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1 Introduction and Summary

The purpose of this chapteris to introduce the concept of sampling and to present some distribution-
theoretical results that are engendered by sampling. It is a connecting chapter — it merges the
distribution theory of the first five chapters into the statistical theory of the last five chapters. The
intent is to present here in one location some of the laborious derivations of distributions that are
associated with sampling and that will be necessary in our future study of the theory of statistics,
especially estimation and testing hypotheses. Our thinking is that by deriving these results now,
our later presentation of the statistical theory will not have to be interrupted by their derivations.
The nature of the material to be given here is such that it is not easily motivated.

The emphasis in this book is on the theory of statistics as opposed to data analysis. As is
often the case a single word has multiple meanings and such is the case with statistics. There are

at least three meanings of statistics:

(i) a collection of numbers, as in the batting averages of all major lcague baseball
players at the All Star break; the daily temperature highs and lows for major
U.S. cities; the daily listing of number of shares traded, high, low, and closing
price of stocks traded on the New York Stock Exchange; etc.;

(ii) The discipline or subject as in mathematics, chemistry, physics, etc. One might
define statistics as the science and art of collecting, manipulating, analyzing,
interpreting, and/or presenting information (often numerical) usually with intent
of drawing infcrences;

(iii) functions of the “data” (collection of numbers) as an arithmetic average of a set
of numbers.

All three meanings will be used. In data analysis, one analyzes the data of meaning (i). Data
analysis is often descriptive including such techniques as graphs, box-plots, ctc., with no assumed
“structurc” of the data. In contrast, the theory of statistics as uscd here entails the assumption that
the data can be viewed as the value of some random vector. Modeling of the data will encompass
all assumptions made about the random vectors that the data is a value of.

Scction 2 begins by introducing the language of the theory of statistics including such concepts
as sample, population, sample moments. Sample moments are important and uscful statistics in
the sense of meaning (iii). Two types of results are presented: those associated with a fized sample
size (often referred to as “small” sample results) covered in Scctions 3 and 4, and those associated
with increasing sample size (often labeled “large™ sample or limiting/asymptotic results) covered in
Section 5. Section 3 considers general fixed sample size results. The sample or empiric distribution
fuhctiou is studied as well as sample moments and sample quantiles or order statistics. Order
statistics, like sample moments, arc important and usclul statistics. Sampling from the normal
distribution is considered in Section 4 where the chi-square, F, and ¢, distributions are introduced.
Finally, asymptotic distributions for sample moments and sample quantiles are addressed in Section
5. Included is an introduction to eztreme value theory. These results have important applications
that will appear in later chapters; for example, the justification for certain confidence intervals
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frequently used in the daily practice of statistics (meaning (ii)) rests on some of these limiting
results.

2 Sampling

2.1 Samples and Modeling

In the study of probability theory in the earlier chapters, the link to the real world was the so-called
conceptual experiment that led to the sample space which in turn led to the probability function,
random variables, etc. In the coming study of statistics such link is provided by data, a collection
of numbers as in meaning (i) of statistics in the previous section.

Let z;,...,z, be a generic notation for the “data,” also called the observed sample (or just
sample), where n is the generic notation for sample size. (n is the index nceded in sample-size-
increasing in the limiting results of Section 5.) Each z; could be a vector. For example consider
n individuals involved in some sport. On each individual one might observe the height, weight,
amount bench pressed, 0, uptake, etc. Or from the academic arena, the GPA, GRE scores, class
rank, etc., could be observed for n applicants for graduate admission.

The first piece of structure that takes us into the rcalm of theory of statistics is:

Assume that z,,...,z, is a value of ru’s Xy,...,X,; i.e., we are willing to consider our “data” as

a value of a r.v. (r.v. is usually random vector here) — such structure is not needed for much of
data analysis. - -

Definition 1 Xj,..., X, is called the sample and z,,...,z, is called the observed sample
or data. If X,..., X, arciid, then X1,...,X, is called a random sample from the common
distribution of the X;’. i

Comment: We are often sloppy and fail to distinguish between a r.v. and jts value; i.e., we call
Xty X, and z4,...,2, our sample (without proper modifier). , i

The next picce of structure is to model X1y..+, Xa. Here “modeling” is assuming something
about the distribution of the sample X1,..., X,.

Notation: Write X, or X (depending on whether or not, respectively, sample size is important to
our discussion) for X,..., X, and Z, or z for zy,...,z,.

Definition 2 A model is an assumed family of distributions for X, or X, generically
called F, or F. Il F = {F(-0) or p(~;6) or f(~16) : 0 ¢ 8}, where § is some subset of
Buclidean space, then we speak of a parametric model. § is the parameter space and 6 the
paramcter. ////
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The model consists of an assumed family of distributions for X,.. If the Xy,...,Xn in X, are
assumed iid then one could describe the model by stating the iid assumption and then giving 2
family of distributions for the common distribution of the X.’s and this is what is done.

The “game” of ugtatistical inference” as part of the “theory of statistics” is: based on the
data™ and assumed model, make some inference regarding the model; for example, estimate the
parameter 8. We will study three modes of inference — point estimation (Chapter VII), interval
estimation (Chapter VIII), and hypotheses testing (Chapter IX).

EXAMPLES OF MODELS:

(1) .
Niveory Xn S f(-16),0 €8
|

known known model
unknown

Here zj,..-,Zn CONSists of n independent observations {rom f(-;6) for 8 fixed but unknown.

(2) )
NI Y Yo \iid T3 g} poy02
yeoes ~ BV :
(5)-(%) 5 (1 s 7%

~ M—
——

=X.
Here we have a joint (bivariate) parametric model. The parameter space is:

E= {(}‘\-112»01.02.;7) t0p > 0,02 > 0,-1<p< 1}

(3) Two samples — say '
Yiyeo Yo, % fi(6)) and
ZrveorZny © J2(i62)
where Y. is independent of Z:

Now X = (Y,Z) and our generic sample size index n is not so clear. (We might have n

increase as cither ny or ng or both increase.)

(4) Multiple samples — C.g., @ ‘space’ and ‘time’ indexed quantity, say Xspacctimes 35S space and
tme range over some index set, is the sample; c.g., supposc we have k lakes numbered 1,...,k

and acidity measurements in time at cach lake.

lake 1 : Xl,h,.k',.h,...,}\,,l,,‘

lake k1 Nkky o Xkkaro o1 Xkkny

(time ‘readings’ at lake 1 may not be the same time ‘rcadings’ as lake k). Various assu mptions

regarding the distribution of the random vectors could be made.
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(5) Identically distributed but not independent random variables; e.g.,

a) AR(1) where px; x; = pli-dl
b) equicorrelated where px; x;, = p

fori#j,and -1<p< 1l

(6) Independent but not identically distributed random variables.

EXAMPLE 1 Simple linear regression model Y; = fo + 1z + E, where z is a real number, o and
By (scalar) parameters and E is a r.v.

sample: = X, is (21,Y%,), ..+, (2a, Yz, ) with model: Y5, = Bo+0B1z;+ E;and E,,...,E, ~ as
something. (Under normal theory E,,...,E,. W N(0,0%) and ¢? is another

parameter.) i

(7) a non-parametric model: )
Xi,... v Xn “'J f() and(c'g’) f()

is just assumed to be symmetric. YWe cannot ‘parameterize’ with a point in Euclidean space,
hence a “nan-parametric model.” /111

Definition 3 The distribution of the sample is the distribution of X (different than
“sample distribution” to be defined soon). /11]

EXAMPLE 2 If Xy,...,X. is random sample from f(:) then the distribution of the sample is
given by fx(z) = fx,,nxn(Z10e -1 Zn) = My flz). /111

2.2 Statistics

Definition 4 A statistic is a function of X (or z) (here, again, we usc the term “statistic”
for r.v. or value of r.v.) generically denoted by t(-) = t(:,...,"). /1]

Notation: Set A’ = {z : z is possible value of X under model}. & is called the polential data

scl.

. - . . 4. .
Remark For a statistic a function of z, think X ) T, where T is usually some subset
of some Luclidean space.
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Remark For Xi,...,X,, where X; is a r. variable (as opposed to a r. vec-

n
tor), X = Xp = %ZX.-, the sample mean, is a statistic, and §2 = §? =
=1
n - 2 .
n—liZ(X.- = Xn), the sample variance, is a statistic. (We will return to these.)
=1
n
We also could write T = %z:;; ‘statistic’ is the function that says: % times the
i=1
sum of the z;s, and T is the rcal line (or a subset of the real line under some
models). 111/

In our ‘generic’ statistic, we really have four different “tees’. They are:

t(-), script l.c. tee, stands for the function in X' 0 T

T, bold u.c. tee, stands for the range of the function t(-)
T, cap tee, stands for r.v. in T = t(X,,... yXn), and
t, Lc. tee, stands for value of r.v. T, or t = t(z1,...,2a), Or, t is a point in T.

Statistics as defined here, and used in the sense of meaning (iii) in Section 1, will be used
throughout the remainder of this text. For example, recall the three modes of statistical inference
advertized in Section 2.1; a point estimator will be a statistic, an interval estimator will be two
statistics, onc less than the other, used to identify an interval, and a test statistic will be used to
test a hypothesis.

2.3 Sample versus Population

A common term in statistical jargon is that of population, which is difficult to precisely define,
possibly because it is used in so many ways. Population is linked to the model. We say that the
sample is used (often through a statistic) to learn somcthing about the population. The following
“definition” illustrates various uses of the term population for one case.

Definition § Suppose X7,..., X, are identically distributed with range (under the model)
X; that is, pli¥) X: then

(i) Xis often called the population; it is the possible values of any of the X;’.
(i) £ itsell is sometimes called the population.

(iii) Even the distribution of the X; is called the population.

‘Population’ is also used as an adjective; c.g.,
(i) population distribution for the distribution of X;.

(ii) population mean for £[X;).

(iii)  population variance for var[X7], etc. /111



2 SAMPLING 6

Admittedly, population has not been completely defined — it is part of the ‘background structure’
imbedded in the model.

As mentioned, we use the ‘sample’ to learn something about the ‘population,’ which is the
framework for the “population” versus “sample” contrast. Restrict now to a sample X,,..., X, of
random variables (not vectors) with ‘model’ that says Xj,..., X, are identically distributed; the
following table lists some population and sample companions, as well as their generic notations.

All the expressions in the ‘sample’ column are statistics. We use these ‘sample’ statistics
to learn something about their ‘population’ counterparts. And we look at “small/fixed” sample
results (Sections 3 and 4) and “large/asymptotic (as n — c0)” results (Section 5).

population sample
mean: n=E[X;] Xn=X= %EX.-
1
n
variance: o? = var[X;] Si=8r=2> (X - X.)
1
raw moments: B = a, = £[XT] Ml = 1%"xT
R
central moments: Br = B = E[(X; = p)7) M, = %Z(;\'g -X.)
1
skewness coefficient: & M; /Mg /2
kurtosis coefficient: £ My/M3
or & -3 (My/M3) =3
cocfficient
of variation: < %
quantile: £, such that “gth order statistic”
Fx,(&) =4q (defined later)
distribution: Fyx;(+) sample cdf F,(+)
(defined later)
For ( '\,l ) ,...,( ;\," ) ~ identically
1 n
L3 (Xi = Xa)(¥; = Vo)
. S rye - cov (X} =
correlation: p= ST,\(}_,'—I . ST
or

(Xi=Xn)(¥=V2)

L(Xi=X) L (vi-v)

|




