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Some counterexamples to the theory of confidence intervals

By G. K. ROBINSON
Department of Probability and Statistics, University of Sheffield

SUMMARY

Some families of distributions are presented for which certain Neyman confidence
intervals have very poor conditional properties. In each case there is a 50%, Neyman
confidence interval I(x) for a parameter 6 and a subset 4 of the sample space such that the
conditional probability that I(X) covers 0 given that X belongs to 4 is less than 0-2 for all &
and the conditional probability that I(X) covers 0 given that X is not in 4 is at least 0-8 for
all . The families of distributions are somewhat alike. More than one example is presented
in order to show that the theory of confidence intervals cannot easily step around the diffi-
culties presented to it.

Some key words: Conditional probability ; Fiducial argument; Neyman confidence intervals; Relevant
subsets.

1. INTRODUCTION

When claiming that the theory of confidence intervals leads to intuitively unreasonable
statistical procedures, a problem which immediately assertsitselfis that thereis no definitive
version of the theory. Neyman (1941) says that all confidence interval statements have the
same justification through the fact that confidence intervals at confidence level a cover the
true parameter value with probability e for all possible parameter values. However, largely
as a result of attacks on confidence interval theory, it has become part of the theory that if
a reason can be found for preferring one set of confidence limits to a second, then the second
set is deemed not to be a proper confidence interval. For instance, although Neyman’s
(1937) concept of a ‘shortest’ confidence interval would only have been used by Neyman
(1941) to select a single confidence interval which most people would prefer to use from the
many available confidence intervals, all of which are equally supported by confidence
interval theory, many statisticians now regard the fact that a confidence interval is not
shortest as a reason for not considering it to be supported by the theory.

Possibly the best known counterexample for Neyman’s version of confidence interval
theory is the situation where a random variable X has a uniform distribution on the interval
(6, 0+ 1) for areal parameter 6. If more than one observation is made it seems to be necessary
to condition on the value of an ancillary statistic, largest observed value minus smallest
observed value, in order to obtain sensible confidence intervals for 8. Pitman (1938), Welch
(1939), Basu (1964) and Pierce (1973) have all discussed this example. Today it is widely
accepted by adherents of confidence interval theory that they should perform their analyses
conditional on the value of ancillary statistics. Basu’s work makes it appear that there is no
answer to the question of which ancillaries to condition upon, but this is regarded as a
different question.

The concept of a relevant subset is very useful for discussing confidence intervals. When
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we make an inference which asserts that for a statement 8, pr (S) = «, Buehler (1959) has
called a subset C of the sample space a relevant subset if, for some ¢ > 0, either

(i) pr(S|C) = a+efor all parameter values, when C is called a positively biased relevant
subset, or

(ii) pr(8|0) < oo —efor all parameter values, when C'is called a negatively biased relevant
subset.

Buehler & Fedderson (1963) presented a positively biased relevant subset for a confidence
interval based on the ¢ distribution. Since that confidence interval is generally regarded as
being the correct one to use the net effect of this example seems to have been to make people
believe that the existence of positively biased relevant subsets is not a severe criticism.

In Buehler & Fedderson’s example the complement of their positively biased relevant
subset is not a negatively biased relevant subset. However, for the examples in the present
paper there are complementary sets one of which is a negatively biased relevant subset and
the other of which is a positively biased relevant subset. Furthermore, for the third example,
this difficulty cannot be overcome by conditioning on an ancillary, or deploying concepts
like shortest.

2. THE FIRST EXAMPLE

Consider the family of distributions shown in Fig. 1 where it is intended that the pattern
repeats itself indefinitely in both directions parallel to the line § = x. Diagrams of this sort
have been used by Kendall & Stuart (1961, Chapter 20). Shown are the contours of
F(x|0) = pr (X < «|0), where X is a random variable whose distribution depends upon a
real parameter 6. For instance, with z = 2, 6 = 4-2 we read pr (X < 2|0 = 4-2) = 0-4.

One way of looking at the diagram is for a fixed value of &; we can see the distribution of
X given 6. For instance, given 0 = 2-1 we see that pr (X < —0-5) = 0, pr (X < 0) = 045,
pr(X <05)=05=pr(X <25), pr(X<3)=095 and pr(X <3-5)=1. The lines
F(x]|0) = 0and F(x|0) = 1give upper and lower limits to the value of X for various 6 values.
We can also see that there is zero probability that X lies between the two jagged lines
«..B_1ByB;B,...and ... C_,C,C,C,...,since F(x|0) = 0-5 for both of these lines. Throughout
the region A,4,B;B, and throughout other regions of the same shape the density of X
given 0, f(x|0), is 0-1. Throughout 4, 4,B,B, and other regions of the same shape the
density of X given 6 is 0-9. The density function takes only the values 0, 0-1 and 0-9, but the
pattern of regions where it assumes its three values is rather complicated.

Another way of looking at the diagram is to consider the likelihood function L(0|x) = f(x|0)
for a fixed value of z. For instance, given « = 1-5 the likelihood of @ given x is 0-9 for
31 <60 <41,0-1for 0-1 <6 < 1-1 and zero otherwise.

We define I and J to be set functions such that I(z) = {0: (z, 0) lies between the lines
oA AyA A,... and ...B_; BB, B,...}, and J(x) ={0: (x,0) lies between the lines
...0_,0,C,Cy... and ... D_, Dy D, D, ...}. Note that for every 6 only values « of X such that
0el(x) or OeJ(x) are possible. Thus the events §eI(X) and feJ(X) are complementary
events.

Now the interval I(z) is a 50%, Neyman confidence interval for ¢ since it satisfies for
all @ the equation

pr{fel(X)|6} = 0-5. (1)

If we state that 0 lies in I(x) whenever we observe the value x of a random variable X having
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a distribution from amongst the family specified, then we will be right in 509, of cases in
the long run.
However, taking A to be the set of real numbers whose integer part is even, we can see
from Fig. 1 that for all &
pr{Xed and 6l(X)|0} < 01, (2)

pr{X ¢4 and feJ(X)|6} < 0-1. (3)
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Fig. 1. Graph of contours of F(z|0) for the family of distributions discussed in § 2. The label
on a contour specifies pr (X < z|0) for every point (x, §) on that contour.

It follows that
pr{X¢4 and 6el(X)|60} > 0-4, (4)

pr{Xedand 0ecJ(X)|0} > 0-4. (5)
Hence

pr{fel(X)|Xe4,6} = [1 L Ppr{Xedand 0¢I(X)|0}]—1,

pr{Xed and 0cl(X)|6}

<(140-4/0-1)1 = 0-2, (6)
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and

pr{X¢A and 0¢1(X)|0}]
pr{X¢4 and ﬁeI(X)lﬁ}] ’
> (140-1/0-4)1 = 0-8. (7)

pr{fel(X) X¢Ad,0}) = [1 +

Thus 4 and its complement are both relevant subsets.

That equations (6) and (7) show the unreasonableness of using (1) as a basis for being 50 %,
confident in the statement ‘@ I(x)’ can be seen as follows.

Suppose that a client comes several times to visit two consulting statisticians. Each time
he has a single observation from the horrendous family shown in Fig. 1, and each time the
first statistician tells him to quote I(z) as his confidence interval with confidence coefficient
0-5. When the client visits the second statistician he asks him to verify the first statistician’s
conclusions. The second statistician disagrees with the conclusions of the first and, perhaps
having noted (6) and (7), says that the client should really not be more than 20 9, confident
that 8 e I(x) when xe 4, and be not less than 809, confident that 6 I(x) when z¢ 4.

By the nature of the client’s work the true values of 6 are available to him later in time
than the values of X. He checks the first statistician’s analysis and finds that he was correct
in so far as 6 did belong to I(X) approximately 509, of the time. However, the second
statistician was also correct in his statements and has been able to tell him roughly which
times @ belonged to I(X).

I believe that the correct explanation of what is happening here is in terms of the likelihood
function. When z €4 we have that L(f|z) = 0-1 for fel(x), and L(0|x) = 0-9 for e J ().
Our strength of belief that § € I(z) for a uniform improper prior distribution on 6 would
be 0-1. Similarly, when z¢ A4 the likelihood function would lead us to think that 6 e I(x) is
more likely than §eJ(x).

Adherents of the classical theory of confidence intervals would try to avoid such a
Bayesian interpretation. They might point out that, since pr (X €4|0) = 0-5 for all 6, the
indicator of 4 is an ancillary statistic, so that perhaps we should condition on its value. If
we did this we would be led to consider the intuitively reasonable confidence interval

Ia) (@¢d)
K0 = 1) wea ®

at confidence level 809,. The set K(z) is where the likelihood function takes the value 0-9.
It covers 6 with probability at least 0-8 for all 6.
This objection is easily answered by means of a second counterexample.

3. THE SECOND EXAMPLE

Suppose we moved the region spanned by J(x) a small distance, say 0-1, in the negative
6 direction on Fig. 1. This would entail moving each of the points G, C;, C,, C_;, D,, D, etc.
0-1 units downwards. The corresponding change in the family of distributions would mean
that whether or not X € 4 was no longer an ancillary statistic, since pr (X €4|6) would now
vary with 6. Therefore classical arguments would not tell us to condition on its value.
However, equations (1), (2) and (3) would remain true after this change so that (6) and (7)
would also remain true, leaving the paradox intact.

The argument is not yet even nearly finished. The adherents of the theory of confidence
intervals can now raise another objection to the use of the confidence region I(x).
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The confidence interval K(x) defined by (8) is the same length as I(x) but has a larger
probability of covering 6, at least 0-8 as can be seen from inequalities (4) and (5). Therefore
there must be confidence regions which are always shorter than I(x) but which cover 6 with
probability more than 509, for all . It might be argued that the existence of confidence
regions which are shorter than I(z) in the sense of Neyman (1937) means that I(x) is not
supported by the theory of confidence intervals. Thus a criticism of I(x) is not a criticism
of that theory.

While answering this objection another objection can also be answered. This further
objection was raised by a referee to an earlier version of this paper. We are, in a sense,
accepting as possible those @ values in a confidence interval and rejecting the others.
Consequently we should be thinking in terms of tests of hypotheses between the possible
¢ values. Thus a confidence interval should, for every », contain 6 values which have higher
likelihoods than those 6 values which it does not contain.

4. THE THIRD EXAMPLE

We now look at a confidence interval which appears to be completely supported by
confidence interval theory but which is intuitively unreasonable despite this.
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Fig. 2. Graph of contours of F(z|0) for the family of distributions discussed in §4.

Consider the family of distributions illustrated in Fig. 2 which is of the same type as Fig. 1.
In the region spanned by I(x) the density of X given 6 takes only the same two values as
before: 01 and 0-9. The other region of nonzero probability is effectively ten copies of the
region spanned by J(z) in Fig. 1 placed one beneath the other with total probability 0-5
distributed between them. In this the density of X given 6 takes only the values 0-01 and

6 BIM 62
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0-09. Thus I(x) does contain those 6 values which have the highest likelihood. It is also
shortest in the sense of Neyman (1937).
Equations (1) and (6) can be derived as for the first two examples. To derive (7) we must
note that
pr{X¢A4 and ¢ 1(X)|6} < 0-1
and that
pr{Xed and 0¢1(X)|6} > 0-4.
Now since (1), (6) and (7) are true for this family of distributions the criticism in § 2 of
I(x) as a 509, confidence region for 6 remains in force.

5. FURTHER CHANGES TO THE FAMILY OF DISTRIBUTIONS

Four changes which are of some interest could be made to any of the three preceding
examples.

(@) The shallow gradient sections, for example I(x) between z = 0 and z = 1, could be
made of even smaller gradient. Thus we could make the bounds on pr{X e 4 and 6 I(X)|6}
and pr{X ¢4 and 6¢I(X)|6} as small as desired. Hence we could make the upper bound on
pr{fel(X)|X eA, 6} arbitrarily small and make the lower bound on pr{feI(X)|X ¢4, 6}
arbitrarily near to unity.

(b) The probability content of I(x) could be changed, making it a confidence interval at
some other confidence level. The set 4 and its complement would remain relevant subsets.

(¢) The density f(x|0) could be changed to make it nonzero everywhere and infinitely
differentiable with respect to both of its arguments with arbitrarily little effect on (1),
(6) and (7).

(d) A transformation could be applied to  so that the contours of F(x|6) within I(x)
became straight lines. Alternatively, the contours outside I(x) could be made straight lines.
This shows that the anomalous behaviour is not solely either inside or outside I(z).

6. APPLICABILITY OF THESE COUNTEREXAMPLES TO FIDUCIAL PROBABILITY

The theory of confidence intervals and Fisher’s fiducial argument perform similarly for
one-dimensional problems like the examples in this paper. Thus my examples are also
counterexamples for fiducial theory.

Fisher (1956b) criticized Welch’s proposed solution of the two means problem on the
grounds of its conditional behaviour. Buehler (1959) has shown that, in his terminology, the
criticism is that a negatively biased relevant subset exists. It is apparent from Fisher’s
criticism and from some of his statements in Fisher (1956 a, p. 55) that he believed that his
own theory would not allow such a subset to exist. Yates (1964) argued that Buehler and
Fedderson’s positively biased relevant subset for a confidence/fiducial interval based on
the ¢ distribution does not contradict the fiducial argument because the complementary set
is not a negatively biased relevant subset. His defence is not valid for the examples in this

paper.
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