# STOR 435.001 Lecture 15 <br> Jointly distributed Random Variables - III 

Jan Hannig

UNC Chapel Hill

## Contents of this lecture

1. Conditional pmf/pdf: definition and simple properties.
2. Functions of two random variables. Finding joint distributions.

## Brief aside

1. How many of you have heard of the statistical technique "regression"
2. https://idc9.github.io/stor390/notes/linear_ regression/linear_regression.html
3. Also see
https://www.coursera.org/learn/machine-learning/
lecture/Cf8DF/multivariate-gaussian-distribution
4. Then see: https://www.coursera.org/learn/ machine-learning/lecture/DnNr9/
anomaly-detection-using-the-multivariate-gaussian-distribution
5. We will see connections between the above and the next topic "Conditional pmf and pdfs".

Conditional distributions: discrete case: $X$ and $Y$ are discrete with joint p.m.f. $p(x, y)$ :

Conditional p.m.f. of $X$ given $Y=y$ ( $y$ fixed):

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{p(x, y)}{p_{Y}(y)}
$$

for all $y$ with $p_{Y}(y)>0$.
Note: If $X$ and $Y$ are independent, then $p_{X \mid Y}(x \mid y)=p_{X}(x)$.
Conditional d.f. of $X$ given $Y=y$ ( $y$ fixed):

$$
F_{X \mid Y}(a \mid y)=P(X \leq a \mid Y=y)=\sum_{x \leq a} p_{X \mid Y}(x \mid y)
$$

for all $y$ with $p_{Y}(y)>0$.

## Important note

In many cases it is easy to calculate marginal pmf of one random variable (say $Y$ ) and conditional pmf of the other (say $p_{X \mid Y}$ ). Then we can get joint pmf by

$$
p_{X Y}(x, y)=p_{Y}(y) p_{X \mid Y}(x \mid y)
$$

## Jointly distributed random variables

Example: Let $X$ be the number of claims submitted to a life-insurance company in April and let $Y$ be the corresponding number but for May. Suppose the joint pmf of the two random variables is given by

$$
p_{X, Y}(x, y)=\frac{1}{2}\left(\frac{1}{2}\right)^{x-1} e^{-x}\left(1-e^{-x}\right)^{y-1}, \quad x=0,1, \ldots, y=1,2, \ldots
$$

Find the conditional pmf of $Y$ given that there were 2 claims in April.
Citation: Motivated by a problem from
http://faculty.atu.edu/mfinan/actuarieshall/Pbook.pdf

Solution contd

Conditional distributions: continuous case: $X$ and $Y$ are jointly continuous with density $f(x, y)$ :

Conditional density of $X$ given $Y=y$ ( $y$ fixed):

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

for all $y$ with $f_{Y}(y)>0$.
Note: If $X$ and $Y$ are independent, then $f_{X \mid Y}(x \mid y)=f_{X}(x)$.
Conditional probabilities given $Y=y$ ( $y$ fixed):

$$
P(X \in A \mid Y=y)=\int_{A} f_{X \mid Y}(x \mid y) d x
$$

Conditional d.f. of $X$ given $Y=y$ ( $y$ fixed):

$$
F_{X \mid Y}(a \mid y)=P(X \leq a \mid Y=y) .
$$

Jointly distributed random variables

Example: Suppose that the joint density of $X$ and $Y$ is given by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{e^{-x / y} e^{-y}}{y}, & 0<x<\infty, 0<y<\infty \\
0, & \text { otherwise }
\end{array}\right.
$$

Find $f_{X \mid Y}(x \mid y)$ and $P(X>1 \mid Y=y)$.

Bivariate Normal distribution: Jointly continuous random variables $X$ and $Y$ are bivariate normal if their density is

$$
\begin{aligned}
& f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-2 \rho \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right)}, \\
& \text { for }-\infty<x, y<\infty \text {, where } \sigma_{X}>0, \sigma_{Y}>0, \rho \in(-1,1),-\infty<\mu_{X}, \mu_{Y}<\infty \text {. Find } \\
& f_{X \mid Y}(x \mid y) .
\end{aligned}
$$

Notation:

$$
\binom{X}{Y}=N\left(\binom{\mu_{X}}{\mu_{Y}},\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)\right)
$$

Here, $\mu_{X}=E X, \mu_{Y}=E Y, \sigma_{X}^{2}=\operatorname{Var}(X), \sigma_{Y}^{2}=\operatorname{Var}(Y)$. The parameter $\rho$ accounts for dependence and will be clarified in the next chapter.
This and generalizations: multivariate normal are one of the foundation pieces of modern statistics. Linear Regression based on this fundamental object!

## Example

Suppose we wanted to plot the pdf of the above function. Let us say $\mu_{X}=0$, $\mu_{Y}=0, \sigma_{X}^{2}=1, \sigma_{Y}^{2}=1$ and $\rho=.5$. Using Mathematical one can plot the above pdf on the region $\{(x, y):-2 \leq x \leq 2,-2 \leq y \leq 2\}$


Figure: Using Mathematica


Figure: Using Mathematica. Same parameters as above with only change $\rho=.8$. Higher "correlation" between $X$ and $Y$. In both cases, the univariate distributions of $X$ and $Y$ turn our to be standard normal. In the second case: $X$ and $Y$ tend to be "closer" whatever that means. Will see more in the next chapter.
(Bivariate Normal distribution) contd:

Look at the exponent in the formula of the Bivariate normal

$$
\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-2 \rho \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right)
$$

Messy algebra implies that one can write this as

$$
=\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}+\frac{1}{2 \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left(y-\mu_{Y}-\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)\right)^{2}
$$

Thus

$$
f_{X Y}(x, y)=\underbrace{\frac{1}{\sigma_{X} \sqrt{2 \pi}} e^{-\frac{1}{2} \frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}}}_{=\text {pdf of }} \cdot \underbrace{\frac{1}{\sigma_{Y} \sqrt{1-\rho^{2}} \sqrt{2 \pi}} e^{-\frac{1}{2} \frac{\left(y-\mu_{Y}-\rho \frac{\sigma_{Y}}{\left.\sigma_{X}\left(x-\mu_{X}\right)\right)^{2}}\right.}{\sigma_{Y}^{2}\left(1-\rho^{2}\right)}}}_{=\text {pdf of }}
$$

Jointly distributed random variables
(Bivariate Normal distribution) contd:

## Thus marginal of $X$

$$
f_{X}(x)=
$$

## Conditional pdf of $Y \mid X$

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}=
$$



Thus the distribution of $Y$ given that $X=x$ is

1. As I said huge parts of statistics are based on extensions of the above to higher dimensions.
2. For our class: Suppose someone came and asked you to simulate

$$
\binom{X}{Y}=N\left(\binom{\mu_{X}}{\mu_{Y}},\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)\right)
$$

3. Step 1: Simulate $Z_{1}, Z_{2}$ standard Normal random variables.
4. Step 2: $X=\mu_{X}+\sigma_{X} Z_{1}$.
5. Step 3:

$$
Y=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)+Z_{2} \sigma_{Y} \sqrt{\left(1-\rho^{2}\right)}
$$

## A related question

How do you simulate standard normal random variables? Assume there are algorithms to simulate $U(0,1)$ random variables. This is one motivation for the next topic.

Joint probability distribution of functions of random variables

Suppose $X_{1}, X_{2}$ are jointly continuous with density $f(x, y)$. Consider $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$, $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$, for example, $g_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ and $g_{2}\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$. Suppose the map

$$
\binom{y_{1}}{y_{2}}=\binom{g_{1}\left(x_{1}, x_{2}\right)}{g_{2}\left(x_{1}, x_{2}\right)}
$$

is continuous, differentiable and invertible. What is the joint density of $Y_{1}, Y_{2}$ ?


Figure: Jacobian demonstration. Picture from wikipedia.

Joint probability distribution of functions of random variables contd

Let $(U, T)$ be two independent random variables with $U \sim \operatorname{Unif}(0,2 \pi)$ and $T \sim \exp (1)$. Consider the transformation

$$
X=\sqrt{2 T} \cos (U), \quad Y=\sqrt{2 T} \sin (U)
$$

What is the joint distribution of $(X, Y)$ ?


Example: Let $X, Y$ be independent uniform $(0,1)$ random variables. Find the distribution (pdf) of $U=X Y, V=Y$.
-

