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Table 1.  Calibration of p Values as Odds (Bayes factors) and 
Conditional Error Probabilities 

from use of the Bayes factor in (2) together with the as- 
sumption that Ho and H1 have equal prior probabilities of 
112. Thus, use of (3) has the additional pedagogical advan- 
tage that one need not fear misinterpretation of a frequen- 
tist error probability as the probability that the hypothesis 
is true; here, they coincide. 

Table 1 presents various p values and their associated cal- 
ibrations. Thus, p = .05 translates into odds B(.05) = ,407 
(roughly 1 to 2.5) of Ho to HI, and frequentist error proba- 
bility a(.05) = .289 in rejecting Ho. (The default posterior 
probability of Ho would also be ,289.) Clearly p = .05 does 
not indicate particularly strong evidence against Ho. Even 
p = .O1 corresponds to only about 8 to 1 odds against Ho. 
These calibrations will be formally motivated in Section 3, 
from a variety of perspectives. 

2. ILLUSTRATIONS OF THE P VALUE FALLACY 

In this section, we present an extended example that il- 
lustrates the p value fallacy. The example is presented in 
terms of a simulation, for two reasons. First, it is then ac- 
cessible to even beginning statistics students, and can be 
used in introductory classes to convey the meaning of p 
values. Second, the use of simulation emphasizes the fre- 
quentist nature of these issues; we are not discussing a con- 
flict between frequentist and Bayesian reasoning, but are 
exhibiting a fundamental property of p values that is appar- 
ent from any perspective. 

Consider the situation in which experimental drugs 
Dl ,  DZ. D3..  . . are to be tested. The drugs can be for the 
same illness (say, AIDS, common cold, etc.) or different 
illnesses. Each test will be thought of as completely inde- 
pendent; we simply have a series of tests so that we can 
explore the frequentist properties of p values. In each test, 
the following hypotheses are to be tested: 

Ho : Di has negligible effect versus 

H1 : D, has a non-negligible effect . (4) 

Note that the null hypotheses, Ho, have special plausibil- 
ity in these tests; many experimental drugs that are tested 
have "negligible effect," so that these null hypotheses could 
reasonably be true. [This is related to the earlier comment 
that we are only concerned with the testing of "precise" hy- 
potheses. See Berger, Boukai, and Wang (1997) for further 
discussion.] 

Suppose that one of these tests results in a p value = 
.05 (or = .01). The question we consider is: How strong is 
the evidence that the drug in question has a non-negligible 
effect? To study this, we will simply collect all the p values 
from a large number of such tests, and record how often 
the null hypothesis is true for p values at various levels. 
For instance, Table 2 shows hypothetical output from the 
first 12 tests. Suppose we focus on those tests, in a long 

series of tests, for which p = .05 (D2 and D8 in Table 2) or 
p = .01 (D5 and Dlo in Table 2), and ask: What proportion 
of these tests have true Ho; that is, ineffective drugs? 

We shortly discuss the simulation to answer this question, 
but here is the basic and surprising conclusion for normal 
testing, first established (theoretically) by Berger and Sellke 
(1987). Suppose it is known, a priori, that about 50% of the 
drugs tested have a negligible effect. (We shortly consider 
the more general case.) Then: 

1. Of the D, for which the p value = .05, at least 23% 
(and typically close to 50%) will have negligible effect. 

2. Of the D, for which the p value = .01, at least 7% (and 
typically close to 15%) will have negligible effect. 

Similar results arise for other initial proportions of in- 
effective drugs. Indeed, suppose that the initial proportion 
of ineffective drugs in the simulation is TO. Then, among 
all those tests for which p = .05, a lower bound (derived 
by Berger and Sellke 1987) on the proportion of true nulls 
is given in Figure 1. For instance, if the initial proportion 
of true nulls is about 113 (2/3), then the proportion of true 
nulls among those tests for which p = .05, is at least 12% 
(35%), and is typically (i.e., for most simulations) much 
larger. 

The simulation we consider to represent this situation 
supposes that each test in (4) is based on normal data 
(known variance), with 8, being the treatment mean for D,, 
so that (4) is the test of Ho : 0, = 0 versus H1 : 0, # 0. One 
must choose TO, the initial proportion of null hypotheses 
that are true, and also the values of 0, under the alternative 
hypotheses. For each hypothesis, one then generates normal 
data with mean B,, and computes the corresponding p value, 
defined for the usual test statistic, T ( X )  = fiX, / a , ,  as 

here TI, ,  a,, and X,are the sample size, standard deviation, 
and sample mean corresponding to the test of D,, and @ is 
the standard normal cdf. After doing this for a large series 
of tests, one looks at the subset of p values which are near 
a specified value, such as .05. For instance, one can look at 
those tests for which .049 5 p 5 ,050. (Any small interval 
near p = .05 would yield essentially the same answer.) One 
then simply notes the proportion of such tests for which 
Ho is true. An applet that performs this simulation can be 
found at http://www.stat.duke.edu/-berger/p-values.htm1. 
The Web site also discusses numerous further details, such 
as choice of the alternatives 0,. (Note that the lower bounds 
discussed above, and given in Figure 1, are true for any 

Table 2. P Values Corresponding to Testing Whether Drug 
D, has Negligible Effect 

Drug D l  D2 D3 D4 D5 D6 
p value .41 .049 .32 .94 .O1 .28 

Drug D7 D8 D9 D l  0 D l  1 D l  2 
p value . I  1 .05 .65 .009 .09 .66 
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initial proportion of true nulls, no 

Figure 1.  Lower Bound on the Proportion of True Nulls Among Those Tests for Which the p Value is Close to .05 

choice of alternatives, and most choices of alternatives will 
give answers substantially higher than these lower bounds.) 

A large number of variants of this simulation could be 
performed. Having normal data is not crucial; the results 
would be qualitatively similar under most standard distri- 
butional assumptions. [See Berger and Sellke (1987) for 
some exceptions.] Likewise, the results would not quali- 
tatively change if the null hypotheses were replaced by 
small interval nulls of the form Ho : 18, 1 < t, providing 
t < o,/(4&). This is important because hypotheses such 
as Ho : 8, = 0 are unlikely to ever be true exactly. (D, will 
probably have some effect, even if only 8, = lop5.) Indeed, 
the hypothesis Ho : 0, = 0 should really just be thought of 
as an approximation to a small interval null, and Berger and 
Delampady (1987) showed that it is a good approximation 
if t < a,/(4-). Thus, in practice, one must make the 
judgment that this condition will hold before formulating 
the test as that of Ho : 0, = 0. Note, also, that this condi- 
tion will be violated for large enough n,, so that a different 
analysis will be called for if the sample size is huge. 

Another point of interest is that the answers obtained 
from the simulation would be quite different if one consid- 
ered, say, the subset of all tests for which 0 < p < .05. 
Indeed, if the initial proportion of true nulls in the above 
simulation were 112, then, among those tests for which 
0 < p < .05, the proportion of true nulls would have 
the lower bound .048 (although, for nonextreme values of 
the alternative Q,, the proportion of true nulls would be 
much higher). The point, however, is that, if a study yields 
p = .049, this is the actual information, not the summary 
statement 0 < p < .05. The two statements are very differ- 
ent in terms of the information they convey, and replacing 
the former by the latter is simply an egregious mistake. 

Although the simulation visibly demonstrates that a p 
value near .05 provides at best weak evidence against Ho, 
it does not indicate why this is so. The reason is basically 
that the probability of getting a p value near .05, when HI 
is true, cannot be much bigger than the probability of get- 
ting a p value near .05, when Ho is true. To explicitly see 
this, consider a slightly different aspect of the above simu- 

lation. We will create a histogram that indicates where the 
p values in (5) fall that are generated from the null hv- -
potheses, and also a histogram of the p values generated 
under the alternative hypotheses. For ease of assimilation, 
we give only the portion of the histogram corresponding to 
the range .O1 < p < .lo. 

Under the null hypotheses, p values are well known to be 
Uniform(O.1); the histogram that would result from such p 
values is represented in Figure 2 by the unshaded columns. 
Thus, the probability that .O1 < p < .02 is .01. 

To make a histogram of the p values in ( 5 )  under the 
alternative hypotheses, we must choose the n,, a,,and 0,. 
The distribution of p under the alternatives actually depends 
only on the <,= fiO,/o,. We consider the four cases (a) 
<,E 112, (b) <,E 1, (c) <,3 2, and (d) <,= 4. Figure 
2 gives the corresponding histograms of p values (over the 
range .O1 < p < .lo); these are the shaded columns. 

As expected, smaller values of p are more likely under 
the alternatives than under the nulls, but the degree to which 
this is so is rather modest for p values in common regions. 
For instance, a p value in the interval (.04, .05) is essen- 
tially equally likely to occur under the nulls as under the 
alternatives when <,= .5; is less likely to occur under the 
alternatives when <,= 4; and is considerably more likely 
under the alternatives only in the case <,= 2 (where the 
p value is 3.7 times more likely to have arisen from the 
alternative than the null). This last case is essentially the 
choice of alternatives that maximizes the probability of p 
being in the interval (.04. .05) (as shown by Berger and Sel- 
Ike 1987). Thus, no matter how one chooses the n,, o,, and 
0, under the alternatives, at most 3.7% of the p values will 
fall in the interval (.04, .05), so that a p value near .05 pro- 
vides at most 3.7 to 1 odds in favor of HI.  (This is actually 
just a restatement of the earlier observation that, if 50% of 
the nulls are initially true, then at least 23% of those with 
a p value near .05 will be true.) And other choices of the 
alternatives are much more likely to yield a histogram like 
the other cases in Figure 2, rather than this extreme bound. 
The clear message is that knowing that the data are "rare" 



Figure 2. Distribution of p Values Under the Null Hypotheses (unshaded columns) and Under the Alternative Hypotheses (shaded columns) 
Over the Range .01 < p < . lo.  ( = GO /o is the standardized mean under the alternative. 
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Figure 3. Plots of the ratio of Mill's ratios in (19). 

rus = 	{T  : ~ ( 8 )is unimodal and 

symmetrical about 0)  

rsvln= {.rr : ~ ( 8 )is symmetrical about 0).  

Table 3 displays these lower bounds for various p values, 
along with the calibration -ep logp. 

A striking feature of Table 3 is the close agreement be- 
tween the lower bounds on the Bayes factors for the class 
rusand the proposed calibration, -eplogp. This class of 
priors is often argued to contain all objective and sensi- 
ble priors, so that the close agreement lends strong support 
to the appropriateness of the calibration. Incidentally, the 
close agreement also suggests that the hazard rate function 
for the alternatives at which the infimum is attained must be 
nearly constant, and this can indeed be shown numerically. 
The class rsY,, clearly falls outside the conditions under 
which the calibration bound is valid, but this is arguably a 
much too large class of priors. 

The next example considers the multivariate normal sit- 
uation. Comparisons between p values and Bayes factors 
can be difficult in higher dimensions, so this example is of 
considerable interest in indicating whether or not the pro- 
posed calibration is also reasonable in higher dimensions 
(although note that the nonparametric arguments of Sec- 
tion 3.1 would equally well apply to higher dimensional 
situations). 

Exnnzple 4. Assume that the null model for the data 
X = . . . X k )  is Nk(O. I )  and that the alternative is (XI.. 

Nk(8 ,  I ) ,  where I is the k x k identity matrix. (Without loss 

Table 3. Infimum of Bayes factors, p Values and Their Calibrations 

P 1 .05 .01 ,001 
-eplog P ,6259 ,4072 .I  252 ,01878 

r ~ o r m a l  ,7007 ,4727 ,1534 ,02407 

of generality, we assume that there is only the single vector 
observation.) The prior distribution under the alternative is 
assumed to belong to the following class of scale mixtures 
of normals: 

8v2 - ' \Tk(o ,~ '2~)  

.ir(u2) is a nonincreasing density on (0.oc). (20) 

The reason we do not consider the conjugate class of 
1LVk(O,u21) priors here is that such priors concentrate most 
of their mass very near the surface of the ball of radius 
c f i  in higher dimensions, which does not seem appropri- 
ate. In contrast, the priors in (19) can assign considerable 
mass elsewhere. 

Finding the lower bound on the Bayes factor over the 
class in (19) is equivalent to finding the lower bound over 
the smaller class in which T(c') is Uniform(0,r ) ,  r > 0. 
(This is so because any nondecreasing density can be writ- 
ten as a mixture of uniform distributions, and the linear 
functional rn(x) = J f(x8).ir(8u2).rr(c2)du2of .ii(c2) is 
thus maximized over these extreme points.) The Bayes fac- 
tor of Ho to HI,corresponding to the uniform prior, is (for 
k > 2) 

where a = k / 2  1, b = x 2 / 2 ,  and G ( . a ,  1) is the Gamma 
distribution function with parameters a and 1.The infimum, 
B,of B,over r is then easy to compute numerically. Table 

Table 4. B,p Values, and Their Calibrations for Various Dimensions k 

P 1 .05 .01 ,001 



4 gives the values of B for various p values, p, and various 
dimensions, k .  The calibration seems to maintain a very 
close similarity to the lower bounds on the Bayes factors for 
any dimension, lending considerable additional credibility 
to its use. 

4. CONCLUSIONS 

The most important conclusion is that, for testing "pre- 
cise" hypotheses, p values should not be used directly, be- 
cause they are too easily misinterpreted. The standard ap- 
proach in teaching-of stressing the formal definition of 
a p value while warning against its misinterpretation-has 
simply been an abysmal failure. In this regard, the cali- 
brations proposed in (2) and (3) are an immediately useful 
tool, putting p values on scales that can be more easily in- 
terpreted. 

Although the proposed calibrations ameliorate the worst 
features of p values, they can themselves be criticized for 
being biased against the null hypothesis; recall that the cali- 
brations arose from bounds on Bayes factors or conditional 
Type I error probabilities that were least favorable to the 
null hypothesis. That such bounds are still much larger than 
p values indicates the severe nature of the bias against a 
precise null that can arise due to the p value fallacy. 

Although the calibrations are a considerable improve- 
ment over p values, this issue of bias against the null 
leads us to instead recommend objective Bayesian or con- 
ditional frequentist procedures, for situations when the al- 
ternative hypothesis is specified. References to the devel- 
opment of such procedures include, on the Bayesian side, 
Jeffreys (1 961), Kass and Raftery (1 995), O'Hagan (1995), 
and Berger and Pericchi (1996, 1998); and, on the condi- 
tional frequentist side, Berger, Brown, and Wolpert (1994), 
Berger, Boukai, and Wang (1997), Dass and Berger(1998), 
and Dass (1998). 

One scenario in which we would definitely recommend 
use of the calibrations is when investigating fit to the null 
model, with no explicit alternative in mind. The lack of an 
alternative precludes use of the objective Bayesian or condi- 
tional frequentist procedures mentioned above. See Bayarri 
and Berger (1999, 2000) for further discussion of this issue. 

[Rece~vecl April 2000. Rei,isecl Augl~st 2000.1 
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