
STOR 435.001 Lecture 16

Properties of Expectation - I

Jan Hannig

UNC Chapel Hill

1 / 22



Motivation

I Recall we found joint distributions to be pretty complicated objects. Need various
tools from combinatorics calculus etc to understand these.

I A useful summary of random variables is expectation.
I Also found this to be super useful for understanding moment generating functions.
I This lecture: more properties of expectations, especially as it relates to more than

one random variable.
I In class: can show you some fun examples. Do the HW problems to really get a

feeling for the material.
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Key concepts in these slides

1. Basic definition: Slide 4.

2. Consequences: Slide 5.

3. Expected number of events that occur: Slides 9 and 12.

4. Variance and covariance: definition and properties. Slides 14, 15, 16.

5. Correlation: Slide 20.

3 / 22



Properties of expectation that we have already seen

Reminder
Let g(x, y) be a function. If X,Y are discrete with p.m.f. p(x, y), then

Eg(X,Y ) =
∑
x

∑
y

g(x, y)p(x, y).

If X,Y are jointly continuous with density f(x, y), then

Eg(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy.

Small note: when showing you why some of the properties below are true, I will (for
simplicity) use continuous random variables. The same “proofs” go through by
replacing integration with “summation” for discrete random variables.
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Properties of expectation

Consequence 1

E(X + Y ) = EX + EY and more generally E
∑n
i=1Xi =

∑n
i=1EXi.

☼

Consequence 2

If X and Y are independent and h1(x), h2(y) are two functions, then
Eh1(X)h2(Y ) = Eh1(X)Eh2(Y ).

We verified this when we used moment generating functions.
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Properties of expectation

A random walk in the plane: Suppose a particle is initially located at the origin in the
plane. Now suppose that it undergoes a sequence of steps of fixed length, but in a
completely random direction. One way to model this is as follows: suppose that the
new position Sn ∈ R2 after each step n is a unit distance from the previous position
and at an angle of orientation from the previous position that is uniformly distributed
over (0, 2π). Thus

Sn = Sn−1 + (Xn, Yn),

where Xn = cos(θn) and Yn = sin(θn) and θn is uniform [0, 2π]. Calculate the
expected square of the distance from the origin after n steps.

☼

6 / 22



Solution continued
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Properties of expectation

Example: Let X be a binomial random variable with parameters n and p. Compute
EX.

☼
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Properties of expectation

Expected number of events that occur: It is a common situation where we
want to compute EX with X being the number of something. Moreover, it is
often the case that for some events A1, A2, . . . , An, X is the number of these
events that occur (e.g. Ai = {success on trial i}). Then,

X =

n∑
i=1

IAi with IAi =

{
1, if Ai occurs,
0, if not

and

EX =

n∑
i=1

EIAi =

n∑
i=1

(1 · P (Ai) + 0 · P (Aci )) =

n∑
i=1

P (Ai).
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Properties of expectation

Example: Ten hunters are waiting for ducks to fly by. When a flock of ducks flies
overhead, the hunters shoot at the same time, but each chooses his target at random,
independently of the others. If each hunter independently hits his target with probability
p, compute the expected number of ducks that escape unhurt when a flock of size 20
flies overhead.

☼
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Properties of expectation

Example: N people arrive separately to a professional dinner. Upon arrival, each
person looks to see if he or she has any friends among those present. That person
then sits either at the table of a friend or at an unoccupied table if none of those
present is a friend. Assuming that each of the

(N
2

)
pairs of people is, independently, a

pair of friends with probability p, find the expected number of occupied tables.

☼
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Properties of expectation

Higher-order moments of number of events that occur: For some events
A1, A2, . . . , An, let

X =

n∑
i=1

IAi with IAi =

{
1, if Ai occurs,
0, if not

be the number of these events that occur. Note that

X(X − 1)

2
=

(
X

2

)
=
∑
i1<i2

IAi1 IAi2

is the number of pairs of events A1, A2, . . . , An where both events occur.
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Properties of expectation

Higher-order moments of number of events that occur: More generally,(
X

k

)
=

∑
i1<i2<...<ik

IAi1 IAi2 . . . IAik

is the number of distinct subsets of k events that all occur. Hence,

E

(
X

k

)
=

∑
i1<i2<...<ik

P (Ai1 ∩Ai2 ∩ . . . ∩Aik ).
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Variances, covariances, correlations

Covariance between X and Y

Cov(X,Y ) = E(X − EX)(Y − EY ) = EXY − EXEY

☼

Motivation

I Covariance gives idea of the relationship between X and Y . Roughly
speaking: covariance signifies tendency of two random variables to go
up or down together relative to their expected value.

I Positive indicates that when X goes up, Y “tends” to go up. Example:
pick a person at random. X is height, Y is weight.

I Negative: X goes up, Y “tends” to go down. Note everything is “random”
so one can only talk about tendency, cannot guarantee that this will
happen.

For spurious correlations see
http://tylervigen.com/spurious-correlations
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Properties of expectation

Some basic properties: Cov(X,Y ) = Cov(Y,X), Cov(X,X) = V ar(X),
Cov(aX + b, Y ) = aCov(X,Y ).

Important property

Cov(

n∑
i=1

Xi,

n∑
j=1

Yj) =

n∑
i=1

n∑
j=1

Cov(Xi, Yj)

Consequence: V ar(
∑n
i=1Xi) =

∑n
i=1 V ar(Xi) + 2

∑
i<j Cov(Xi, Xj)

☼

15 / 22



Properties of expectation

Note 1: If Xi’s are pairwise independent, then
V ar(

∑n
i=1Xi) =

∑n
i=1 V ar(Xi).

☼

Note 2: If Xi = 1 if event Ai occurs and = 0 otherwise, then
V ar(

∑n
i=1Xi) = 2

∑
i<j P (Ai ∩Aj) +

∑
i P (Ai)− (

∑
i P (Ai))

2.

☼
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Properties of expectation

Example: Let X be a binomial random variable with parameters n and p. Compute
V ar(X).

☼
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Properties of expectation

Example: Toss a fair coin 3 times. Let X be the number of heads, and Y be the
number of tails. Find Cov(X,Y ).

☼
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Properties of expectation

Problem: A group of 20 people consisting of 10 men and 10 women is randomly
arranged into 10 pairs of 2 each. Compute the expectation and variance of the number
of pairs that consist of a man and a woman.

☼
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Correlation

Correlation between X and Y

ρ(X,Y ) = Corr(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

Fact 1: −1 ≤ ρ(X,Y ) ≤ 1

☼

Terminology: X and Y are called uncorrelated when ρ(X,Y ) = 0.
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Properties of expectation

Fact 2: For example, if ρ(X,Y ) = −1, then Y = −aX + b with a > 0.

☼(Cauchy-Schwartz inequality)

Fact 3: ρ(aX + b, Y ) = ρ(X,Y ) (a > 0)

☼

Note: ρ(X,Y ) measures the strength and direction of a linear relationship
between X and Y (close to 1: strong linear, positive slope; close to −1:
strong linear, negative slope).
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Properties of expectation

Problem: Suppose we have a bivariate normal distribution(
X
Y

)
= N

((
µX
µY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
.

Calculate Cov(X,Y ). Calculate ρ(X,Y ).

☼
The joint density

f(x, y) =
1

2πσXσY
√

1− ρ2
e
− 1

2(1−ρ2)

(
(
x−µX
σX

)2+(
y−µY
σY

)2−2ρ
(x−µX )(y−µY )

σXσY

)

22 / 22



For a simpler way recall: To simulate(
X
Y

)
= N

((
µX
µY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
.

1. Step 1: Simulate independent Z1, Z2 standard Normal random variables.

2. Step 2: X = µX + σXZ1.

3. Step 3:
Y = µY + ρ

σY
σX

(X − µX) + Z2σY
√

(1− ρ2)

☼
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