+
ki
2 −1

[
1− b− 1

ρi(b+ n)
λ

]n−ki−k0
2

[
Qi0

(
1− bλ

ρi(b+ n)

)
+

λ

ρi(b+ n)

]−n−k0
2

dλ.

Note that, since b > 0, ρi ≥ b/(b+ n), and 0 < λ < 1,

min{1, 1

b
} ≤

[
1− b− 1

ρi(b+ n)
λ

]
≤ max{1, 1

b
}

and[
λ

ρi(b+ n)

]
≤
[
Qi0

(
1− bλ

ρi(b+ n)

)
+

λ

ρi(b+ n)

]
≤
[
Qi0 +

λ

ρi(b+ n)

]
.

Applying these bounds, it is immediate that

(31)

c1

∫ 1

0
λa+

ki
2
−1 [c2Qi0 + λ]−

n−k0
2 dλ ≤ BR

i0 ≤ c3
∫ 1

0
λa+

ki
2
−1 [λ]−

n−k0
2 dλ ,

for positive constants c1, c2, and c3.

To prove the “only if” part of the proposition, note that the last integral

in (31) is finite if n < ki + k0 + 2a. Hence Bi0 is bounded by a constant as

Qi0 → 0, and information consistency does not hold.
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To prove the “if” part of the proposition, make the change of variables

λ∗ = λ/Qi0 in the lower bound in (31), resulting in the expression

Q
(2a+k0+ki−n)/2
i0 c1

∫ Q−1
i0

0
(λ∗)a+

ki
2
−1 [c2 + λ∗]−

n−k0
2 dλ∗ .

If n > ki+k0 +2a, it is clear that this expression goes to infinity as Qi0 → 0

(since the integral itself cannot go to 0). If n = ki + k0 + 2a, the expression

becomes

c1

∫ Q−1
i0

0

(
λ∗

c2 + λ∗

)a+ ki
2

(λ∗)−1 dλ∗ ,

which clearly goes to infinity as as Qi0 → 0, completing the proof.


