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Jointly distributed random variables

Collections of 2 or more random variables X1, X2, . . . , Xn. Interested in
modeling relationships between them as well.

Examples:
X1 = price of Netflix Stock, X2 = price of Amazon stock, X3 = price of
Google stock.
X1 = price of oil today, X2 = price of oil tomorrow, etc.
X1 = expenditures on food, X2 = expenditures on housing, etc.
X1 = cholesterol level, X2 = blood pressure, etc.
X1 = rainfall in NC, X2 = rainfall in VA, etc.

Most advanced statistical topics (time series analysis, multivariate analysis,
multiple linear regression, factor models, etc) and probability topics (Markov
chains, stochastic processes, etc) involve collections of random variables.
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Jointly distributed random variables

Focus on: Two random variables X,Y . All probability questions about X
and Y can be answered in terms of their joint c.d.f.

Joint cumulative distribution function (c.d.f.): F (a, b) = P (X ≤ a, Y ≤ b),
−∞ < a, b <∞.

For example: F carries info about X,Y individually: e.g.

FX(a) =

☼
But also: e.g.

P (X > a, Y > b) =

☼
P (a1 < X ≤ a2, b1 < Y ≤ b2) =

☼
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Jointly distributed random variables

Two broad classes of random variables:
1. Both X and Y are discrete: characterized through joint probability mass

function (p.m.f.)
p(x, y) = P (X = x, Y = y).

2. X and Y are jointly continuous: there is a non-negative function f(x, y),
called joint probability density function (p.d.f.), such that, for any set C in
the two-dimensional plane,

P ((X,Y ) ∈ C) =

∫ ∫
(x,y)∈C

f(x, y)dxdy.
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Joint distributions of discrete random variables

Discrete random variable

1. Characterized by their joint probability mass function

pX,Y (x, y) = P (X = x, Y = y).

2. If we are given the joint pmf then very easy to get the pmf of any one of
the random variables. For example

pX(x) = P (X = x) = P (X = x,Y takes any value ) =
∑
y

pX,Y (x, y)

Sometimes referred to as the marginal distribution of X. The same as
the distribution of X.

5 / 25



Expectations of functions of discrete random variables

If X,Y have joint pmf pX,Y and g(x, y) is a function of the two variables (e.g g(x, y) = x+ y or
g(x, y) = cos(x) + sin(y)) then

E(g(X,Y )) =
∑
x,y

g(x, y)pX,Y (x, y).

Special case
Suppose g(x, y) = x. Then we get

E(X) =
∑
x,y

xpX,Y (x, y) =
∑
x

x

∑
y

pX,Y (x, y)

 =
∑
x

xpX(x).

Thus to calculate the expected value of X we could either first calculate marginal pmf pX of X and
then calculate the expected value as before E(X) =

∑
x xpX(x) or directly calculate it using the joint

pmf as above. Both will give us the same answer.
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Jointly distributed random variables

Problem 1: Two fair dice six faced dice are rolled. Find the joint probability mass
function of X and Y when X is the largest value obtained on any die and Y is the sum
of the values.

☼
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Jointly distributed random variables

Next: A number of notes for the jointly continuous case.
Note 1:

∫ ∫
(x,y)∈C f(x, y)dxdy is the volume under the surface f(x, y) above

the region C. In particular, when f ≡ 1,∫ ∫
(x,y)∈C

dxdy = Area(C).

Note 2: With C = A×B = {(x, y) : x ∈ A, y ∈ B},

P (X ∈ A, Y ∈ B) =

∫
A

dx

∫
B

dy f(x, y)

Note 3:

F (a, b) =

∫ a

−∞
dx

∫ b

−∞
dy f(x, y),

∂2

∂a∂b
F (a, b) = f(a, b)
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Jointly distributed random variables

Note 4:
P (a < X ≤ a+ da, b < Y ≤ b+ db)

=

∫ a+da

a

dx

∫ b+db

b

dy f(x, y) ≈ f(a, b)dadb

for small da, db, if f is continuous at (a, b). Thus, f(a, b) is a measure of how
likely X,Y is near a, b.

Note 5: Each individual random variable is continuous. E.g.

P (X ∈ A) = P (X ∈ A, Y ∈ (−∞,∞)) =

∫
A

dx

∫ ∞
−∞

dy f(x, y)

and hence the (marginal) density of X is

fX(x) =

∫ ∞
−∞

f(x, y)dy.

Similarly, fY (y) =
∫∞
−∞ f(x, y)dx.

9 / 25



Expectations of functions of continuous random variables

If X,Y have joint pdf fX,Y and g(x, y) is a function of the two variables (e.g g(x, y) = x+ y or
g(x, y) = cos(x) + sin(y)) then

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y)dydx.

Special case
Suppose g(x, y) = x. Then we get

E(X) =

∫ ∞
−∞

∫ ∞
−∞

xfX,Y (x, y)dydx. =

∫ ∞
−∞

x

[∫ ∞
−∞

fX,Y (x, y)dy

]
dx =

∫ ∞
−∞

xfX(x)dx.

Thus to calculate the expected value of X we could either first calculate marginal pdf fX of X and then
calculate the expected value as before E(X) =

∫∞
−∞ xfX(x)dx or directly calculate it using the joint

pmf as above. Both will give us the same answer.
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Jointly distributed random variables

Example 1c(b): The joint density function of X and Y is given by

f(x, y) =

{
2e−xe−2y , 0 < x <∞, 0 < y <∞

0, otherwise

Compute P (X < Y ).

☼
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Jointly distributed random variables

Example
Consider a circle of radius R, and suppose that a point within the circle is randomly chosen in such a
manner that all regions within the circle of equal area are equally likely to contain the point. ( In other
words, the point is uniformly distributed within the circle.) If we let the center of the circle denote the
origin and define X and Y to be the coordinates of the point chosen then, since (X,Y ) is equally likely
to be near each point in the circle, it follows that the joint density function of X and Y is given by

f(x, y) =

{
c if x2 + y2 ≤ R2

0 if x2 + y2 > R2

for some value of c.
a Determine c.

b Find the marginal density functions of X and Y.

c Compute the probability that D, the distance from the origin of the point selected, is less than or
equal to a.

d Find E[D].
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Jointly distributed random variables

Example cont’ed:

☼
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Jointly distributed random variables

More than two random variables: The notions above can be extended to
more than two random variables X1, X2, . . . , Xn. For example, the joint c.d.f.
is defined as

F (a1, a2, . . . , an) = P (X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an).

For discrete random variables we can talk about joint pmf

p(x1, x2, . . . xn) = P (X1 = x1, X2 = x2, · · ·Xn = xn).

In the continuous case, the random variables X1, X2, . . . , Xn are jointly
continuous if there is a non-negative function f(x1, x2, . . . , xn), called joint
probability density function (p.d.f.), such that, for any set C in the
n-dimensional space,

P ((X1, X2, . . . , Xn) ∈ C) =

∫ ∫
. . .

∫
(x1,x2,...,xn)∈C

f(x1, x2, . . . , xn)dx1dx2 . . . xn.
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Jointly distributed random variables

Definitions of marginal distributions, expectations of functions etc all similar to the 2
variable case.

Discrete case
So for example if (X1, . . . Xn) are discrete with joint pmf p then to get the marginal pmf
of X2 we would get this from the pmf by summing over all other co-ordinates namely

pX2
(x2) =

∑
x1

∑
x3

· · ·
∑
xn

p(x1, x2, x3, . . . , xn)

Continuous case
If (X1, . . . Xn) are continuous with joint pdf f then to get the marginal pdf of X2 we
would get this from the pdf by integrating over all other co-ordinates namely

fX2
(x2) =

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, x2, x3, . . . , xn)dx1dx3 · · · dxn.

Definitions of expectations of functions of random variables analogous to the 2 variable
setup.
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Example of Jointly distributed random variables

Multinomial distribution
Setting:

I Conducting a sequence of n independent trials.(e.g. picking n = 2000 random voters)
I Each trial has exactly r possible outcomes (e.g. r = 3, Democrat, Republican or Independent).
I I P (trial = outcome 1) = p1

I P (trial = outcome 2) = p2
I · · ·
I P (trial = outcome r) = pr Obviously

∑r
i=1 pr = 1.

I These probabilities remain the same from trial to trial.

Random variables of interest

I (X1, X2, . . . , Xr) where
I X1 = # of trials which resulted in outcome 1
I X2 = # of trials which resulted in outcome 2
I · · ·
I Xr = # of trials which resulted in outcome r.
I Note: X1 +X2 + · · ·Xr =
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Multinomial probability mass function

Joint pmf for Multinomial

Fix any set of integers n1, n2, . . . nr with 0 ≤ ni ≤ n and
∑r

i=1 ni = n. Then

pX1,...,Xr (n1, n2, . . . , nr) = P (X1 = n1, X2 = n2, . . . , Xr = nr)

=
n!

n1!n2!, . . . nr!
pn1
1 pn2

2 · · · p
nr
r .

☼
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Multinomial distribution example

Example

In the 2000 election the percentage of vote for Bush/Gore/other was .48, .48
and .04. Suppose that you sample a 3000 voters from this population (with
replacement) and ask who they voted for. If XB , XG, XO denote the number
of voters for the various voters, give the distribution of the random vector
(XB , XG, XO).

☼
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Jointly distributed random variables: Independence

Independence: Two random variables X and Y are independent if, for any
sets A and B,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

(that is, the events {X ∈ A} and {Y ∈ B} are independent). Otherwise, we
say that X and Y are dependent.

Equivalent condition 1: It can be shown that independence is equivalent to

F (a, b) = FX(a)FY (b), all a, b,

where F (a, b) is the joint c.d.f. of X and Y , FX is the c.d.f. of X and FY is the
c.d.f. of Y .
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Jointly distributed random variables: Independence

Equivalent condition 2: Discrete case: Independence is equivalent to

p(x, y) = pX(x)pY (y), all x, y,

where p(x, y) is the joint p.m.f. of X and Y , pX is the p.m.f. of X and pY is
the p.m.f. of Y .1

☼

1This is also equivalent to p(x, y) = h(x)g(y) for some functions h and g and all x, y.
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Jointly distributed random variables: Independence

Equivalent condition 3: Jointly continuous case: Independence is
equivalent to

f(x, y) = fX(x)fY (y), all x, y,

where f(x, y) is the joint p.d.f. of X and Y , fX is the p.d.f. of X and fY is the
p.d.f. of Y .

☼
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Jointly distributed random variables: Independence

Equivalent condition 3 cont’ed: Jointly continuous case: Independence is
equivalent to

f(x, y) = h(x)g(y), all x, y,

for some functions h and g.

☼
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Jointly distributed random variables: Independence

Was on an exam in the past: An electronic system works until either of the two
critical components fail at which point the system stops running. The joint density
function of the lifetimes of the two components (X,Y ) measured in years is

f(x, y) =
x+ y

8
, 0 < x < 2 and 0 < y < 2.

1. Are X and Y independent?

2. What is the probability that the systems stops working in the first half year of
operation?

What if the joint density function is

f(x, y) = 24xy, 0 < x < 1, 0 < y < 1, 0 < x+ y < 1

and is equal to 0 otherwise?

☼
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Solution continued
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Joint pdf continued

Problem: If the joint density function of X and Y is

f(x, y) = 8e−4xe−2y , 0 < x <∞, 0 < y <∞

and is equal to 0 outside this region, are the random variables independent?

☼
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