\qquad PID: \qquad

INSTRUCTIONS:

BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE ON THE BUBBLE SHEET. YOU MUST BUBBLE-IN YOUR NAME \& YOUR STUDENT IDENTIFICATION NUMBER.

EACH QUESTION HAS ONLY ONE CORRECT CHOICE (decimals may need rounding).

USE "NUMBER 2" PENCIL ONLY - DO NOT USE INK - FILL BUBBLE COMPLETELY.

NO NOTES OR REMARKS ARE ACCEPTED - DO NOT TEAR OR FOLD THE BUBBLE SHEET.

A GRADE OF ZERO WILL BE ASSIGNED FOR THE ENTIRE EXAM IF THE BUBBLE SHEET IS NOT FILLED OUT ACCORDING TO THE ABOVE INSTRUCTIONS.

QUESTIONS are worth 1 point each.

Questions 1-2 are based on the following

A data set "blah" contains response variable Y and predictor variables X_{1} and X_{2}. It is known from the scientific background of the experiment that the appropriate model is $\quad Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\sqrt{X_{1}^{2}+X_{2}^{2}} \cdot \xi$ where ξ are independent $\mathrm{N}\left(0, \sigma^{2}\right)$.

1. The appropriate method for fitting this model is
A) Box-Cox transformation
B) This model cannot be fitted
C) Ordinary Least Squares
D) Weighted Least Squares
E) None of the above
2. The appropriate SAS code is
A) proc reg data=blah;
model $\mathrm{Y}=\mathrm{X} 1 \mathrm{X} 2$;
run;
C) data blah; set blah;
W=X1*X1+X2*X2;
run;
proc reg data=blah;
weight W;
model $\mathrm{Y}=\mathrm{X} 1 \mathrm{X} 2$;
run;
E) None of the above
B) proc transreg data=blah; W;
model boxcox(Y)=indentity(X1 X2);
run;
D) data blah; set blah;
W=1/(X1*X1+X2*X2);
run;
proc reg data=blah;
weight \mathbf{W};
model Y=X1 X2;
run;
3. Which of the following functions is linear in unknown parameters (symbols β)?
A) $\left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)^{2}$
B) $\beta_{0}+\sin \left(\beta_{1} x\right)$
C) $e^{\beta_{0}+\beta_{1} x_{1}}$
D) $\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}$
E) None of the above

D is correct
4. Which of the following functions cannot be made into a function linear in unknown parameters (symbols β) using a Box-Cox Transformation?
A) $\left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)^{2}$
B) $\beta_{0}+\sin \left(\beta_{1} x\right)$
C) $e^{\beta_{0}+\beta_{1} x_{1}}$
D) $\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}$
E) None of the above
B is correct

Use the following to answer questions 5-9:

A researcher wants to evaluate a new methodology in determining a chemical concentration of a particular heavy metal in soil. To investigate the relationship between the true and measured concentration, the researcher makes 32 samples containing a known (preselected) amount of the heavy metal. These samples are then analyzed using a technician who is unaware of the true concentration of the heavy metal.
5. The target population of items in this study is
A) measured concentration
B) all soil samples C) both B, D
D) soil samples prepared in the lab
E) none of the above
6. The study population of items in this study is
A) measured concentration
B) all soil samples
C) both B, D
D) soil samples prepared in the lab
E) none of the above
7. The response variable in this study is
A) true concentration
B) measured concentration
C) not enough info
D) soil sample
E) None of the above
8. The predictor variable in this study is
A) true concentration
B) measured concentration
C) not enough info
D) soil sample
E) None of the above
9. The equation of the least-squares regression line is

$$
\hat{y}=-0.1046+0.9877 \cdot x
$$

Which of the following descriptions of the value of the slope is the correct description?
A) The measured concentration is expected to decrease by 0.1046 when the true concentration increases by 1 .
B) The measured concentration is expected to increase by 0.9877 when the true concentration increases by 1.
C) We cannot interpret the slope because we cannot have a negative concentration.
D) None of the above

Use the following to answer questions 10-18:
Below is a small data set, and we want to fit the linear regression model
$Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\xi$. In matrix notation this model can be written as $Y=\mathbf{X} \beta+\xi$.

Y	19	13	10	3	6
X 1	1	-1	0	-1	1
X 2	-2	-1	0	1	2

10. The matrix \mathbf{X} is
A) $\mathbf{X}=\left(\begin{array}{cc}1 & -2 \\ -1 & -1 \\ 0 & 0 \\ -1 & 1 \\ 1 & 2\end{array}\right)$
B) $\mathbf{X}=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 & -1 \\ -2 & -1 & 0 & 1 & 2\end{array}\right)$
C) $\mathbf{X}=\left(\begin{array}{ccc}1 & 1 & -2 \\ 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 2\end{array}\right)$
D) $\mathbf{X}=\left(\begin{array}{ccc}19 & 1 & -2 \\ 13 & -1 & -1 \\ 10 & 0 & 0 \\ 3 & -1 & 1 \\ 6 & 1 & 2\end{array}\right)$
E) None of the above

C is correct
11. Find the vector b, the LS estimator of β.
A) $b=\binom{2.25}{-3.6}$
B) $b=\left(\begin{array}{c}255 \\ 36 \\ -360\end{array}\right)$
C) $b=\left(\begin{array}{c}10.2 \\ 2.25 \\ -3.6\end{array}\right)$
D) $b=\left(\begin{array}{c}51 \\ 9 \\ -36\end{array}\right)$
E) None of the above

C is correct
12. Compute the SSE
A) 50
B) 150
C) 5
D) 0
E) None of the above is within ± 1
13. The number of degrees of freedom in MSE is
A) 2
B) 0
C) 4
D) 3
E) None of the above
14. Compute the SSR (sometimes also called SSM)
A) 50
B) 150
C) 5
D) 0
E) None of the above is within ± 1
15. What is the number of degrees of freedom in MSR (sometimes also called MSM)
A) 2
B) 0
C) 4
D) 3
E) None of the above
16. Which of the following can be used for testing $\mathrm{H}_{0}: \beta_{1}=0, \beta_{2}=0$?
A) MSR/MSE
B) MSTO/MSE
C) SSM/SSTO
D) SSR/SSE
E) None of the above
17. Which of the following defines R^{2} ?
A) MSR/MSE
B) MSTO/MSE
C) SSR/SSTO
D) SSR/SSE
E) None of the above
18. Which of the following defines adjusted R^{2} ?
A) MSR/MSE
B) MSTO/MSE
C) SSR/SSTO
D) SSR/SSE
E) None of the above (1-MSE/MSTO)

Use the following to answer questions 19-26:

Crime-related and demographic statistics for 47 US states in 1960 were collected from the FBl's Uniform Crime Report and other government agencies to determine how the variable crime rate depends on the other variables measured in the study. Following is a description of the variables:

R: Crime rate: \# of offenses reported to police per million population
Age: The number of males of age $14-24$ per 1000 population
S : Indicator variable for Southern states ($0=\mathrm{No}, 1=$ Yes)
Ed: Mean \# of years of schooling x 10 for persons of age 25 or older
Ex0: 1960 per capita expenditure on police by state and local government
Ex1: 1959 per capita expenditure on police by state and local government
LF: Labor force participation rate per 1000 civilian urban males age 14-24
M: The number of males per 1000 females
N : State population size in hundred thousands
NW: The number of non-whites per 1000 population
U1: Unemployment rate of urban males per 1000 of age 14-24
U2: Unemployment rate of urban males per 1000 of age 35-39
W: Median value of transferable goods and assets or family income
X : The number of families per 1000 earning below $1 / 2$ the median income
Here is the SAS output obtained by fitting a linear regression model with R as response variable and all the other variables as explanatory variables.

Parameter Estimates

		Parameter	Standard Error		t Value	Pr $>\|t\|$
Variable DF	Estimate	Inflation				
Intercept	1	-691.83759	155.88792	-4.44	$<.0001$	0
Age	1	1.03981	0.42271	2.46	0.0193	2.69802
S	1	-8.30831	14.91159	-0.56	0.5812	4.87675
Ed	1	1.80160	0.64965	2.77	0.0091	5.04944
Ex0	1	1.60782	1.05867	1.52	0.1384	94.63312
Ex1	1	-0.66726	1.14877	-0.58	0.5653	98.63723
LF	1	-0.04103	0.15348	-0.27	0.7909	3.67756
M	1	0.16479	0.20993	0.78	0.4381	3.65844
N	1	-0.04128	0.12952	-0.32	0.7520	2.32433
NW	1	0.00717	0.06387	0.11	0.9112	4.12327
U1	1	-0.60168	0.43715	-1.38	0.1780	5.93826
U2	1	1.79226	0.85611	2.09	0.0441	4.99762
W	1	0.13736	0.10583	1.30	0.2033	9.96896
X	1	0.79293	0.23509	3.37	0.0019	8.40945

19. Which variables have a multicollinearity problem?
A) Intercept
B) Ex0
C) Ex1
D) Both B and C
E) None of the above
20. When running a backward selection, which of the variables would get dropped from the model first?
A) X
B) Ex1
C) NW
D) Not enough info E) None of the above

Use these additional SAS outputs to answer questions 21-26:
After model selection we include only five variables in our model: Age, Ed, Ex0, U 2 and X . Below is a SAS output from fitting this model.

Analysis of Variance

Obs	RStudent	Hat Diag H	$\begin{array}{r} \text { Cov } \\ \text { Ratio } \end{array}$	DFFITS					
1	-0.4906	0.0990	1.2416	-0.1626					
2	1.4616	0.0782	0.9207	0.4257					
3	0.6046	0.1093	1.2328	0.2118					
4	0.5994	0.2075	1.3869	0.3068					
5	-0.2449	0.1367	1.3313	-0.0974					
6	-0.3181	0.1777	1.3891	-0.1479					
7	1.1278	0.0579	1.0202	0.2797					
8	1.0086	0.1031	1.1121	0.3419					
9	0.4704	0.0974	1.2430	0.1545					
10	-0.3639	0.0865	1.2446	-0.1120					
11	3.5227	0.1000	0.2547	1.1741					
12	1.1253	0.0506	1.0131	0.2598					
13	-1.0518	0.1363	1.1400	-0.4178					
14	-0.3058	0.0974	1.2670	-0.1005					
15	-0.2321	0.1139	1.2982	-0.0832					
16	-0.2079	0.1228	1.3135	-0.0778					
17	-0.4763	0.1022	1.2486	-0.1607					
18	-0.9402	0.0929	1.1214	-0.3010					
19	-2.2305	0.0852	0.6274	-0.6807					
20	0.1226	0.2143	1.4727	0.0640					
21	0.2674	0.0744	1.2395	0.0758					
22	-1.8952	0.1148	0.7821	-0.6825					
23	1.8350	0.1147	0.8066	0.6606					
24	0.2800	0.1052	1.2809	0.0960					
25	-0.6461	0.1485	1.2798	-0.2698					
26	0.6868	0.2100	1.3683	0.3541	38	0.1841	0.1198	1.3108	0.0679
27	0.3190	0.2107	1.4471	0.1649	39	0.4727	0.0800	1.2191	0.1394
28	0.0152	0.1082	1.3004	0.0053	40	0.2967	0.0594	1.2168	0.0746
29	-2.6667	0.2678	0.5934	-1.6129	41	0.7949	0.2013	1.3217	0.3991
30	-0.0913	0.1569	1.3739	-0.0394	42	0.1302	0.1231	1.3191	0.0488
31	-0.0647	0.1138	1.3078	-0.0232	43	-0.9433	0.1122	1.1447	-0.3353
32	-0.1360	0.0767	1.2525	-0.0392	44	-0.5318	0.0981	1.2326	-0.1753
33	1.1263	0.0823	1.0478	0.3373	45	-0.7245	0.2062	1.3510	-0.3692
34	-0.4045	0.0601	1.2039	-0.1023	46	-1.3750	0.1543	1.0394	-0.5873
35	-0.4308	0.1564	1.3370	-0.1855	47	-0.9000	0.1089	1.1539	-0.3146
36	1.5850	0.2216	1.0338	0.8456	4	0.9000	0.1089	1.1539	-0.3146

21. What is the estimate of σ ?
A) 22.13
B) 100.2
C) 453.75
D) 21.3
E) None of the above
22. Find the extra sum of squares $\operatorname{SSR}(\mathrm{U} 2 \mid A g e$, Ed, Ex0)
A) 2009.9
B) 2173.9
C) 2.1
D) 68809
E) None of the above
23. Find the extra sum of squares $\operatorname{SSR}(\mathrm{U} 2 \mid \mathrm{Age}$, Ed, Ex0, X)
A) 2009.9
B) 2173.9
C) 2.1
D) 68809
E) None of the above
24. Which statistic in the SAS output above can be used to detect outliers in the response variable?
A) RStudent B) Hat Diag
C) Cov Ratio
D) DFFITS
E) None of the above
25. Which statistic in the SAS output above can be used to detect outliers in the explanatory variable?
A) RStudent
B) Hat Diag
C) Cov Ratio
D) DFFITS
E) None of the above
26. Are there any influential observations? Why?
A) Yes, because observation 11 has |RStudent|>3.
B) Yes, because observations 11 and 29 have |DFFITS|>1
C) No, there is no observation with Hat Diag>0.5
D) No because there are no outliers in the data set.
E) None of the above

Use the following to answer questions 27 - 29:
27. Assume that we are fitting a simple linear regression with non-negative response variable Y and predictor X in a data set dog. Residual analysis leads you to believe that a transformation of Y might be needed. What SAS code gives you an estimate of λ in the Box-Cox transformation?
A) proc transreg data=dog;
boxcox $(\mathrm{X})=$ indentity (Y);
B) proc reg data=dog;
$\mathrm{Y}=\mathrm{X} /$ selection=boxcox;
run;
C) proc transreg data=dog;
boxcox $(X)=Y$;
run;
D) proc transreg data=dog; boxcox(Y)=indentity(X); run;
E) None of the above
28. If the Box-Cox procedure selected $\lambda=0$, what model is it suggesting?
A) $Y=\left(\beta_{0}+\beta_{1} X_{1}\right)^{2}+\xi$
B) $\sqrt{ } Y=\beta_{0}+\beta_{1} X_{1}+\xi$
C) $Y^{0}=\beta_{0}+\beta_{1} X_{1}+\xi$
D) $\log Y=\beta_{0}+\beta_{1} X_{1}+\xi$
E) None of the above
29. If the Box-Cox procedure selected $\lambda=1 / 2$, what model is it suggesting?
A) $Y=\left(\beta_{0}+\beta_{1} X_{1}\right)^{2}+\xi$
B) $V \mathbf{Y}=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} X_{1}+\xi$
C) $Y^{0}=\beta_{0}+\beta_{1} X_{1}+\xi$
D) $\log Y=\beta_{0}+\beta_{1} X_{1}+\xi$
E) None of the above

Use the following to answer questions 30-33:
A researcher studies a relationship between latitude/longitude of a city and the January minimum temperature. The data set contains the normal average January minimum temperature (in Fahrenheit) and longitude and latitude of 56 cities located in the continental USA (lower 48 states). Following is the description of the variables:
Temp: Average January minimum temperature in degrees F. from 1931-1960
Lat: Latitude in degrees north of the equator
Long: Longitude in degrees west of the prime meridian
We first fit a linear regression model without any interactions. A SAS output follows

Analysis of Variance

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|t\|$
Intercept	1	110.83077		6.90937	16.04
lat	1	-2.16355	0.17570	-12.31	$<.0001$
long	1	0.13396	0.06314	2.12	0.00386

30. Raleigh has (Lat, Long) $=(35.8,78.6)$ and Los Angeles has (Lat, Long) $=$ (34.1,118.3). Predict the average difference (Raleigh-LA) in Temp between these two cities.
A) 86.1
B) $\mathbf{- 9 . 0}$
C) 43.9
D) -1.6
E) None of the above
31. Honolulu has (Lat, Long)=(21.3,157.8). Is it appropriate to use the above model to predict Honolulu's average January minimum temperature? Why?
A) Yes, the prediction is 85.9
B) No. The longitude is only borderline significant.
C) No. We should not extrapolate this far outside of the predictor values in the data set.
D) Not enough info.
E) None of the above.

We suspect that the relationship between Temp and Long is nonlinear and polynomial regression model might be needed. To determine the degree of the polynomial a model selection procedure is used and the following is the output. ($12=$ long*long, $13=$ long*long*long, etc.)

R-Square $\quad C(p) \quad$ MSE Variables in Model

1	0.7192	213.4412	51.20572	lat
1	0.0375	857.7697	175.50181	15
1	0.0304	864.4348	176.78757	13
1	0.0155	878.5639	179.51317	14
1	0.0010	892.2157	182.14671	12
2	0.8920	52.0766	20.06292	lat 14
2	0.8809	62.5808	22.12751	lat 15
2	0.8654	77.2083	25.00250	lat 12
2	0.8415	99.8352	29.44977	lat 13
2	0.7411	194.6616	48.08768	lat long
3	0.9457	3.2876	10.27432	lat long 13
3	0.9289	19.1562	13.45323	lat long 15
3	0.9193	28.2423	15.27343	lat long 14
3	0.9016	45.0485	18.64018	lat 1315
3	0.8977	48.7190	19.37548	lat 1314
4	0.9467	4.3319	10.28057	lat long 1315
4	0.9461	4.9278	10.40229	lat long 1213
4	0.9458	5.2566	10.46944	lat long 1314
4	0.9310	19.1810	13.31358	lat long 1215
4	0.9297	20.4269	13.56806	lat long 1415
5	0.9477	5.4129	10.29472	lat long 131415
5	0.9473	5.8336	10.38236	lat long 121315
5	0.9464	6.6341	10.54915	lat long 121314
5	0.9326	19.6755	13.26619	lat long 121415
5	0.9066	44.2595	18.38804	lat 12131415
6	0.9482	7.0000	10.41703	lat long 121314

32. Based strictly on Mallow's C(p), which model would you recommend using?
A) temp=lat long I3
B) temp=lat
C) temp=lat long l2 I3 14 IS
D) temp=lat long
E) None of the above
33. Is the all-subsets procedure better than the step-wise procedure for this problem?
A) No. Stepwise procedure is always better.
B) Yes. If feasible, the all-subset procedure is always better.
C) It does not matter which model selection procedure we use.
34. A researcher is studying effects of predictors U and V on a response variable Z. It is expected that large values of U will reinforce the effect of V on the response variable Z . What model statement is appropriate for this situation? ($\mathrm{V} 2=\mathrm{V} * \mathrm{~V}$, $\mathrm{UV}=\mathrm{U} * \mathrm{~V}$, $\mathrm{UZ}=\mathrm{U} * \mathrm{Z}$, etc.)
A) model $V=U Z U Z ;$
B) model $Z=U V$;
C) model U=V V2;
D) model Z=U V UV;
E) linear regression is not able to handle this situation
35. What should you do first when you receive a new data set for analysis?
A) Investigate residuals for outliers.
B) Plot the data and investigate all the variables.
C) Fit the largest possible model available
D) Run a stepwise selection procedure.
E) Investigate DFFITS for influential observations.
36. What do we hope to capture within a confidence interval?
A) The unknown parameter value.
B) The sample size.
C) The unknown confidence level.
D) The parameter estimate.
E) None of the above.
37. What can you conclude from the following deleted residual plot?

A) The model does not fit B) There are influential observations
C) The residuals seem to fit well D) The variance of the residuals is decreasing E) None of the above
38. What can you conclude from the following deleted residual plot?

A) The model does not fit
B) There are influential observations
C) The residuals seem to fit well
D) The variance of the residuals is decreasing
E) None of the above
39. What can you conclude from the following deleted residual plot?

A) The model does not fit
B) There are influential observations
C) The residuals seem to fit well
D) The variance of the residuals is decreasing
E) None of the above
40. What can you conclude from the following QQ plot?

A) There is nothing we can learn here
B) QQ plot should never be examined, instead examine the residual plot
C) The assumption that residuals are normal appears to be violated
D) The assumption that residuals are normal appears to be valid
E) None of the above
41. What can you conclude from the following deleted QQ plot?

A) There is nothing we can learn here
B) QQ plot should never be examined, instead examine the residual plot
C) The assumption that residuals are normal appears to be violated
D) The assumption that residuals are normal appears to be valid
E) None of the above
