STOR 435.001 Lecture 10

Continuous Random Variables - I

Jan Hannig

UNC Chapel Hill

Continuous random variables: set of possible values is uncountable, e.g. $(-\infty, \infty),(0, \infty),(0,1)$, etc. Examples: time till next earthquake, height of a randomly selected person, length of time we spend on phone for customer service.

- Contable vs. uncountable

Advantages of continuum over discrete: mathematical model that often is easier to use.

Assigning probabilities: Note that we cannot assign probabilities to each value. Why not? How to assign probabilities then?

Approximation of discrete by continuum: We want to be able to think of continuum as an approximation of discrete. How should we assign probabilities then?

Definition

X is a continuous random variable if there is a non-negative function f on $(-\infty, \infty)$ such that

$$
P(X \in B)=\int_{B} f(x) d x
$$

for any set B of $(-\infty, \infty)$. The function f is called the probability density function of X.
In particular: ${ }^{1}$

$$
\begin{gathered}
1=P(X \in(-\infty, \infty))=\int_{-\infty}^{\infty} f(x) d x \\
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x \\
P(X=a)=\int_{\{a\}} f(x) d x=0
\end{gathered}
$$

[^0]
Cumulative distribution function:

$$
F(a)=P(X \leq a)=P(X<a)=\int_{-\infty}^{a} f(x) d x
$$

that is, the c.d.f. F is the integral of the density f. Note that F is a continuous function (even if f is not).

Note:

$$
F^{\prime}(a)=\frac{d F}{d a}(a)=f(a)
$$

that is, the density f is the derivative of the c.d.f. F.

Important perspective: Note that, for small ϵ,

$$
P\left(a-\frac{\epsilon}{2} \leq X \leq a+\frac{\epsilon}{2}\right)=\int_{a-\frac{\epsilon}{2}}^{a+\frac{\epsilon}{2}} f(x) d x \approx f(a) \epsilon
$$

if f is continuous at $x=a$. In other words, $f(a)$ is a measure of how likely X will be near a.

Note: The above calculation also says that for a continuous random variable, for any fixed number a, the probability the random variable takes the value exactly equal to a, namely $\mathbb{P}(X=a)=0$!

Example: Suppose that X is a continuous random variable whose probability density function is given by

$$
f(x)=\left\{\begin{array}{cl}
C\left(4-x^{2}\right), & -2<x<2 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) What is the value of C ? (b) Find $P(X>1)$.

In the context of the above problem: (c) Find $\mathbb{P}(1<X<2.5)$ (d) Find $\mathbb{P}(X=1)$.

Example: For a particular stat exam, the amount of the time to complete in hours is known to have density

$$
f(x)=1, \quad 0<x<1
$$

Let the random variable $Y=e^{X}$. What is the pdf of Y ?

Definition

If X is a continuous random variable with density f, its expected value (or mean) is defined as

$$
E X=\int_{-\infty}^{\infty} x f(x) d x
$$

Compare with: If X is a discrete random variable with p.m.f. $p(x)$, its expected value is defined as

$$
E X=\sum x p(x)
$$

Computing expectation of function of continuous random variable

If X is a continuous random variable with density f and g is a function, then

$$
E g(X)=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Continuous random variables

Example

Jan has two nieces (Vivian and Sofia) who are fighting over a chocolate bar. Jan decides to split the chocolate bar for the nieces. He splits it at a uniform location U on the bar namely the density of U is given by

$$
f_{U}(u)=1, \quad 0<u<1
$$

Jan fixes a number p in $(0,1)$ and tells Vivian she will get the portion of the bar that contains p. Find the expected length of the piece that Vivian gets.

Continuous random variables

Example 2d: Suppose that if you are s minutes early for an appointment, then you incur the cost $c s$, and if you are s minutes late, then you incur the cost $k s$. Suppose also that the travel time from where you presently are to the location of your appointment is a continuous random variable having probability density function f. Determine the time at which you should depart if you want to minimize your expected cost.

A corollary: If a and b are constants, then

$$
E(a X+b)=a E X+b
$$

Variance:

$$
\operatorname{Var}(X)=E(X-E X)^{2}=E X^{2}-(E X)^{2}
$$

where

$$
E X^{2}=\int_{-\infty}^{\infty} x^{2} f(x) d x
$$

Standard deviation: $\sqrt{\operatorname{Var}(X)}$

Definition

X is a uniform random variable on (a, b) if its density is

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & a<x<b, \\
0 & \text { otherwise }
\end{array}\right.
$$

Notation: $X \sim U(a, b)$. Note: $P\left(x_{1}<X<x_{2}\right)=P\left(x_{1}+h<X<x_{2}+h\right)$ for $x_{1}, x_{2}, x_{1}+h, x_{2}+h \in(a, b)$.

Continuous random variables

If $X \sim U(a, b)$, then:

$$
E X=
$$

-

$\operatorname{Var}(X)=$
-

Continuous random variables

Problem 12: A bus travels between the two cities A and B, which are 100 miles apart. If the bus has a breakdown, the distance from the breakdown to city A has a uniform distribution over $(0,100)$. There is a bus service station in city A , in B , and in the center of the route between A and B. It is suggested that it would be more efficient to have the three stations located 25,50 , and 75 miles, respectively, from A. Do you agree? Why?

Solution continued

[^0]: ${ }^{1}$ Not surprisingly, we will also start to rely heavily on calculus from now on.

