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SOME VALIDITY CRITERIA FOR STATISTICAL INFERENCES

By RoBErT J. BUEHLER

Towa State University

1. Introduction. This paper is concerned with the ways in which existing
statistical theories specify the degree of uncertainty of an inference. For the
sake of graphic presentation, problems of inference are described in terms of a
game between two players—one who makes the inferences and another who
questions their validity. Such a model suggests a number of criteria of validity
which depend entirely on classical probability calculations. I anticipate that
arguments may be advanced for not regarding statistical inference as a game;
it is hoped that the cogency of such arguments will not prevent the present modet
from providing some new insight into the problems here considered.

Many, though not all, problems of inference lead to assertions of the type,
“The probability that A is true is equal to «,” or, “P(4A) = a.” One may ask
whether the person making this assertion should be willing to bet that A is true,
risking an amount « to win 1 — «, and should be equally willing to bet that A
is false, risking 1 — « to win «, against an opponent who has exactly the same
information as he and who is allowed to choose either side of the wager. The
affirmative answer will not be defended here, but its consequences will be
examined.

The game viewpoint is related to, but not identical with, the ideas of von
Mises, who has advanced as a postulate “the impossibility of a gambling system”
in his definition of probability (see for example [19], p. 15). It has generally been
recognized that modern theories of inference, which avoid the assumption of
prior distributions of the parameters, should not have the same interpretation
as the classical Bayes-Laplace theory based on prior distributions. The present.
paper attempts to show the sense in which one pays for weakening the classical
assumptions by losing the von Mises postulate for the inferences “P(4) = a.”

Sections 2 to 5 are devoted to the theory of confidence intervals; in Sections
6 to 9 the ideas are generalized to include other statistical problems. The reader
is warned not to expect to find any new problems solved in this paper, for at the
present stage of development the theory gives at best new ways of looking at
existing solutions.

2. A model for studying interval estimation. In the spirit of the introductory
section the problem of interval estimation is here studied in terms of a game
between two players. The players have equal knowledge about fixed conditions
K (for “known”) of a random experiment, for example, knowledge that n
values are observed from a normal population having unit variance. Unknown
conditions of the experiment, for example the value of the population mean ,
are conveniently referred to as the “state of nature” U (for ‘“‘unknown”). The
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846 ROBERT J. BUEHLER

first player, Peter, has the familiar task of setting confidence intervals. It is re-
quired that he formulate a rule B which determines the interval as a function
of the observations. Then on the basis of the observations he makes a probability

assertion
“P(A) = a”.

The quotation marks are used to identify an expression as Peter’s assertion and
to warn that it may not have validity in a direct probability or frequency sense,
for that restriction is not imposed. The assertions may have validity as ‘‘con-
fidence probabilities” or “fiducial probabilities,” these being special cases. In the
unit-normal example one would commonly take « to be 0.95 and A to be

F— 1.96//n £ p £+ 1.96/+/n.

In order that the second player, Paul, have information equal to Peter’s, it
is required that he have knowledge of Peter’s rule R as well as of the experi-
mental conditions and observations. Paul adopts a strategy S based on R and
on the experimental conditions, and consisting in the specification of two sub-
sets C and C™ of the 2bservation space such that

+
for observations in {g_ Paul bets that

A is {::llsz’, risking {‘; — to win {i‘.— «
It is not required that a bet must always be made; thus C* and ¢~ need not be
exhaustive. To determine the winner of each bet, we postulate the existence of a
referee who knows the true state of nature.

2.1. The criterion of weak exactness. If the model is adequately specified, one
should in principle be able to calculate the expected gain to Paul. For any fixed
experimental conditions K the expected gain would be a function of (i) the
state of nature U, (ii) Peter’s rule R, and (iii) Paul’s strategy S. Different
criteria for the sensibility of Peter’s rule might be put forward in terms of this
expected gain. For example, I propose the following. Suppose Paul’s strategy is
to bet consistently that A is false, regardless of the observations. Then if Paul’s
expected gain is zero for all U, Peter’s rule R will be defined to be weakly exact.'

Weak exactness is (at least from the point of view of some theories of prob-
ability) essentially equivalent to writing P(4) = o« without quotation marks,
the definition above being preferred on the grounds that it is less subject to
misinterpretation. It will be noted that weak exactness is a propery possessed
by Neyman’s confidence intervals (see for example [17]), but not necessarily by
the fiducial counterparts, as is known.

2.2. Relevant and semirelevant subsets. In this paper the ultimate calculation of
the expected gain is actually made only once (in Section 4.2). The emphasis lies

! Strongly exact is defined in Section 6.1.



VALIDITY CRITERIA FOR INFERENCES 847

more in studying Paul’s initial search for a strategy having a guaranteed winning
percentage. If we call P(A|C) — a the bias of C, then Paul’s problem is to
find subsets C whose bias has the same sign for all U. These will be called sems-
relevant subsets induced by R. If moreover the bias is bounded away from zero,
they will be called relevant. That is, if ¢ > 0 is independent of U, then C is called

. if P(A|C) > a
semirelevant {or it P(4]C) <a for all U,

if P(A|C) = a+ ¢
orif P(A|C) £ a—

The phrase “induced by R” is crucial; the defined properties are necessarily
relative to the rule R, which enters the defining equations through A. The defi-
nitions are inspire 1 largely by writings of Fisher, of which the following quota-
tions from [11] are typical: -

p. 32. “:--no such subset can be recognized.”

p. 33. “- - -inability to discriminate any of the different subaggregates having

different limiting frequency ratios.”

p. 57. ¢“- - -every subset to which it belongs, and which is characterized by a

different fraction must be unrecognizable.”

More recently ([12], p. 23) Fisher uses the words “relevant” and “irrelevant.”
For example:

“The subset of throws made on a Tuesday is easily recognizable, it has, how-

ever the same probability as the whole set and is therefore irrelevant.”
. It would seem that any subset C' of the observation space might be called
“recognizable’” in Fisher’s sense since it is determined by known observations.
The word ‘“relevant” has been introduced here in a sense intended to be close to
Fisher’s, but there seems to be at least a small difference arising from the de-
pendence on the rule R. If a need for distinct terms should arise, “induced relevant
subset’’ might be substituted for “relevant subset’’ as used here.

In typical interval estimation problems the bias of most subsets C' will not
have the same sign for all U. In particular if C' contains only a single point of the
observation space, then P(A4 | C) ordinarily will be either zero or unity, de-
pending on U. This corresponds to the statement, sometimes seen in textbooks,
that the probability that the true value of the parameter lies within a confidence
interval is either zero or unity after the interval has been constructed.

2.3. Relevance of unions and complements. It will be convenient later to refer
to the following elementary results.

Lemma 1. If subsets Cy and C, are disjoint, (semi)relevant, and posttively [nega-
tively] biased, and if the union Cy + Ca has nonzero probability for all U, then the
union ts (semz)relevant and positively [negatively] biased.

We may remark that for nondisjoint subsets neither the union nor the inter-
section need have special properties of relevance deriving from the components.

Lemma 2. Let C’ denote the complement of C. If (i) P(4) = a (essentially

relevant{ for all U.
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weak exactness); (ii) P(C) and P(C") are nonzero for all U; (iii) P(C) > b > 0
(b s a constant independent of U); and (iv) C is relevant; then C’ is relevant with
bias opposite to C.

Lemma 3. If in Lemma 2 (iii) is not assumed, then C' is semirelevant with bias
oppostte to C.

Lemma 4. If ©n Lemma 2 (iii) ¢s not assumed and zf (iv) zs replaced by “C s
semarelevant,” then C' is semirelevant with bias opposite to C.

3. Examples of relevant subsets in interval estimation problems. We now
give an assortment of six examples of relevant subsets induced by systems of
confidence intervals.

3.1. An example of intervals based on an insufficient statistic. This first example,
although relatively simple, illustrates a number of interesting points. Let a
sample of size n = 2 be drawn from a normal population having unknown mesn
w and unit variance. A confidence interval based on the first observation 2, , but
ignoring the second z; , corresponds to the weakly exact probability assertion

“P(lzy — 1.96 = p < 21 + 1.96) = 0.95”.

Paul might logically begin his search for relevant subsets by comparing this
questionable assertion with the standard one based on the sufficient statistic
Z = ¥(21 + z2). The comparison shows that when z; = z, the intervals are
correctly placed but unduly long, and when |z, — 3| is large they are “badly
placed.” A clue is thus furnished which suggests conditioning on subsets defined
in terms of the statistic § = z; — z, . If C denotes any such subset and 4 denotes
|z — u| = 1.96, then the conditional probability is

P(4]C) = P(AC)/P(C) = ffwfdx dy/fcfdx dy

where f dz dy is the density (1/27) exp {—%(21 — p)* — 2(22 — 1)% dz dy. On
setting y1 = @1 — u, ¥2 = 2 — u, it is seen that both numerator and denominator
are independent of u. Thus P(4 | C) is independent of u, and all subsets ¢ de-
fined in terms of § will be relevant save for exceptional cases for which P(4 | C') =
0.95. In particular the sets (of zero probability) for which § = § can be seen
by simple calculation to have negative, zero, positive bias respectively for
|8]| >, =, <1.593. For § = 0, P(A | C) achieves its maximum value of 0.997
(= standard normal area within £1.96 4/2); as | & | tends to infinity, P(A4 | C)
tends to zero. Consider now the three subsets

Ci: 0<6<1; Cy: —1<6<0; Ce: complement of Cs .

C1 may be regarded as being made up of a continuum of positively biased relevant
subsets of zero probability, and by a continuous generalization of Lemma, 1 it
follows that C; has pos1t1ve bias. By the same reasoning C; is positively biased;

and by Lemma 2, C; is negatively biased. One interesting observation is that
C1 is a subset of C2 ; thus a positively biased subset may sometimes be contained
in a negatively biased one. Furthermore it is possible for a particular observation
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to belong simultaneously to two different subsets having opposite bias. Thus
arises the basic question (which will not be resolved in this paper) of the ap-
propriate subset to which any particular observation should be referred if it is
not to be referred to the universal set of all observations.

3.2. An example involving shortest average length. Our second example is inspired
by Cox [4], who treats the festing situation and the criterion of maximum power,
whereas we treat the estimation situation and the criterion of minimum expected
length. Suppose two populations are known to have standard deviations oy = 1
and o = 2. A random choice between the two populations is made and one
normal random variate is observed. If Peter knows which population was sampled
he may treat each population separately in the usual way, asserting

“P(x — 1.960; = p = z + 1.960;) = 0.95”

in which both z and ¢; represent observed values. On the other hand, if he wished
to minimize the average length of the intervals, he would do best to increase
the error rate for the second population to about seven per cent and compensate
by decreasing the error rate for the first population to about three per cent,
thus maintaining a five per cent average. The first solution may be called a
“conditional” one (in the sense of conditional probability) inasmuch as P(4) = «
is valid in the frequency sense, with the relative frequency « prevailing sepa-
rately in the two subsets defined by the value of o. The second solution is “un-
conditional” in that P(4A) = ais valid in the frequency sense only when related
to the sequence of all observations, ignoring the observed value of o. Both
solutions are weakly exact. The two subsets defined by the value of o are con-
spicuously relevant for the unconditional solution; thus the criteria of shortest
average length and nonexistence of relevant subsets cannot both be met. I
myself would prefer the conditional solution here.

3.3. An example of relevant subsets defined by an ancillary statistic. The follow-
ing example uses some distributional results given by Fisher ([11], pp. 163-
165), to illustrate how relevant subsets may be defined by means of an ancillary
statistic. Consider a sample of size n from the bivariate density

e dr dy, 0<z,960< o,

and define statistics 7' (the maximum likelihood estimator of 6) and V (an
ancillary statistie, according to Fisher) by

X=>uz Y=y T =VY/X V=XV
‘Then T and V have the joint density

yit T . 0\ dT
[n =D P {"V (F + T)} 7

and the marginal and conditional densities of T' are respectively

T . 0\ "dT T . o\\dT
K<—+—) —— and K(V)exP{_V<F+T>}_T~

6T T
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where K and K(V') are independent of 7'. The two distributions may be used to
give respectively unconditional and conditional systems of confidence intervals
for 8. To use the former, put 8 = T/6 and determine constants $8; and B, such
that

B2 © ’
[ ea i mas=a [ 6770+ 8 ds
81 o

This leads to the assertion
“P(A) = P(BL = T/0£B:) = P(T/B. =0 =T/B) = "

But conditionally upon the value of the ancillary V the probability is

= [ enl G ) ool (o)
Pl -re )3/ [ onl-v D)2

The last expression depends on the ancillary V but is independent of the pa-
rameter 0; it will equal a only for a particular intermediate value of V, and for
all other values relevant subsets will be defined.

3.4. Another example involving an ancillary statistic. Turning to Fisher ([9],
and [11], p. 134) for another example involving an ancillary statistic, we let x
and y have a circular normal distribution with unit variance and with mean on a
circle of known radius R so that the density is

(1/2x) exp { —(z — R cos 0)* — (y — R sin 6)% dz dy

where 6 is to be estimated. If a single observation (z, y) is expressed in polar

coordinates by
2
=4 z = acosb

6 = tan™' y/2 y = asinf
then @ is the maximum likelihood estimator of 6, and a is ancillary. One easily
obtains the joint density
(a/27) exp { —%(a’ + R* — 2aR cos (6 — 6))} da db.
An unconditional system of confidence intervals is given by
“Pl—vy=0=<b+v)=a”

where « is the fraction of the unit circular normal distribution inside a wedge
of angle 2y, the maximum density being centered in the wedge at a distance B
from the vertex. To find the probability conditioned on the ancillary, we find
the marginal distribution of a to be expressible in terms of the Bessel function

Io by
‘%dgexp {—3(d® + R)} j;“ exp {aR cos (6 —0)} db
= aexp {—%(a’ + R*)}Is(aR) da.
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Thus the conditional density of § given a is

exp {aR cos (6 — 0)} i

271 o(aR)
and the conditional probability for a given value of a.is
A A 1 K aRcosd
—y=60= =
Pl—-—v=0=6+~]a) 5aTo@R) L © de

As in the previous example, the conditional probability depends on the ancillary
and is independent of the parameter. Here it approaches unity as a tends to
infinity and approaches v/ as a tends to zero. Thus subsets constructed from
observations lying near the origin will be negatively biased; the variability of §
for these considered separately is larger than the variability of  for all ob-
servations collectively.

3.5. An example involving the Behrens-Fisher problem. Behrens’ hypothesis
states that the means u,; , ps of two normal populations differ by 8( = 0, usually),
no assumption of the equality of variances o1 , o3 being made. We consider the
test devised by Welch [21] tabulated by Aspin [1] and appearing as Table 11 in
the Biometrika Tables of Pearson and Hartley [18]. This test rejects the null
hypothesis Ho: uy — pz = & when |& — & — 8| > v(s}/n + s3/n2)""* where
n, %, s denote size, mean, and variance of the samples and v (the analog of
Student’s ¢) is a tabulated function of 7, , ns, 51, s , and the significance level.
A calculation of Fisher [10] shows that for fixed s,/s; the conditional probability
P (reject | Hy, sz/s1) can be expressed as a unique function of the ratio o3/01 ;
and that when n; = n, = 7, 8, = s,, and the significance level is 0.1, then
P (reject | Hy, s, = s;) achieves a minimum value’ of 0.108 when o3/01 = 1.
Now if the tabulated test is translated into a system of confidence intervals, one
obtains the probability assertion

“P(A) = P{|(& — &) — (m — )| < v(si/m + s3/ma)"} = a”
for which Fisher’s calculation shows that when n, = n, = 7, « = 0.9,
P(A|C) 2 a—e¢ forall m,m,oi,o

where ¢ = 0.008 and C is the subset s; = s, .

Thus the tabulated solution induces a negatively biased relevant subset. It is
noteworthy that in this example P(A4 | C) depends on the ratio o3/07 whereas
in all four preceding examples P(A | C) was independent of the parameters.
One might well wish to distinguish between these two types of relevance, al-
though separate names have not been advanced here.

In [10] Fisher seems to imply that subsets defined by fixed values of s/s;
are uniquely appropriate reference sets for inferences about Behrens’ hypothesis;
but like Bartlett [2] and Welch [22], I do not find his reasons to be compelling.
Fisher does show that the subset s; = s, is not relevant (in the present technical

2 Fisher gives a graph but no table. The value 0.108 is obtained from Welch [22].
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sense) for Behrens’ solution, but he does not consider the possible relevance of
other subsets. Wallace [20] has since shown that no such relevant subsets exist.
3.6. An example in which an indwidual point of the sample space is a relevant
subset. As a rule the property of being relevant belongs to a set of possible ob-
servations and not to individual points of the observation space. But in rare
cases individual points may be relevant, as can be illustrated by a familiar com-
ponent-of-variance problem. Let
Yyi=wtate; (C=1--,r j=1"-"-,5)

in which u is an unknown parameter, a; and e;; are normal and independently
distributed with zero means and variances o, and ¢°. Using the dot notation to
indicate an average over the missing subscript, the sums of squares

= 2> (yis —v:)* and @ = 23 (v — y..)"
are known to have independent distributions given in terms of chi-square by
o xXey and (o + so2)xi— -
Thus the quantity

(" + s03) @ _ xi/fr
azfl Q2 X;z/fz

has the F distribution with fy = r(s — 1) and f, = r — 1 degrees of freedom.
If lower and upper percentage points F; and F; are chosen so that

PFL,=F=<F)=a

then on rearranging the inequalities one finds that the probability is « that

1rf1Q2 _l}stfzs {f1Q2F2 }

s\ @ - f2 @
If the ratio of mean squares is larger than the upper percentage point,
Q/h
> F.
Q2/f2 ?

as always can happen with at least some small probability, then the confidence
interval includes only negative values. The probability of covering the true ratio
oa/d" conditionally on any such observation is zero; thus such individual points
constitute negatively biased relevant subsets.

Now let C denote the collection of all such points, that is, all observations for
which the last inequality is satisfied. Then C is relevant and negatively biased.
Is increased confidence thereby justified for observations in the complementary
set €'? That €’ is semirelevant follows from Lemma 3. Using P(4 | C) = 0 one
obtains

P(A|C") = a/P(C") = a + aP(C)/P(C")
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so that the bias is «P(C)/P(C"). Since P(C) tends to zero as o¢’/o. tends to
zero, there is no positive lower bound for the bias. Thus the complementary set
(" is not relevant. Loosely summarizing these results: within C' one’s confidence
is necessarily zero; within €, @ is the greatest lower bound for the confidence
over the possible states of nature. :

4. Examples of semirelevant subsets. From the following examples it will be
seen that semirelevant subsets are more easily found than relevant ones and that
the requirement that none should exist is a very severe restriction indeed.

4.1. A nonparametric assertion about the median. Let g(t) be any continuous
density which is positive for — o < ¢ < o and which has median equal to zero.
If one observation « is taken from the density g(x — 8) (6 = median), then the

assertion
“P(A) =Pz << =) =17

is weakly exact. Consider the subset C defined by > 0. The conditional proba-
bility P(A|C) = P(z < 6|z > 0) = P(0 < z < 6) is zero for negative 6
while for positive 6 one has

P(O<z<0) =£og(x—0)dx= f:g(t)dt

—0
=3[ owa<y

forall0 < 6 < . Thus C is semirelevant, negatively biased. The last integral,
which gives the bias as a function of 6, is seen to tend to zero as 6 tends to in-
finity; thus C is semirelevant only—not relevant.

4.2. Student’s t. Let z be normally distributed with unknown mean
u(—o < p < ») and unknown variance ¢ (0 < o® < ). If Z and s* denote
the sample mean and variance, then the conventional confidence or fiducial
interval estimate of u corresponds to the assertion

“P(f—ks=p=z%+ks) =a

where k = t,u-1/A/n and t,,._1 is the appropriate percentage point of Student’s
{. We shall first show that for any @ > 0, the subset s < a is semirelevant,
negatively biased. Stated in another way, for any g, ¢°, “long” intervals cover
the true value more frequently than “short” intervals, and this fact holds for
any critical length which is used to distinguish “long” intervals from ‘short”’
ones. ,

Denote by 4 the event |§ — u| < ks, by C and €’ the subset s < a and its
complement s = a, by ¢ f(s/c) ds and g(& — u) dz the independent densities
of s and &. Then

P(C) = ‘[ o f(s/s) ds = M a/s), say,
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and
nt-ks

P(AC) = f o Y(s/o) j 0(F — p) di ds.

ks

If we put
w+-ks ks
G(s) = /“_k, 9(z — p) dz = L, g(2) de,

then by a mean value theorem
PAC) = [ o (s/0)G(s) ds = G(s0) [ #7(s/a) ds = Gls)N(a/)
where 0 < sy < a. This gives
P(A|C) = P(AC)/P(C) = Q).
By a similar argument
P(A|C") = G(s0)
where ¢ < so < . But G is an 1ncreas1ng function so that s, < a < so implies
G(s) < @G (so) The values of s, and s depend on @ and o, but for any particular

a, g, weak exactness implies that C' and C’ must have opposite bias. Thus for
all a, o, p,
G(s0) = P(A|C) <a < P(A|C") = G(s0)
so that C and C’ are semirelevant.
To 1llustrate the intuatlon more clearly, we consider the simple case n = 2,

a = 3, for which s* = 3(2; — .)® and the assertion is that the mean has an
even chance of lying between the two observations:

“P(A) = P(Tmin £ 4 = Tmax) = 3.
For the subset C’: s 2 a, the conditional probability is
P(A|C") = § + i¢(a/o)

where ¢(a/c) is the standard normal probability between —a/c and +a/c. Thus
the bias, 3¢(a/o), is always positive, increasing from 0 to  as a increases from
0 to . If Paul adopts the strategy: bet even odds that A4 is true when s = «a
and bet even odds that A is false when s < a, then the probability that Paul
wins is

=3+ ¢(1—9), = ¢(a/a),
which lies in the range 1/2 < P < 3/4, and Paul’s expected gain on these bets
of 1/2 unit is

G =¢(1—¢)
which always lies in the range 0 < G =< 1/4. The maxima of P and G are at-
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tained when ¢ = 1/2, that is, when
a = 0.670, approximately.

Thus the optimum value of a is proportional to ¢; and for dimensional reasons
this is true generally, the proportionality factor depending on n and «.

In an idealized model Paul will have no prior information concerning ¢ and
thus will have no basis for a choice of a in the range from zero to infinity, but in
practically any applied problem some prior knowledge of ¢ will be available. It
is noteworthy that Fisher has specifically stated that fiduc. 1l inference is valid
only in the absence of prior knowledge ([11], p. 51). In contrast, Neyman appears
not to have taken a stand on the applicability of confidence interval theory in
the presence of prior information. I believe that the above calculations tend to
justify Fisher’s restriction. Now the assumption that a prior distribution is
known and the assumption that nothing is known are two boundaries of a vast
intermediate area in which the-e is partial prior information. We have seen
how Paul can find a crude stategy in this middle ares'againkt Peter’s conventional
solution. But what one would really like to know is how Peter’s rule might be
altered to use partial prior knowledge. That is a much more subtle and difficult
question.

6. An example of nonexistence of relevant subsets. Let g(¢) be a continuous
density which is nonzero for all ¢, and let f(xz, 8) = g(x — 6) so that 6 is a lo-
cation parameter. From a sample of one value of x, 6 may be estimated by the
assertion

“PAY =P(-t4£2—0=bL)=Px—H<0=z+14H) =a”

where t; and ¢ are chosen so that

tg

[ g(t) dt = a.

131
We wish to show that neither of the inequalities
(1) PA|C)ZzZa+e€ or PA|C)Za—c¢ (for all 8)
can hold for any Lebesgue measurable set C of values of  having finite or infinite,
but not zero, Lebesgue measure (one is prevented from treating sets of measure

zero by the nonuniqueness of the definition of conditional probability; see for
example [13], p. 12). Let a(6), b(8), A(R), B(R) be defined by

a(6) = P(C),  A(R) = [: a(6) db,

b(8) = P(AC), B(R) = [: b(8) do.

Then P(A |C) = b(6)/a(8); and substituting in {1), multiplying by a(6),
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integrating over —R < 6 < R, and dividing by 4 (R) gives

B(R) > B(R) < ‘

m—) = m:tx € (fOI‘all R)-

It is shown in the appendix that subject to weak conditions on g(¢),
B(R)/A(R) — « as R — «, and thus the desired result is established by
contradiction. Some sweeping generalizations of this result have been found by

Wallace [20].

6. Generalization of the model. It may first be noted that the theory of
tolerance as well as confidence intervals may be treated simply by taking 4 to
be the proposition that at least a certain proportion of the population lies be-
tween stated limits.

A useful generalization consists in representing the outcome of the random
experiment by a pair of random variables (z, y) of which z is known and y is
unknown to the players, both being known to the referee. The theory of pre-
diction intervals is then treated by taking z to be “past’ observations and y to
be “future” observations to be predicted (it is immaterial that the “future”
observations y have already been observed by the referee so long as they are
unknown to the two players). The proposition 4 is then a statement depending
on z concerning the future observations; a notable distinction is that 4 does not
concern the unknown state of nature U.

In Bayestan interval estimation (Cramér [6], p. 508, Neyman [17], p. 162)
y plays the role of the unknown parameter having a known prior distribution.
Bayesian problems generally have the distinguishing feature that the state of
nature is assumed known so that U does not appear. As in prediction interval
theory, the proposition 4 gives a relation between 2 and y, the known and un-
known observations.

A further possible generalization which might have some interest, although
it seems not to be required for existing theories, consists in allowing the con-
fidence coefficient o to depend on the known observations: & = a(z). That is,
the rule R for probability assertions may specify not only how the proposition
A is to depend on z but also how the asserted probability level is to depend on z.
The definition of relevant subsets then requires some repair; the logical extension
cconsists in considering only subsets C of values of z for which a(z) takes a fixed
value. An example of variable « is given in Section 9.

6.1. The criterion of strong exactness. It has been noted that the expected gain
to Paul is a function of the unknown state of nature U, Peter’s rule R, and Paul’s
strategy S; thus it may be denoted by G(U, R, S).

Definition. A rule R, will be called strongly exact if

G(U, Ry, 8) = 0 identically for all U, S.

In other words: Whatever the true state of nature and whatever strategy Paul
may use, the expected gain to Paul is zero. It is essentially equivalent to write
P(A]C) = aforall U, C.

a -+ e or
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It appears to be impossible to satisfy the very stringent condition of strong
exactness except in rather special cases, e.g., in Bayesian estimation where the
condition “all U” is in fact no requirement at all since U is not variable. Thus
strong exactness is not so much a practical requirement as a goal toward which
one might strive even though it cannot actually be reached.

7. Remarks on Bayesian interval estimation. In a typical Bayesian situation
an experiment consists in obtaining a random value of the “parameter” from a
known distribution w(8) and subsequently observing values z;, ---, z, from
a distribution f(x; #) which is known but for the value of 4. Thus in the model
of Section 6, x represents z;, --- , x, and y represents 6. The conditional dis-
tribution of 8 given z;, -+ , x, is

w(8) {f(21;8) --- f(zr;60)}
[ 5e30) - $(2030)) o

A Bayesian estimate of 0 is given by the assertion

“P(kl § 0 é kz) = a”

ROz, -+ ,24) =

where k, and %, are any two numbers depending on the observations by
k2
f h(0| 21, - ,20) d6 =
ky

Apart from the arbitrary allocation of the probability 1 — « between the two
tails of the distribution, k; and %, are unique functions of the observations. It
may further be noted that the interval (k; , k) based on any particular observa-
tion (21, -+, =») has its own validity without reference to intervals which
might be defined for other observations; this is in contrast to confidence interval
theory in which any particular interval is meaningful only when referred to a
system of intervals defined for all possible samples. A closely connected fact
is that the above Bayesian solution gives a rule for assertions which is strongly
exact.

Two variations of the above are found in the literature. Cramér ([6], p. 508)
replaces h(6 |1, -+, ) by

w(0)g(d;0)
fw(o)g(é;o) do

where 0 is an estimator of 6 and g is the density of 4. Three remarks can be made:
(i) If 6 is sufficient for 8 and if the allocation of the probability 1 — « to the
two tails is fixed, then this solution will not differ from the preceding one. (ii)
If § is not sufficient and if the sample (z;, - -+, #) is known to the players,
then relevant subsets will exist and the solution is weakly exact but not strongly
exact, (iii) If 8 is not sufficient, but the players have knowledge only of § and
not of (21, -+ . x,), then the last solution is strongly exact.

R0 6) =
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A second variation is given by Neyman’s “modernized Bayes’ estimating
intervals” ([17], pp. 165-181) in which the expected length of the intervals is
shortened by requiring that the asserted probability « refer only to the relative
frequency in the sequence of all experiments, rot separately to sequences of
fixed (1, ---, @,). Thus in the “modernized Bayes’ solution” we have a clear-
cut example of a rule that is weukly but not strongly exact. This situation is
quite similar to the Cox example of Section 3.2.

8. A familiar prediction example. To show how a prediction problem fits into
the general scheme and to point out some analogies between prediction and
confidence intervals, we consider a familiar prediction example. Let z have a
continuous density of unspecified form, let x, and 2, represent two known ob-
servations, and let x; represent an unknown or future observation. Then since
all six of the permutations of z; < z» < z; are equally likely, the probability
assertion

“P(xmin <z < xmax) = %”

is weakly exact. Some years ago this particular example figured in a dispute
between Fisher [7], [8] and Jeffreys [15], [16]. Without claiming to understand
the subtleties of the dispute we note that Fisher [7] points out that “for any
particular population the probability will generally be larger when the first
two observations are far apart than when they are near together.” From Fisher’s
remark it follows that just as in the Stud nt’s ¢ example of Section 4.2, long
intervals are valid more often than short ones, and the subsets Lmax — ZTmin < @
or = g are semirelevant for any @ > 0. Fisher goes on to say that “the fallacy
of Jeffreys’ argument consists just in assuming that the probability shall be 1/3,
independently of the distance apart of the first two observations.” In the present
terminology we would say that Jeffreys is accused of treating an assertion as if
it were strongly exact when in fact it is only weakly exact.

9. An example of intersecting relevant subsets. In this section some rather
artificial examples are constructed primarily to illustrate intersecting relevant
subsets. The examples differ from those preceding in that the proposition A
is made independent of the observations and the “confidence level” « is allowed
to be random. The examples raise the question of whether interesecting relevant
subsets might exist elsewhere, for example, in confidence interval situations.

Let an experiment consist in drawing one ball from twelve contained in an
urn. Let 4, B, D denote attributes, and let 4’, B’, D' denote the respective
negations. We suppose that Peter and Paul have knowledge of the contents
of the urn as shown in Table 1, and that the referee draws one ball and announces
whether B or B’ is observed (x = B or B’ = observation known to players).
It is not revealed whether 4 or A’ is observed (y = A or A’ = unknown ob-
servation). Peter’s probability assertion concerns the probability that the ball
drawn has attribute A. The assertion “P(A) = 5/12” is weakly exact. It is
objectionable on the grounds that the (only) subsets B and B’ are relevant.
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A strongly exact assertion: clearly can be made by allowing a variable “con-
fidence level”’:

4/9 if z =B .,
1/3 if =z

The complexion of the problem is changed if the players are given further
information. Suppose the twelve balls are also classified in categories D and D’
and that the values in Table 2 are also known to the players. The referee an-
nounces one of four possible results: z = BD, BD', B’D, or B’D’. 1t will be seen
that no probability assertion of the form “P(A) = a(z)” is strongly exact
inasmuch as the values of P(A | BD), etc., are dependent on an unknown variable
state of nature, for the two marginal 2 X 2 tables fail to specify a
unique 2 X 2 X 2 table which would describe the contents completely. Table 3
shows that there are six possible states of nature which may be obtained by
putting @ = 2, 3 (= number of ABD) and o’ = 1, 2, 3 (= number of A’BD).

“P(A) = (

I
%

Table 1 Table 2 Table 3
A A A A A A’
Bl4 5109 g,a 3/ 6 ] B B B B’
BI
123 2 46 D a 3—al3] d 3—ad |3
5 7]12 5 7]12 Dig—a a—-2|2|5—0a o —1|4
4 1 |5 5 2

Intersecting relevant subsets are obtained from the weakly exact probability
assertion, “P(A) = 5/12,” for which B and D are relevant, positively biased
and B’ and D’ are relevant and negatively biased. BD and B’D’ are in. rsections
of similarly biased subsets; BD’ and B'D are intersections of dissimilarly biased
subsets. It is interesting to note that BD itself is not relevant, for with a = 2,
@’ = 3 one has P(A | BD) = 2/5 < 5/12. Thus Paul has a positive expectation
if he bets A is true when B is observed, or if he bets A is true when D is observed;
but he may have a negative expected gain if he bets 4 is true only when both
are observed!

Is there a uniquely appropriate reference set for Peter’s assertions in the last
example? Use of the universal set ignores information about B and D. Use of
BD, BD', B'D, and B'D’ seems inappropriate because the relative frequency
of A is not known within these subsets. It would seem about equally as appropri-
ate to use B and B’ as to use D and D’. Thus there appear to be no uniquely
appropriate subsets.

10. Summary and conclusions. Statistical inferences having the form, “The
probability that A is true is equal to a” can be studied within the framework
of a game between two players, one who makes such inferences (or probability
assertions) and an opponent who questions their validity. The model suggests
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a number of criteria of validity of such inferences; four criteria which have
been defined and illustrated by examples are: (i) weak exactness, (ii) strong
exactness, (iii) nonexistence of relevant subsets, and (iv) nonexistence of semi-
relevant subsets. Definitions of these concepts, too lengthy to be repeated here,
are given in Sections 2.1, 6.1, 2.2, and 2.2, respectively. Some general observa-
tions are:

(1) Weak exactness is a criterion suggested by a familiar requirement of
Neyman’s in the theory of confidence intervals; in the general model of Section 6
the definition is extended to apply to more general problems.

(ii) Strong exactness is a much more severe requirement which can be satis-
fied in classical Bayesian estimation situations, but which appears to be un-
reasonably demanding in most non-Bayesian problems. Those who eschew the
prior distributions of the classical theory pay for weakening the classical as-
sumptions by losing the property of strong exactness of the inferences. To mistake
weak exactness for strong exactness is to attribute to an inference a more desirable
property than it actually possesses. The logical fallacy is neatly stated by Sir
Macklin [14]:

“Then I shall demonstrate to you,
According to the rules of Whately,
That what is true of all, is true
Of each, considered separately.”

(iii) The criterion of nonexistence of relevant subsets is largely inspired by
some recent work of Fisher. Various examples of relevant subsets have been
given in order to provide a better understanding of their nature. Nonexistence
is established only for one simple case; for much more general results the reader
is referred to Wallace [20].

(iv) From the examples of Section 4 it is seen that nonexistence of semirelevant
subsets is a very severe requirement indeed. One may conjecture that fiducial
intervals do not induce relevant subsets, but from the example of Student’s ¢ it
is seen that the same conjecture is not true for semsrelevant subsets.

It is to be hoped that eventually there will be found some generally accepted
notion of an “appropriate reference set” for inferences. Some readers may find
that the examples of Sections 3.2, 3.3, and 3.4 indicate that the universal set is
not always as appropriate as some suitably chosen subset. On this subject,
Fisher ([11], p. 110) states:

“TIf, therefore, any portion of the data were to allow of the recognition of
such a subset, to which the predicand belongs, a different probability would
be asserted using the smallest such subset recognizable.”
Perhaps Fisher’s idea should be formulated mathematically in terms of minimal
subsets on which probabilities are known independently of the unknown state
of nature. That uniqueness of appropriate reference sets might be a problem is
indicated by the example of Section 9, in' which two different subdivisions of
the observation space give different reference sets which are about equal in merit.
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The appropriate reference set has been a subject of controversy in testing
situations (i.e., tests of significance and tests of hypothesis) ; contingency tables
and regression problems (Fisher [11], pp. 82-88) are old examples. Some recent
examples can be found in Cox [5] and in Cohen [3]. It is to be noted that the
present development has been based largely on problems of interval estimation.
The usual translation of criteria to testing situations is of course possible in many
cases. Thus certain testing situations have been treated implicitly in this work;
but perhaps the reader will find that whatever force the arguments may have
for estimation problems is diminished in the translation to testing problems.

11. Acknowledgement. I wish to thank Prof. Wallace for giving me a draft
of his paper prior to publication.
APPENDIX
Proof of the. result of Section &

To establish the result of Section 5 it will be assumed that the cumulative
distribution G(t) = [’ g(t) dt satisfies the mild restrictions

0 0
[ e®a<e amd [ 1-6w)i<o.
) 0
Denote by ¢c(z) the set characteristic function of the set C. Then

a0) = P(0) = [ sola)g(z — 0) do

' to+0
b(O) = P(AC) = [ sc(@)g(z - 0) do

gkl §

Further define u(R) by
R
w(B) = [ o) do

Then if u( «) is finite, a straightforward calculation shows that A(R) — p( )
and B(R) — au(«) as B — « which establishes the desired contradiction.
If u(R) — «, we may compare A(R) with

a® = [ s -0 i

R

= fxﬂ $o(@) /o:_,, g(z — 6) do do

= [ beta) e = u(B).

The difference A(R) — A’(R) is made up of four integrals described (ignoring
signs) by: z (or 6) in the range —R to R, and 6 (or z) in the range 4R to == .
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All four are bounded by virtue of the assumption on G. A typical calculation
follows:

-/;:-n ~/;:n dc(m)g(xz — 0) di dx < L:-n f;g(x—a)dde

L e

= [: G(z — R) dz

- Lo

Thus A(R) = p(R) + K(R) where | K(R) | is bounded as R tends to infinity.
The expression for B(R) may be treated as follows:

BR) = [ [ gott+0)gt) s

= [2 f:,_ﬂ dc(t + 0)g(t) do dt

=t

- [2 f:; $o(2)g(t) d dt

s—ll

ty R
=K’(R)+ft zj; Rdm(x)g(t) dz dt

= K'(R) + au(R)

where K’(R) is the sum of two positive and two negative terms, each term being
an integral over a region whose area is independent of R. Thus | K'(R) | is
bounded. Consequently the ratio

B(R) _ au(R) + K'(R)

A(R) w(R) + K(R)

tends to a and R tends to infinity, and the contradiction is established.
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