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Binomial Random variables

Main properties

I Arise in describing the number of successes in n independent trials
where each trial can either be a “success” or “failure” and the probability
of success is p, constant across all the trials.

I Probability mass function:

P(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

I Moment generating function (writing q = 1− p)

E(etX) := (q + pet)n, t ∈ R.

I E(X) = np, Var(X) = np(1− p). So standard deviation
SD(X) =

√
np(1− p).
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One major area of applications: Redundancy in electronics

Replicating key components so as to decrease the chance of failure. The
following two slides taken verbatim from a highly researched article “When
Failure is an Option: Redundancy, reliability and regulation in complex
technical systems” by John Downer:
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Redundancy discussion continued
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Binomial Random variables

Example 1: Suppose that, in flight, airplane engines will fail with probability
1− p, independently from engine to engine. If an airplane needs a majority of
its engines operative to complete a successful flight, for what values of p is a
5-engine plane preferable to a 3-engine plane?

☼
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Binomial Random variables

Example 2: Jan’s dog (referred to as DOG) claims that it can read Jan’s mind. This
could be bad news. Jan decides to test DOG. Jan takes out DOG’s favorite treat and
hides it in one of his hands with equal probability. Jan asks DOG to guess which hand.
Jan repeats this experiment 10 times. Suppose DOG gets 8 out of 10 correct. What is
the probability that DOG would have done at least this well if DOG could not read his
mind? You may assume that all the assumptions of a Binomial experiment are satisfied
(although in practice one needs to check the assumptions very carefully; e.g. smell
resistent bags and then in hands, Jan cannot show any bias to any hands through
pressure etc). However if you have a talking DOG, checking assumptions is the least of
your worries.

☼

6 / 25



Solution contd.
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Poisson distribution

Definition
A random variable X is called Poisson if it takes values 0, 1, 2, . . . with
probabilities

p(i) = P (X = i) = e−λ
λi

i!
, i = 0, 1, 2, . . .

for some λ > 0.

Note: Why e−λ?

☼

Notation:1 X = Pois(λ)

1Simeon Denis Poisson (1781-1840), French mathematician and physicist.
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Poisson distribution

Motivation: If Y = B(n, p) with large n, small p, and moderate np, then
Y ≈ Pois(λ) with λ = np.

☼

Examples of random variables that usually obey Poisson law: number of
misprints on a page of a book; number of people in a community living to 100
years; number of customers entering a post office on a given day; etc.
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Poisson distribution

X = Pois(λ): What are EX and V ar(X)?

Note: Since X ≈ B(n, p), expect EX ≈ np = λ and
V ar(X) ≈ np(1− p) ≈ λ.

Rigorously using Moment generating function:

☼
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Calculating E(X) for Poisson without MGF

At home (or see book) how to calculate E(X2) without MGF.
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Why is the Poisson distribution so important? Example I (World War II)

Figure: Firefighters putting out a blaze in London after an air raid during The Blitz in 1941. Picture By New York Times Paris Bureau

Collection [Public domain], via Wikimedia Commons
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Why is the Poisson distribution so important? Example I

See: An application of the Poisson distribution by R.D. Clarke [Prudential
assurance company].

World War II

I Divided the 144 square km of South London into 576 squares of 1/4 square
kilometer each.

I Counted the number of squares where there were 0, 1, 2, . . . bombs
I Total number of bombs: 537. So if we assume that number of bombs in a square

is a Poisson random variable with mean λ then λ can be estimated as
λ = 537/576 = .93. Can estimate the number of squares with k bombs by
576 ∗ e−λλk/k! (Poisson distribution formula).

No of bombs per square Expected number using Poisson Actual number
0 226.74 229
1 211.39 211
2 98.54 93
3 30.62 35
4 7.14 7

6 and over 1.57 1
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Why is the Poisson distribution so important? Example II

See: Shark attacks and Poisson Approximation by Byron Schmuland

Wayne Gretzky during Edmonton Oiler days

I Scored 1669 points per 696 games.
I Suppose we assume that number of points per game can be

approximated by a Poisson random variable
I λ ≈ 1669/696.

Figure: Wayne Gretzky. Picture by Kris
Krug [CC BY-SA 2.0
(http://creativecommons.org/licenses/by-
sa/2.0)], via Wikimedia
Commons

Points Prediction (Poisson) Actual
0 63.27 69
1 151.71 155
2 181.90 171
3 145.40 143
4 87.17 79
5 41.81 57
6 16.71 14
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Poisson distribution

Shape of Poisson distribution:
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Poisson distribution

Example: Brad is in a big dorm with 180 other students. Let X be the number of other
students who have the same birthday as Brad. Using Poisson approximation,
approximate the probability that (a) there is at least one student with same birthday as
Brad? (b) exactly one student with same birthday as Brad? (c) at least two students?
Compare this with the exact probability. You may assume that the birthday of each of
the other students is equally likely to be any one of the 365 days (no students born on
leap years) and independent of each other.
[The approximation would be OK even if these assumptions are not quite true. A few
leaps years and twins will not hurt. If the dorm was only allowing twins in, that would be
different :)]

☼Approximate probability:

16 / 25



Problem contd: Exact probabilities

☼
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Poisson distribution

Example

A crime has been committed in a small town containing 1000 people. Blood from every
person in the town is taken and matched against the DNA profile found in the crime
scene. The probability of a person showing up as a match is 1/500, independent
across individuals (unrealistic assumption in practice since relatives would have close
profiles but ok for this made up problem!). Use Poisson approximation to find the
chance exactly two people are found as matches?

☼
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Poisson distribution

Example: when parameters are given to you
You are planning to take a bus to go home late at night. There are two possible buses you could take to
go home. The number of passengers on the first bus (late at night) has a Poisson distribution with
λ = 4. The second bus has a Poisson distribution with λ = 5. Because of scheduling differences you
take bus one with probability 1/3 and bus two with probability 2/3. What is the probability that on your
trip, your bus has at least 2 (≥ 2) passengers?

☼
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Poisson distribution

We thus have Pois(λ) ≈ B(n, p) with λ = np (and large n, small p). Binomial
distribution involves independent trials. It turns out that this approximation is
still good for trials which are “weakly dependent”.

Even more generally:

Poisson paradigm

Consider n events, with pi equal to the probability that event i occurs,
i = 1, . . . , n. If all the pi are “small” and the trials are either independent or at
most “weakly dependent,” then the number of these events that occur
approximately has a Poisson distribution with mean

∑n
i=1 pi.
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Poisson process

Another motivation for Poisson: Suppose “events” occur in time. Assume the
following assumptions hold true:

1. The probability that exactly 1 event occurs in a given interval of length h
is equal to λh+ o(h), where o(h) stands for any function f(h) for which
limh→0 f(h)/h = 0.

2. The probability that 2 or more events occur in an interval of length h is
equal to o(h).

3. For any integers n, j1, j2, . . . , jn and any set of n nonoverlapping
intervals, if we define Ei to be the event that exactly ji of the events
under consideration occur in the ith of these intervals, then events E1,
E2, ... , En are independent.

Let N(t) be the number of events that occur in [0, t].
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Random variables

Fact
Under conditions 1, 2 and 3, N(t) = Pois(λt).

Note: λ = rate per unit time at which events occur.

☼

Examples: number of earthquakes occurring in a period of time; number of
deaths of policyholders of insurance company in a period of time; number of
shark attacks in a period of time (see Extras); number of buses showing up at
a bus stop etc.
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Random variables

Poisson process (with λ = 1):
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Random variables

Example In a big university, lights are kept on day and night and they burn at
the rate λ = 7.2 per day (i.e. 1 day is the unit of time and lights burning out
occur in accordance with the three assumptions at a rate of 7.2 per day). You
may also assume for simplicity that they are replaced as soon as they burn
out. Find the probability of:

(a) More than two burnouts between noon and 2 p.m. tomorrow.

(b) Exactly 50 burnouts next week (i.e. in the next 7 days).

☼
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Solution continued
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