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Note that fy|x=:(-) does possess the properties of a pdf. since frix=:(y) 2 0 and

(z,y) Ix(=)
[ frix=s(y)dy = [, ZXENdy = o [ fry(z,y)dy = 26 = 1.

i . i I, )
EXAMPLE 11 Assume fx y(z y) = (z+y)1(° 1)(2)1(0 1)(y) Now lexgz(y) = (z+r:i;;}::)”‘:;‘w

= ;Z-I(o 1)(y) for 0 < z < 1, which is a linear function of y for fixed 0 < z < 1. /11l]

As for joint discrete random vectors. the conditional distribution of Y given X = z. for (X.Y)
jointly continuous, has two uses. First P[Y € B | X = 2] = [p fy|x=s(y)dy. Second, fxy(z,y) =

Jyi1x=:(y)fx(z). so one can obtain a joint density by assuming a marginal and a conditional.

Remark To generalize from the bivariate case to the k-variate case. note that Definition
11 remains valid if Y and X are each treated as vectors; write Y and X. Assume (X,Y)

is jointly continuous. Then fyjxug(y) = -51%'- for fx(z) > 0. Also, Fyjx=s(y) =

f_l“ Jy1x=z(2)dy, where the integral is a multiple integral of the same dimension as that of
Y. Also, Fyjx=;(y) = P[Y. £ y | X = z], where the inequality Y < y is componentwise.

4.3 Other Cases

Our purpose here is to give meaning to conditional distributions for those cases when the background
random vector is not discrete or jointly continuous. We also give several formulas that are direct
generalizations of the Theorem on Total Probabilities given in Chapter 1.

We want to be able to handle the case where, say, X is discrete and Y is continuous; we
want to give meaning to the conditional distribution (preferably in density form) of Y given X = z
and the conditional distribution of X given Y = y, and then use the product of such a conditional
distribution and an appropriate marginal distribution to define a joint denmsity. That a random
variable Y can be continuous; that is, a pdf fy(-) exists, yet the conditional distribution of Y given
X = z is discrete can be illustrated by once again recalling F7(z,y) of Example 2; where Fy(z,y)
was the bivariate cdf of (X,Y)and Y = X and X ~ unif(0,1). Y was a continuous random variable
with pdf fy(y) = I(0,1)(y). On the other hand the distribution of Y given X = z,for0 < z < 1, is
discrete; in fact, Y given X = z is degenerate at z.

For X discrete and Y arbitrary, our Theorem on Total Probabilities says:

PlYeB] = Y PlY € B;X =z]
{z : z is mass point of X}

S PIY € B| X = zlpx(s)
{z : z is mass point of X}




4 CONDITIONAL DISTRIBUTIONS ’ A

Now if {Y € B} = {Y < y}, thatis, B = (-cc, ], then we have

Fy(y) = Fyix=:(y)px(z).
{z : z mass point}

It is this result that motivates the following definition.

Definition 12  Conditional cdf of Y given discrete X For X discrete and Y
arbitrary. define Fy|x=z(:) as the solution to the following equation in D for each y:

PIlY <y:X€Dl= Y Frix=:(v)px(z) for all D € B,
z : z is mass point of X’
andz € D
where B is the linear Bore] sets. /11]
Remark Fyxur = 5%’—" is such a solution.
PY <y X =
roor 3 Frixestipx(e) = T OIS 6) L 5y cyix s
{z€D) {zeD) - {=eD} -
z]= P[Y <y;X € D] forall D € B. /1]

Mathematically we still have some concerns; for example, does the Fy|x,.(-) defined as the
solution to the key equation have the properties of a cdf? We omit the alluded to mathematics.

We have previously defined the conditional cdf of ¥ given X = z for both X and Y discrete.
It can be shown that that conditional cdf satisfies the key equation of Definition 12. We now use
the conditional cdf to define a conditional pdf.

Definition 13  Conditional pdf of Y given discrete X If X is discrete and

Fy|x=z(-) absolutely continuous. define the conditional pdf of Y given X = z as Jyix=s(y)
- dFyixus(y)

xes) 111/
We have defined the case where X is discrete and Y | X = z is continuous. Note that if D is
the real line, the equation in Definition 12 reduces to Fr(y)=PlY<yl= T Fyix=:(y)px(2),

{z a mass point of X}
and differentiating with respect to y yields:

Remark For X discrete. Y continuous, and F, Yix=z(-) absolutely continuous for all mass
points z of X

frly) = ) Jrix=<(¥)Px(z). 1111

{= 2 mass point of X)
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The above Remark gives the marginal pdf of Y in terms of the conditional pdfof Y | X = =

and marginal pmf of X.

Next let’s assume X is continuous.

Definition 14 Conditional cdf of Y given continuous X For X' continuous and
Y arbitrary, define Fy|x=z(-) as the solution to

PIlY <yiX e D)= éry,x,,(y) fx(z)dz for all D € B.

where B is the linear Borel sets. /11]

Remark For (X,Y) jointly continuous. Fy|x=z(y) = [2o fy|x=z(v)dv is a solution when

frixez(v) = %f%"—) as it should be.

PROOF | (Frixas @) fx(z) dz = [ (/2o frix=s(v)dv) fx(z) dz =
[[¥ fxr(z,o)dvds = PIX € D;Y < 3] for all D. 1111
D

Note that if D is the real line, P[Y < ;X € D] = P[Y < y] = [Zo, Frix=s(y)/x(z)dz.

Now, if we assume Y is discrete and y is a mass point, then py(y) = Fy(y) - 'l.i/n%Fy(y -h) =

IS Fyix-:(y)fx(z)dt—‘{% /_: Fy\xuz(y=h)fx(z)dz = [Z3, [wa.:(v) - E%Fylxu(v - h)]

Sx(z)dz: and hence ;he following definition.

Definition 15 Conditional pmf of Y given continuous X If X is continuous and
Fy|x=z(-) discrete, the conditional pmf of ¥ given X = z satisfies:

)= [ pyixmeln)fx(zidz. /111

Remark pyix=:(¥)= l’ﬂﬂ-‘E’"ﬁ satisfies the above equation and provides the funda-
mental relationship tieing together conditional densities and marginal densities for one ran-
dom variable discrete (Y here) and the other continuous (X here). We have py|x=.(y)fx(z)
= fx|y=y(2)Pr(v), and either side gives the joint density of X andY.

PROOF = (Prix=s(®) fx(z)dz = [, (’—""'—},',%”"—M) Ix(z)dz =
pr(y) [2e fxiv=y(2)dz = py(y). /11

Definitions 12 and 14 are not practical, and we will not use them in practice. We will create

our model by assuming what a conditional distribution is and what the marginal of the given
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random variable is and then use what results from these assumptions. The following example

illustrates.

EXAMPLE 12 Suppose X ~ unif(0,1)and YV | X =2 ~ bin(n,z). What is the distribution
of Y7 And what is the distribution of XY =197 priy) = f:‘;py;x,,(y)fx(:)dz =

Io < v )‘-""(l—z)""’dz: ( y ) B(y+1,n-y+1) = ( y ) o = fory =0

that is. Y ~ discrete unif{0,1...., n}. (In our mixture language, we see that a uniform mixing

distribution over the p parameter of a binomial gives a discrete uniform for the mixture.)

V(1=2)"V](g,4)(z)

. pyixesIxts) _ \ Y (n+1)! - -
Now fxiy=y(Z) = prty) = 7t 1) = syl -2)" Vea)(2) =

mz”"‘(l — z)nvHI=1 [ gg)(2); thatis, X [Y =y~ beta(y+ l.n~y+1)

By assuming 2 marginal distribution on X and also a conditional distribution for Y
given X = z, we essentially have a joint distribution for X and Y from which we can deduce
the other marginal and conditional distribution. /11]

The main results of this section can be summarized by repeating the following three equations,
in which the notation indicates the kind(s) of densities assumed.

fY(y) = Z leX::(y)PX(z)
. {z:= is mass point of X}
py(y) = [2, Prix==(y)x(2)dz

Pyix==(¥)fx(2) = fxivy=y(2)PY (V) gives the joint density of X and Y.

One can extend to X a discrete random vector and Y. a continuous random vector in a natural
way. '

We close this subsection by listing four formulas, all of the type of the Theorem on Total
Probabilities, and a fifth formula involving conditional probability and random variables. The first
four formulas include P{A | X = z] where A is an event. Strictly speaking P[4 | X = z] needs
to be defined, and it can be defined just as Fyix==(¥) = PlY Syl X =z]was defined. Our use
of P[A| X = z] will be through one of the following formulas, and the nature and modeling of
the experiment which produced the sample space on which both A and X are defined, will dictate
what P[A| X = z]is.

Formulas generalizing the Theorem on Total Probabilities

For X discrete with mass points I;,22,---

() Pl4]=Y_PlA|X =azdpx(zi)-




5 INDEPENDENCE OF RANDOM VARIABLES 2

(i) P[A;XeB]= Y PlA|X =zpx(z).
{v:z,€B)

For X' continuous,
(iii) PlA]) = IS P[A | X = z)fx(z)dz.

(iv) P[A;X € B]= [P[A| X = z]fx(z)dz.
B
(v) P[g(X,Y)52|X=z}=P[g(z,Y)Sz|X=z].

Of course, when X is discrete, P[A| X = z;] = %“;’T:‘l, so P[A | X = z,]is in fact defined. For
X continuous, one cannot define P[4 | X = z] as %‘%’J since P[X = z] = 0. It is reasonable to
ask whether P[X = z] can be replaced with something like Plz—h < X < z+h), which has positive
probability, and then take the limit as A — 0. The answer is affirmative; and. for example. the
following is true:

PlAIX=z=1tm Pla1 Zd cx 12~;1"+1], YAl

where [-] is the greatest integer function.
The following is a classical example that uses Formula (iii) above. ) ﬁ ‘

A

EXAMPLE 13 Three points are selected randomly on the circumference of a circle. Wha;
is the probability that there will be a semicircle on which all three points will lie?. .By
selecting a point “randomly,” we mean that the point is equally likely to be any point on the
circumference of the circle; that is, the point is uniformly distributed over the circumference

of the circle. Let us use the first point to orient the circle; for example, orient the circle
(assumed centered at the origin) so that the first point falls on the positive z axis. Let'X
denote the position of the second point, and let A denote the event that all three points lie

on the same half circle. X is uniformly distributed over the interval (0,2x). According to

- Formula (iii), P{4] = JP[A| X = z]fx(z)dz. Note that for 0<z<n, PlA|X=2]=

(T -z +7) /27 since, given X = z, event A occurs if and only if the third point falls between
z~-7and 7. Similarly, PIA | X = z] = (2 + 7 = T)/2r for * < z < 2x. Hence P[A] =

" PlA| X = z)(1/27)dz = (1/2x){[g (27 = z) /27 )dz + [**(z /2r )dz) = 3, 111/

5 Independence of Random Variables

When we defined the conditional probability of two events in Chapter I, we also defined indepenf
dence of events. We have now defined the conditional distribution of random variables; so we should
define independence of random variables as well.





