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Ancillarity Principle and a Statistical Paradox

V.P. GODAMBE*

Among the many reasons underlying the practice of ran-
domization some of the main ones can be described as
averaging out or elimination of the effects of nuisance
parameters. It is already well known (Godambe 1966)
that averaging over all the possible results of the adopted
randomization is directly in conflict with the likelihood
principle. The process of elimination of nuisance param-
eters has possibly deeper intuitive appeal. But this proc-
ess contradicts a very basic principle of statistical infer-
ence subsequently defined as the ancillarity principle.
This is demonstrated in relation to a practice of random-
ization called balanced sampling. We would use a for-
malism very similar to that of Birnbaum (1962).

KEY WORDS: Randomization; Balanced sampling;
Ancillarity.

1. ANCILLARITY PRINCIPLE

A statistical experiment or a model M is defined as a
triplet (x, ©Q, P) where x = {x} is an abstract sample
space, ) = {0} is an abstract parameter space and P =
{Pg: 0 € O} is a class of distributions on x indexed by
the parameter 0. For simplicity we assume x and () to be
finite. The inference one can make on the basis of an
observation x (in x) given the experiment M can be de-
noted by Inf(- | x, M), leaving, however, the function
uncharacterized as in Birnbaum (1962).

The ancillarity principle. If Py is the same forall 6 € ),
then Inf(- | x, M) is the same for all x in . In other words
no inference about 0 is possible on the basis of an ob-
servation x, under the experiment M.

2. A PARADOX
Using the notion in Section 1 here we have 6 = 0 =
0, ...,0;,...,0x) and
. N
Q= {0:0,-= lor —1,i= 1,...,Nand29,~=0}.
1
2.1
Further set # = {1, ..., N}, let n be a positive integer

less than N, and let S denote the set of all subsets of P
with n elements. Next we have,

Po(s) = 1/NC,, s € S, 2.2)
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and
P = {Py: 0 € Q} (2.3)
Thus (2.1), (2.2), and (2.3) define a statistical experiment
M=(x, Q,P), 2.4

where x = S. Now the ancillarity principle of Section 1
in relation to the experiment M in (2.4) implies that for
any two s', s" € §,

Inf(- | s', M) = Inf(- | 5", M). @.5)

This, however, is contradicted by the following mode of
inference.

Using (2.1) and (2.2) let
t(s,0) =| > 0/n|,sES, 0€Q.

IEs
If s’ is observed from the distribution (2.3)
consider all @' (in Q) satisfying #(s’, 0') > k

for a suitably large k, as implausible values. (2.6)

Note. In the preceding mode of inference the obser-
vation (or data) consists of s’ only. In particular (0;: i
€ s’) is not part of the data. The distribution of s’ is given
by (2.3). Further, on the basis of two observations s’ and
s”, the set of values 0 considered implausible are different
for

{0: 1(s', 0) > k} # {0: 1(s", 0) > k}.

Hence the mode of inference (2.6) contradicts the ancil-
larity principle. To make the paradox clearer we empha-
size that (assuming suitable n, N, k) for every s’ there
are values of 0 in Q) for which #(s’, 0) > k. These values
according to (2.6) however are not considered implau-
sible, when s’ is observed.

The intuitive appeal of (2.6) (for sufficiently large n and
N), follows from the fact that, if for every s € S in (2.2)

0, = >, 0:/n, 2.7
iEs
then for every 8 € Q in (2.1), 6, has a fixed distribution,
having the expectation and variance given by

Eo(0;) = 0 and ve(0;) = (% - 1) —IX—. (2.8)

N/ N -1
Obviously ve(6,) would be negligibly small for sufficiently
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large n and N. For instance for n = 10,000, ve(6,) <
.0001, 8 € Q.

A more precise version of the mode of inference (2.6)
is as follows. Let N = 4 and n = 2. Suppose further that
Q consists of only two points 0’ and 0", where 0’ = (1,
-1, -1, )and @ = (—1,1, —1, 1). Now #(s, 0) in (2.6)
can take only two values 0 and 1. Further Pg(t(s, 0) =
0) = 4/6 and Pg(t(s, ) = 1) = 2/6 for 6 = 0’, 0". Now
if s’ = (@2,4),t(s',0) = 0and #(s’, 8”) = 1. Hence on
the basis of the observation s’ we prefer 8’ to 8”. On the
other hand, if s" = (2, 3), #(s”, ') = 1 and #(s", ") = 0
hence on s” we prefer 8" to 0'.

From the example just discussed, it should be clear
that the mode of inference in (2.6) is free of any assump-
tion concerning prior probability distribution on . In
fact, as is clear from the example, even complete spec-
ification of () is not necessary. Further, the statistical
inference as in (2.6) is not restricted to simple random
sampling in (2.3) only. For a more complicated sampling
design given in Section 3, inference about 0 on the basis
of s is obtained by replacing in (2.6), | Dies 0:/n | by |
Z,-a 0:/a; | .

When the author discussed the preceding situation with
H. Robbins, the latter suggested a more descriptive ver-
sion. With the author’s ‘elaboration it is as follows: Let
2N exactly identical slips of paper be spread on a table.
On the hidden face of each slip is written a number,
+1or —1. Itis known that some N slips bear the number
+ 1 and the remaining N slips bear the number — 1. The
unknown state of nature or the unknown parameter (0)
here is determined precisely by naming the slips that bear
+1 (and —1). The 2¥Cy possible values of the parameter
0 are denoted by Q; Q = {0}. Now out of the 2N slips
a random sample s of N slips is drawn without replace-
ment. On the basis of the sample s so drawn, the following
inference about the unknown parameter 0 is immediately
suggested by the frequency definition of probability. The
values of 0 in Q) which assign for the N slips that con-
stitute the sample s, proportion of +1’s greater than %
+ en or smaller than 3 — ex (for a suitably chosen ey,
if N = 1,000,000, €5 may be .001), are implausible. Yet
the distribution of s is independent of 0, that is, is the
same for all @ € Q. That is, the frequency performance
of the above procedure of inference, in repeated sam-
pling, would be identical on the true value of the param-
eter, 0,, say, and any alternative value, say, 0,!

3. THE PARADOX WITH UNEQUAL PROBABILITY
SAMPLING

Suppose an agricultural field is divided into N plots
numbered i; as before in 2.2) ? = {i},i=1,..., N,
and S = {s} is the set of all subsets s containing exactly
n plots. The yield and area of the plot i are y; and a;,
respectively, i = 1, ..., N. The vectora = (ay, . . .,
a;, . . ., ay) is known but the vectory = (yy, . . ., ¥
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., yn) is unknown. We write >,V a; = 4, DNy, =
Y, and Y = Aé. To estimate the unknown parameter ¢
we draw from S a sample s using a sampling design p
(p: § = [0, 1], 2,5 p(s) = 1) and observe the yields y;
for all plots i ins. Lety; = a6 + 6;,i =1,..., N.
Then since Y = Ad, >,V 0, = 0. Hence we have

Yoo+ ¥ i N 3.1)
ai ai
where the vector ® = 8,, ..., 90;,...,05)is unknown
except that 0 € ) where
N
Q= {e: >0 = 0} . (3.2)
1

(The Q in (3.2) should be distinguished from the one in

(2.1).) Now for any specified (given) 6 and the data (s,
yi: i € 5), ¢ is given by

1 i1 0;

$(0) = SE--3

ies Qi R jes Ai

(3.3)

Since, however, the vector 0 is unknown, we investigate
whether there exists a sampling design to select s, so that
in some sense ¢(0) in (3.3) would not be much dependent
on the nuisance parameter 0. (The estimate >ies yilna;
is also optimum for ¢ under some additional assumptions
not related to the present discussion.) That is, we search
for a design that provides (in the extended sense of the
term) balanced sampling. Consider a sampling design po
obtained as follows: The set @ = {i,i = 1, ..., N}is
divided in n strata PP = U,"P,) such that Dcq, a;
= A/n, j = 1, ..., n. Then from each stratum j one
individual is drawn with selection probabilities for dif-
ferent individuals i, na;/A, i € P;. Note in the present
case if s D i denotes all samples in S that contain the
individual i then

> po(s) = nailA,i=1,...,N.

s3I

3.4

Now if E denotes the expectation and V the variance with
respect to the above sampling design po, from (3.1) and
(3.2) we have for every ¢ and 0 € Q,

N
EC 6i/na;) = >, 0/A =0,

iEs 1

N
EC yina) = 2 yilA = &;

iEs 1

3.5)

and

V(S yilna:) = V(2 8i/na;)

i€s i€s

N n
= (1/nA) E Biz/ai - (I/Az) Z (Z ei)z'
1 1 @
(3.6)
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Further, let a subset of () in (3.2) be given by

Q' = {0.‘|9i/ai|5[3,
N
i= l,...,N;20i=0}, 3.7
1

for some specified number B. From (3.6) for all 6 € '
in (3.7) we have

VS yilna)) = V(S 6ina;) < (B¥n).

iEs iEs

(3.8)

Now we assume that the vector a is such that the pop-
ulation P can be divided into a sufficiently large number
n of strata satisfying E,’egj a;=Am,j=1,...,nand
B%/n = €%, € being a given small number. Then from (3.8)
we have 4

VS yilna;) = V(3 8idna)) < €.

i€s iEs

3.9

In the sense of (3.5) and (3.9) the sampling design p,
indeed reduces the effect of the nuisance parameter 6 on
&(0) in (3.3) provided 8 € Q'. Thus sampling design p,
provides balanced sampling. To obtain the confidence
intervals for ¢ we note from (3.1) that

[| X yi/na: — & | <3e] ©[| X 8i/na; | < 3el;

iEs i€s

(3.10)

hence if P(- | 0, ¢) denotes the probability of (-) for given
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0 and ¢ we have

P( X yilna; — ¢ | < 3 | 0, &)

i€s

= P( > 0i/na;| = 3e| 0, o).

iEs

(3.11)

If 0 € Q' in (3.7), with (3.5) and (3.9) the left side of
(3.11) provides the usual inference about ¢. But this in-
ference because of (3.10) is logically equivalent to the
inference about 0 obtained from the right side of (3.11).
This latter inference about 0, however, contradicts the
ancillarity principle for the reasons given in Section 2.
It therefore follows that the inference about ¢ based on
the left side of (3.11) is also paradoxical in relation to the
ancillarity principle.

A brief statement of the paradox appeared in Godambe
(1979), which in turn was commented on by Dawid (1979)
and Good (1980).
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