Homework set 9

1. Let $X \sim \exp (1)$ and $Y \mid X=x \sim \operatorname{uniform}(0, x)$. Find $\rho(X, Y)$.
2. For a parameter $\gamma>0$ define

$$
f_{X Y}(x, y)=\frac{\gamma(\gamma+1)}{(1+x+y)^{\gamma+2}} \quad x>0, y>0
$$

(a) Find the marginal distributions.
(b) What is the distribution of $Y \mid X=x$.
(c) For what values of γ does $\rho(X, Y)$ exist? (Find its value when it exists.)
3. Suppose X and Y have joint pdf given by

$$
f_{X Y}(x, y):= \begin{cases}8 x y & 0<x<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $E(X \mid Y=y)$ and $E(Y \mid X=x)$.
4. Consider the random variables X and Y where X represents annual return on Treasury bills and Y represents annual return on stocks. Suppose (based on historical data) that the expectations, standard deviations and correlation between these random variables are given by the numbers

$$
\mu_{X}=5, \sigma_{X}=4, \mu_{Y}=13.2, \sigma_{Y}=17.6, \rho=-.3
$$

Suppose you decide to invest 40% of your money in treasury bills and 60% in stocks namely consider the portfolio $R=.4 X+.6 Y$. What is the standard deviation of this random variable R ?
5. Let X_{1}, X_{2}, X_{3} be independent continuous random variables with comment density $f(x)$ and distribution function F. Calculate $P\left(X_{1}<\right.$ $X_{2}<X_{3}$). (Hint: In the tripple integral make change of variable $u_{i}=F\left(x_{i}\right)$ for all i.)
6. Let $W \sim \Gamma(a, b)$. Conditional on $W=w$ the $X_{1}, \ldots, X_{n} \mid W=w$ are independent $\operatorname{Exp}(w)$. What is the conditional expectation of $E\left[W \mid X_{1}=\right.$ $\left.x_{1}, \ldots, X_{n}=x_{n}\right]$? (This is related to Bayesian statistics.)
7. The number of hurricanes that will hit a house in the next 10 years has a Poisson distribution with mean 11. Each hurricane results in a loss that is exponentially distributed with rate $\lambda=1 / 1250$. Losses are independent and independent of the number of hurricanes. Define the random variable $S=$ total losses due to hurricanes in the next 10 years. Find $E(S)$.

