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ON SOME DIFFICULTIES IN A FREQUENCY
THEORY OF INFERENCE

By DoNALD A. PIERCE
Oregon State University

A study of relationships between confidence regions being Bayesian,
and the existence of some generalizations of Fisher’s notion of relevant
subsets. For a betting scheme introduced by Buehler, and for finite para-
‘meter space, it is shown that non-Bayesian procedures allow a winning
strategy for a statistician’s adversary. It is further shown, for finite para-
meter space, non-Bayesian procedures must admit conditional confidence
levels bounded away from the unconditional level, the converse to a
theorem of Wallace. For general parameter space these results follow
from a procedure not being weak Bayes in a certain sense.

1. Introduction. It is rather widely acknowledged that there are very serious
logical difficulties involved in interpreting a single instance of statistical data
through procedures whose justification is their performance in repetitions of the
experiment. A discussion of some of these difficulties is given by Cox (1958).
In particular suppose that a confidence interval procedure has exact confidence
level a, but there exists a subset R of the sample space and an ¢ > 0 such that
the conditional confidence level, given R, is less than a — ¢ (or greater than
a + ¢) for all parameter values. Such a subset R was termed by Fisher a relevant
subset, and his contention was that one should have “confidence” no more than
a — ¢) (or no less than « + ¢) in intervals based on outcomes in R. In the same
spirit Hacking (1965) argues that the Neyman-Pearson theory is appropriate for
“before trials betting” whereas one should, in interpreting data, be more con-
cerned with “after trials betting.” The primary purpose of this paper is to study
the existence of relevant subsets. The results are given in terms of confidence
regions but similar results can be obtained for conditional risk functions in the
decision model setting.

Some of the results given here are related to those of Wallace (1959) where it
was shown that (proper) Bayes procedures cannot admit relevant subsets. The
results here in Theorems 2 and 3 are in the converse direction; roughly that non-
Bayesian procedures must admit a generalization of relevant subsets. For general
(continuous as opposed to finite) parameter space, however, the hypothesis must
be the stronger one that a procedure is not weak Bayes in a certain sense.

Other results here, in Theorems 1 and 3, are in terms of a betting scheme
introduced by Buehler (1959), who formulated stronger than the usual frequency
desiderata for confidence regions in order to cope with the difficulties alluded
to above. The results here show that all non-Bayesian (non-weak-Bayesian for
general parameter space) procedures fail to satisfy these desiderata. Bayesian
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methods satisfy the additional criteria given by Buehler but generally fail to
satisfy the usual frequency requisites. Thus the usual frequency requirements
are largely at cross-purposes with the additional desiderata. This tends, from a
frequency viewpoint, to vitiate criticism of Bayesian methods for not having the
usual frequency interpretation.

Results on betting schemes related to those given here were obtained by
Cornfield (1969) and by Freedman and Purves (1969). Their results concern not
conventional forms of inference, however, but schemes in which the statistician
posts betting odds on every subset of the (finite) parameter space. Their results
might be (and were in the published discussion of Cornfield’s paper) mistakenly
interpreted as showing that such a task is too ambitious.

2. Conditional reference sets. Frequency characteristics of statistical pro-
cedures are obtained by integrating with respect to each of a family of prob-
ability measures {P,(+), f € Q} on a sample space (X, B). The sample space, or
an appropriate subset of it, will be called the reference set. The difficulty is
that in most problems the reference set is wholly conceptual. There are distinct
reference sets available for interpreting a single instance of data and no effective
criteria for selecting from these. It is a well-known strength of Bayesian
methods that this choice of reference set is largely irrelevant.

The motivation for this paper is to study the behavior of statistical procedures
in conditional reference sets. For any instance of data xe X and any event
E e B such that x ¢ E, one may consider using the conditional reference set with
measures {P,(+ | E), 8 € Q}. Some examples are given below to indicate why one
might choose to do this.

The decision to study conditional reference sets is not meant to imply that the
choice of the original reference set is clear. For example consider a life-testing
experiment to gain information about the parameter in a known family of life-
distributions, and suppose than in the course of the experiment several units are
lost before death due to extraneous reasons. A reference set for interpreting the
data can only be obtained by specifying a mechanism for the censoring which
will provide a model for censoring in further trials. There will generally be
many such models which would agree with the censoring already done, and the
reference set will depend crucially on the choice of one. It is even more striking,
as pointed out vividly by Pratt (1961), that even if no censoring has occurred
the reference set will depend upon what the experimenter would have done if,
for example, the experiment had lasted beyond the time available. To a certain
extent the choice of an original reference set can be studied within the context
of conditional reference sets, for any set of distinct reference sets can be thought
of as conditional sets within a composite reference set.

It is somewhat well accepted (see, for example Cox (1958)) that if E is an
ancillary (similar) event, i.e. P,(E) does not depend upon 6, then the reference
set conditional on E should be used. That this principle is inconsistent with
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the Neyman-Pearson theory is illustrated by Example 1 below. At any rate Basu
(1964) has shown that this principle will not always lead to a well-defined
reference set.

ExampLE 1. Let x,,- - -, x,, be the order statistics from a random sample from
the uniform (¢, # + 1) distribution. The uniformly most accurate (inversion of
the uniformly most powerful test) a-level lower confidence limit for # is given
by I = max {x,, — ¢, x,, — 1}, where (1 — ¢)* = 1 — a. However, if E is the
event that x,, — x,) = 1 — c then P,{I < 0| E} = 1 for all §. Thus outcomes
in E should certainly be interpreted through the conditional reference set. A
similar argument suggests conditioning on any value of the ancillary statistic
Xmy — Xy

This example is given because the confidence region given corresponds to a
uniformly most powerful test, and hence any procedure obtained by conditioning
on the ancillary statistic will be sub-optimal from the Neyman-Pearson view-
point. Most examples given to illustrate the importance of conditioning on
ancillary statistics are less forceful in this contrast because the Neyman-Pearson
theory does not provide in them an optimum procedure. In fact Fisher’sadvocacy
of the principle of conditioning on ancillary statistics was largely presented
as a means of proceeding when there is no convenient sufficient statistic. For
reasons to follow immediately it is not proposed that the reference set conditional
on x,, — X, suggested in Example 1 is the appropriate one to use, rather only
that its existence makes the use of the unconditional reference set inappropriate.

Although conditioning on ancillary events can be reasonably well-justified on
the grounds that they are uniformative, it is difficult to envision a frequency
theory which would cope with conditioning on other types of events. The
following example given by Brown (1967), following discovery of phenomena
of this type by Buehler and Fedderson (1963), is very disconcerting.

ExaMPLE 2. Let x;, x, be a random sample from N(z, ¢%) and I(x,, x,) be the
usual Student’s interval for p, at level of confidence one-half. Then

P{pre I(x, x,) | [X|/lx, — x| < (1 4 2%)/2} > %

for all values of x, *. There seems to be little reason to single out this condi-
tioning event for interpreting outcomes which satisfy it, but again its existence
makes the unconditional reference set seem inappropriate.

The difficulties illustrated in these examples are the subject of Theorems 2
and 3 below, in which it is shown that for any non-Bayesian confidence region
procedure there is, in a randomized sense, a conditioning event yielding conse-
quences similar to those above.

The desiderata for confidence regions given by Buehler (1959) relate to a
generalization of the notion of conditional reference sets. The statistician is
asked to accept bets regarding the success of his confidence regions, at odds ap-
propriate to his level of confidence, with an adversary who gets to select the
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stakes as a function of the experimental outcome. The existence of conditioning
events such as those in the above examples would provide the adversary with a
strategy yielding positive expected winnings for all values of the parameter.
Buehler’s desiderata are that a confidence region procedure allow no such good
strategy for the adversary. Theorems 1 and 3 below show that such good
strategies for the adversary exist if and only if the statistician’s procedure is not
Bayes, with certain exceptions relating to weak Bayes strategies.

It is interesting to note that in this betting framework the statistician’s objec-
tive is to “use all the sample information,” in order that the adversary not be
able to use such information against him. Likewise the principle of maximizing
power is seemingly towards the same general objective. Example 1, shows
clearly that the two principles do not coincide.

3. Betting strategies: finite parameter space. The elementary matrix theory of
Lemma 1 below will suffice to prove Theorems 1 and 2 for the case that both
the parameter space and the sample space are finite. The remaining results
follow from generalizations of this basic lemma. Lemma 1 is well known (see,
for example Mangasarian (1969) page 31); a proof is given because it is central
to this paper.

Write E, for Euclidean k-space, ¢ for the zero is any such space, and S, for
the simplex (7|7 e E,, 7 = (7, - -+, 7)), N m = L, m; = 0,i=1,. .-, k}.

LemMa 1. Let T be any m X n matrix. If there is no =€ S, such that Tx = ¢
then there exists an s ¢ E,, such that T's > ¢, i.e. each component of T's is positive.

Proor. Let TS, = {y€eE,|y = Tr,=cS,}. The hypothesis is that ¢ ¢ TS,.
Since 7'S, is closed and convex there is a hyperplane strictly separating it from
$, that is an se E,, such that s’y > 0 for all ye TS,. Therefore s’Tz > 0 for
all e S, and the result follows by considering the points in S, having only one
nonzero co-ordinate. [J

The result necessary for more general sample spaces is a simple generalization.
Let (X, B, 4) be a o-finite measure space. Write L,(X, B, 2) for the space of
integrable functions on X, L.(X, B, 2) for the space of essentially bounded func-
tions on X, and ¢ for the zero function on X.

LeMMA 2. Let T be a linear operator on E, defined by

T/“l = Z?:l 5i(x))ui ) © = (/’ll’ ] )un) S En ’
g(x)eL(X,B, ), i=1..-,n.
If there is no = e S, such that Tx = ¢ a.e. (2) then there is an se L (X, B, ) such
that
§ s(x)&;(x)dA(x) > 0, i=1,.-.,n.
Proor. This result can be established in essentially the same way as Lemma

1. TS,, T-image of §,, is a closed convex subset of L,(X, B, 2) and does not
contain ¢. (In the usual manner functions which agree a.e. (4) are considered
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equivalent.) Hence there is a separating hyperplane, i.e. a continuous linear
functional on L,(X, B, ) which is strictly positive on TS,. Since the dual of
L(X, B, ) is L,(X, B, A) there is thus an se L (X, B, 1) such that this linear
functional has representation { s(x)Ty(x) dA(x). The result follows as in Lemma
1 by considering the extreme points of 7'S,. []

Let Q = {6,, -- -, 0,} be any finite parameter space and let the ¢-finite measure
space (X, B, 2) be the sample space. For each #¢ Q let f,(x) on X be the
sampling density with respect to 2. (The symbol x represents the entire sample.)

A confidence region procedure C is a measurable function C(x, #) from X x Q
to {0, 1} with the interpretation

3.1 C(x,0) =1 if # is in the confidence region based on x,
=0 otherwise.

Thus the function

(3-2) ag(0) = § C(x, 0)f,(x) di(x)
gives the probability that the confidence region includes # when sampling from
fo(x).

A procedure C is a-level Bayes for prior distribution z(6); #(f) = 0, 6 € Q,
Seea (@) = 1; if

(3-3) 20 C(x, O)m(O)fo(x)] 2o 7(O)fo(x) =

for each x € X such that the denominator is positive. This relation is more con-
veniently expressed as

3.4) 2iola — C(x, 0)m(0)fy(x) = 0 forall xe X.

A procedure C is not a-level Bayes if there is no prior distribution on Q for
which (3.4) holds.

In this paper the interest is upon frequency behavior of confidence region
procedures, which clearly will not be changed by redefining C on a set of 2-
measure zero. For this reason say that C is essentially a-level Bayes if (3.3), or
equivalently (3.4), holds for all x excepting a set of A-measure zero. If the
sample space is finite and 2 is taken in the usual way to be counting measure,
then there is no distinction between a-level Bayes and essentially a-level Bayes
procedures.

The statistician is to select a procedure C in which his “level of confidence”
is @, for some a € (0, 1). It is not necessarily supposed that a,(f) = a or even
that a,(f) = @ on Q; it is only supposed that the statistician will accept bets
under the following scheme. Knowing C, an adversary selects a strategy s(x),
—oo < $(x) < oo, xe X, determining the stakes for betting. If x is the experi-
mental outcome and ¢ is the true parameter value, the statistician loses s(x)a if
C(x, 0) = 0 and wins s(x)(1 — a) if C(x, ) = 1. (In Buehler’s (1959) scheme
s(+) took values only in {—1, 0, 1}.)
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The function

(3-5) nal0) = § s(x)[a — C(x, 0)]f,(x) da(x)

represents the statistician’s expected loss as a function of §. Consideration will
be restricted to strategies s e L.(X, B, 2), for which ¢¢ () always exists. Ideally
the statistician would like to choose C such that ¢¢ (6) < 0 for all # ¢ Q and all
s. This is impossible apart from trivial situations since ¢¢ (f) = —¢°, (0). The
following theorem describes what can be done.

THEOREM 1. Ler Q be finite, a be any given number in (0, 1), and C be any
confidence region procedure. There exists an s¢€ L,(X, B, ) such that ¢¢ () > 0
for all 6 € Q if and only if C is not essentially a-level Bayes.

Proor. If Cis essentially a-level Bayes for prior distribution z, then for each
se L. (X, B, 1),
20 7(0)95.(0) = 2y 7(0) § s(x)[a@ — C(x, 0)]f,(x) dA(x)
= {5(x) Xy [a — C(x, O]x(0)f5(x) dA(x)
=0,
as a result of (3.4). Thus for no s can it be that ¢¢ () > 0 for all # € Q.
Write
§(x,0) = [a — C(x, 0)]fs(x) .
If C is not essentially a-level Bayes then there is no prior distribution 7 such
that

> E(x, O)m(@) =0 for almost all x(2) .
If X ={x,---,x,} then Lemma 1, taking the m x n matrix
T ={&(x: 0,)}
yields an s = (s, - - -, s,,) such that
21 8E(x;, 0) >0 for each e Q.

Taking s(x;) = s; yields the desired conclusion. If X is not finite it follows from
la — C(x, 0)] < 1 that &(x, 0) e L(X, B, ) for each § ¢ Q. Lemma 2 yields an
se Lo(X, B, 2) such that

§ s(x)&(x, 0) dA(x) > 0 forallde Q. []

Note that if « is taken as a function of x, that is the statistician many vary the
odds, then the same method of proof can be used to show that «(x) must agree
with Bayes theorem for some prior distribution if one is to preclude strategies
yielding positive expected loss for all 6.

The theorem makes no restriction on the function «,(#), but rather asks that
the statistician will accept bets at odds a: 1 — a. It might seem that the
statistician would want to require that a,(f) = a or a,(f) = «, and in consider-
ing this one should bear in mind that such restrictions are virtually incompatible
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with C being a-level Bayes. Still considering € to be finite, it is not impossible
that a procedure satisfy both conditions but there are few problems admitting
such procedures. An example is found by taking Q to be n equally spaced points
on a circle, X to be the same points, and the sampling distributions to be a
location parameter family. Regions constructed in the usual way from the
known distribution of (x — ¢) will be Bayes for the uniform prior distribution.
I know of no examples essentially different.

It appears then that in general the statistician can either: (a) Choose C such
that a,(0) = a and admit winning strategies for the adversary; or (b) choose a
Bayes procedure so that both a,(f) — « and ¢¢ (6), for every s, have T-average
zero.

4. Conditional confidence levels: finite parameter space. The notion of a condi-
tional reference set was introduced in Section 2. A generalization of this notion,
introduced by Tukey (1958) and studied by Wallace (1959) and Stein (1961) is
based on the concept of a selection. A selection is a »-measurable function 7 on
X, taking values in the closed unit interval, such that E,(r) > 0 for all §¢ Q.
The interpretation is that #(x) is the probability with which x is “retained”
forming a subsequence of trials. A selection taking only values zero and one is
called a pure selection.

The function of 4,

(4.1) ., (0) = § C(x, 0)f,(x)1(x) dA(x)[§ f,(x)1(x) dA(x) ,

represents the theoretical frequency that the confidence region contains 6 in the
subsequence obtained by the above process. If a,(f) = a and ¢ is a pure selec-
tion such that for some ¢ > 0 either a, ,(6) = a + ¢ or a, () < a — ¢ for all
¢, then the set +~'(1) is what was called by Fisher a relevant subset of X. This
phenomenon was illustrated in Examples 1 and 2. The introduction of the ¢
term is of course irrelevant when Q is finite, but is included here for emphasis
and to make the treatment here agree with that of the following section. In the
more general setting the ¢ is important because it seems that a confidence region
based in C for x e +7!(1) should have confidence coefficient no greater than « — ¢
ifa, () < a — ¢ forall eQ.

The part of the following theorem relating to behavior of «, (f) when C is
Bayes was given by Wallace (1959), Theorem 1.

THEOREM 2. Let Q be finite. If C is essentially a-level Bayes then there is no
selection t such that o, (0) < « for all 0 € Q or such that «, (0) > « forall 6 ¢ Q.
If C is such that a, ,(0) = a on Q and C is not essentially a-level Bayes then there
are selections t, and t, and ane > O such that o, , () < a — ¢ and ag . (0)=a+ ¢
for all 6 ¢ Q.

Proor. If ¢ is a selection then Ey(r) > O for all 6 ¢ Q and

a — ag (0) = [E()]7¢7.0) -
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The consequence of C being essentially Bayes follows as in the proof of Theorem
1.

If C is not essentially a-level Bayes then there is an essentially bounded, and
hence a bounded, function s such that ¢¢ () > 0 for all § € Q. That ay(f) = «
on Q implies that

§&(x,0)dA(x) =0,
where §(x, #) is as defined in the proof of Theorem 1. Thus, taking #(x) =
as(x) + b, where a > 0 and b are such that 0 < 7(x) < 1 on X,

fall) = adio(0) > 0
for all # ¢ Q. Since

Ey(t) = § 6,(x)5(x, 6) da(x) > 0

for all 6 € Q, it follows that a, , (f) < a, i.e. for some ¢ > 0, a,,(0) = a — ¢,
for all # € Q. A similar argument yields ¢,. []

The selections given by this theorem are in general not pure and it would be
of considerable interest to find conditions assuring the existence of pure selec-
tions with such properties.

5. General parameter space. Let the parameter space be any measurable space
(Q, A4), where A is a o-field containing all singletons. For any sequence {r,} of
probability measures on (Q, A) say that C is a a-level weak Bayes in mean for
this sequence if

(5.1) lim,_., §|§ C(x, 0) dr (0| x) — « h,f%(x) di(x) =0,

where (. | x) is the posterior probability measure resulting from prior measure
,, and h_(x) = § f,(x) dz(6). Note that (5.1) is equivalent to

(5.2) lim,_, §|§ [a — C(x, 0)]f,(x) dr(0)] dA(x) = O

Say that C is not a-level Bayes in mean if there is no sequence of probability
measures on (2, 4) for which (5.1) holds.

REeMARK. This definition of weak Bayes in mean is apparently novel, but is
strongly suggested by the natural approach to extending the preceding theo-
rems. It appears to have some intuitive appeal although it seems somewhat
difficult to apply. In particular I have not determined how it relates to a pro-
cedure being Bayes with respect to an improper prior distribution. On the other
hand it seems worthy of consideration simply because it is precisely the condi-
tion which allows the method of proof used here to be extended to the case of
a general parameter space. It is presented here with the hope that further study
and application of it might be fruitful.

The consequence of C being Bayes in the following theorem was given by
Wallace (1959). Consequences of C being weak Bayes (in some sense) are much
more complex, and have been studied by Stein (1961), where weak Bayes was
taken to mean Bayes with respect to an improper prior distribution. Wallace’s
(1959) Theorem 2 in this direction is incorrect, as shown by Stein (1961).
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THEOREM 3. If C is essentially a-level Bayes then for no se L.(X, B, 4), nor
for any selection t, can it be that any of the relations ¢¢ (0) < 0, ¢¢.(0) > O,
ag (0) < a, or a; (0) > a hold for all 6 ¢ Q. If C is not a-level weak Bayes in
mean then there exists an se L. (X, B, 2) and an ¢ > 0 such that ¢¢ (0) = ¢ for all
0 € Q. If, moreover, a,(0) = a on Q then there exist selections t, and t, and an
¢ > 0 such that a; , (0) < @ — ¢ and &, (0) = a + ¢ for all § € Q.

Proor. If C is a-level Bayes the consequences follow as in the previous
theorems, using Fubini’s theorem and the fact that s(x) |« — C(x, )] is essential-
ly bounded.

Define the transformation 7 as the integral version of that in Theorem 1, i.e.

Tz = § [a — C(x, 0)]f,(x) dn(x) .

Write S for the set of all probability measures on (Q, A) and TS for the image
of §. That TS < L,(X, B, 2) follows from Fubini’s theorem. The hypothesis
C is not weak a-level Bayes in mean implies that there is no sequence {Tx,} e T'S
converging to zero in the L, norm. Hence ¢ ¢ TS, the L, closure of TS, and since
TS is convex there exists (cf. Wilansky (1969) page 220) a continuous linear
functional on L,(X, B, Z) strictly separating TS from ¢. Thus there is an
se L,(X, B, 2) and an ¢ > 0 such that

§ s(x)p(x) da(x) = ¢
for all ye TS. The proof follows as in the previous theorems. [J
Example 2 above illustrates that procedures which are Bayes with respect to
an.improper prior distribution may admit the selection ¢, of this theorem, and
it appears that the algebraic structure, rather than the normality, is the essential
condition. Stein (1961) has shown that the Student’s interval admits no selection
such as ¢,.

6. Some conclusions. Consider procedures satisfying the usual condition
a,(0) = a« on Q. It seems reasonable to conjecture that the only problems in
which there are either a-level Bayes or a-level weak Bayes procedures satisfying
this condition are those with the algebraic stracture studied by Hora and Buehler
[9] (and in these a,(f) = a). For practical purposes these are problems of loca-
tion and/or scale, including multi-sample and multi-variate cases. Theorem 3
would then apply to all other problems and the above discussion suggests that
similar results hold in these as well. Thus the statement in the Introduction that
standard frequency requirements are virtually incompatible with the desired
conditional properties.

A class of problems to which Theorem 3 seems particularly relevant from a
practical viewpoint are those in which there is no optimum confidence region
procedure obtainable from power considerations. Itis common practice to then
base confidence regions on the distribution of an insufficient statistic such as a
maximum likelihood estimator. In such problems Bayes procedures, possibly
based on relatively diffuse prior distributions, are often eschewed because of
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their failure to have exact frequency interpretation, even though they seem
certainly preferable from a sufficiency standpoint and may have reasonable ap-
proximate frequency behavior over large regions of the parameter space. The
choice should be understood to be between an ad hoc method with a,(f) = «
but poor conditional behavior and a Bayesian method with a,(¢) having -
expection a and more satisfactory conditional properties.
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