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Before we dive in

Contents of this lecture

1. Conditional pmf/pdf: definition and simple properties.

2. Functions of two random variables. Finding joint distributions.

Brief aside

1. How many of you have heard of the statistical technique “regression”

2. https://idc9.github.io/stor390/notes/linear_
regression/linear_regression.html

3. Also see
https://www.coursera.org/learn/machine-learning/
lecture/Cf8DF/multivariate-gaussian-distribution

4. Then see: https://www.coursera.org/learn/
machine-learning/lecture/DnNr9/
anomaly-detection-using-the-multivariate-gaussian-distribution

5. We will see connections between the above and the next topic
“Conditional pmf and pdfs”.
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Jointly distributed random variables

Conditional distributions: discrete case: X and Y are discrete with joint
p.m.f. p(x, y):

Conditional p.m.f. of X given Y = y (y fixed):

pX|Y (x|y) = P (X = x|Y = y) = P (X = x, Y = y)
P (Y = y) = p(x, y)

pY (y)
for all y with pY (y) > 0.

Note: If X and Y are independent, then pX|Y (x|y) = pX(x).
Conditional d.f. of X given Y = y (y fixed):

FX|Y (a|y) = P (X ≤ a|Y = y) =
∑
x≤a

pX|Y (x|y)

for all y with pY (y) > 0.

Important note

In many cases it is easy to calculate marginal pmf of one random variable
(say Y ) and conditional pmf of the other (say pX|Y ). Then we can get joint
pmf by

pXY (x, y) = pY (y)pX|Y (x|y)

3 / 17



Jointly distributed random variables

Example: Let X be the number of claims submitted to a life-insurance company in
April and let Y be the corresponding number but for May. Suppose the joint pmf of the
two random variables is given by

pX,Y (x, y) =
1
2

(1
2

)x−1
e−x(1− e−x)y−1, x = 0, 1, . . . , y = 1, 2, . . . .

Find the conditional pmf of Y given that there were 2 claims in April.
Citation: Motivated by a problem from
http://faculty.atu.edu/mfinan/actuarieshall/Pbook.pdf

☼
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Solution contd
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Jointly distributed random variables

Conditional distributions: continuous case: X and Y are jointly continuous
with density f(x, y):

Conditional density of X given Y = y (y fixed):

fX|Y (x|y) = f(x, y)
fY (y)

for all y with fY (y) > 0.

Note: If X and Y are independent, then fX|Y (x|y) = fX(x).

Conditional probabilities given Y = y (y fixed):

P (X ∈ A|Y = y) =
∫
A

fX|Y (x|y)dx.

Conditional d.f. of X given Y = y (y fixed):

FX|Y (a|y) = P (X ≤ a|Y = y).

6 / 17



Jointly distributed random variables

Example: Suppose that the joint density of X and Y is given by

f(x, y) =
{

e−x/ye−y

y
, 0 < x <∞, 0 < y <∞,

0, otherwise.

Find fX|Y (x|y) and P (X > 1|Y = y).

☼
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Jointly distributed random variables

Bivariate Normal distribution: Jointly continuous random variables X and Y are
bivariate normal if their density is

f(x, y) =
1

2πσXσY
√

1− ρ2
e
− 1

2(1−ρ2)

(
( x−µX
σX

)2+( y−µY
σY

)2−2ρ (x−µX )(y−µY )
σXσY

)
,

for −∞ < x, y <∞, where σX > 0, σY > 0, ρ ∈ (−1, 1), −∞ < µX , µY <∞. Find
fX|Y (x|y).

Notation: (
X
Y

)
= N

((
µX
µY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
.

Here, µX = EX, µY = EY , σ2
X = V ar(X), σ2

Y = V ar(Y ). The parameter ρ
accounts for dependence and will be clarified in the next chapter.
This and generalizations: multivariate normal are one of the foundation pieces of
modern statistics. Linear Regression based on this fundamental object!
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Example

Suppose we wanted to plot the pdf of the above function. Let us say µX = 0,
µY = 0, σ2

X = 1, σ2
Y = 1 and ρ = .5. Using Mathematical one can plot the

above pdf on the region {(x, y) : −2 ≤ x ≤ 2,−2 ≤ y ≤ 2}

Figure: Using Mathematica
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Figure: Using Mathematica. Same parameters as above with only change ρ = .8.
Higher “correlation” between X and Y . In both cases, the univariate distributions of X
and Y turn our to be standard normal. In the second case: X and Y tend to be “closer”
whatever that means. Will see more in the next chapter.
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Jointly distributed random variables

(Bivariate Normal distribution) contd:

☼
Look at the exponent in the formula of the Bivariate normal

1
2(1− ρ2)

(
(x− µX

σX
)2 + (y − µY

σY
)2 − 2ρ (x− µX)(y − µY )

σXσY

)
Messy algebra implies that one can write this as

= (x− µX)2

2σ2
X

+ 1
2σ2

Y (1− ρ2)

(
y − µY − ρ

σY
σX

(x− µX)
)2

Thus

fXY (x, y) = 1
σX
√

2π
e
− 1

2
(x−µX )2

σ2
X︸ ︷︷ ︸

=pdf of

· 1
σY
√

1− ρ2
√

2π
e
− 1

2

(
y−µY −ρ

σY
σX

(x−µX )
)2

σ2
Y

(1−ρ2)

︸ ︷︷ ︸
=pdf of
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Jointly distributed random variables

(Bivariate Normal distribution) contd:

Thus marginal of X

fX(x) = ☼

Conditional pdf of Y |X

fY |X(y|x) = fXY (x, y)
fX(x) = ☼

Thus the distribution of Y given that X = x is

☼
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Why is this important?

1. As I said huge parts of statistics are based on extensions of the above to higher
dimensions.

2. For our class: Suppose someone came and asked you to simulate(
X
Y

)
= N

((
µX
µY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
.

3. Step 1: Simulate Z1, Z2 standard Normal random variables.

4. Step 2: X = µX + σXZ1.

5. Step 3:
Y = µY + ρ

σY

σX
(X − µX) + Z2σY

√
(1− ρ2)

A related question
How do you simulate standard normal random variables? Assume there are algorithms
to simulate U(0, 1) random variables. This is one motivation for the next topic.
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Joint probability distribution of functions of random variables

Suppose X1, X2 are jointly continuous with density f(x, y). Consider Y1 = g1(X1, X2),
Y2 = g2(X1, X2), for example, g1(x1, x2) = x1 + x2 and g2(x1, x2) = x1 − x2. Suppose the map(

y1
y2

)
=
(
g1(x1, x2)
g2(x1, x2)

)
is continuous, differentiable and invertible. What is the joint density of Y1, Y2?

Figure: Jacobian demonstration. Picture from wikipedia.

☼
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Joint probability distribution of functions of random variables contd

☼
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Jointly distributed random variables (Box Muller transformation)

Let (U, T ) be two independent random variables with U ∼ Unif(0, 2π) and T ∼ exp(1).
Consider the transformation

X =
√

2T cos(U), Y =
√

2T sin(U)

What is the joint distribution of (X,Y )?

☼
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Functions of jointly distributed random variables

Example: Let X,Y be independent uniform (0, 1) random variables. Find the
distribution (pdf) of U = XY, V = Y .

☼
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