Homework set \#4

1. If $E X=1$ and $\operatorname{Var} X=5$ find
(a) $E\left[(2+X)^{2}\right]$,
(b) $\operatorname{Var}(4+3 X)$.
2. A total of 4 buses is carrying 148 students arrives at a football stadium. The busses carry 40, 33, 25, and 50 students respectively. One student and one bus driver is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student and Y denote the the number of students that were on the bus driven by the randomly selected driver.
(a) Which of $E X$ and $E Y$ do you thin is larger? Why?
(b) Compute $E X$ and $E Y$.
(c) Find $\operatorname{Var} X$ and $\operatorname{Var} Y$.
3. Let N denote the number of heads occurring in n tosses of a biased coin. $(P(H)=p=1-q$.)
(a) What is the probability mass function of N ? What is $E(N)$ and $\operatorname{Var}(N) ?$
(b) Find the probability p_{n} that N is even? (Hint: Prove and utilize the following identity $\sum_{i}\binom{n}{2 i} x^{2 i} y^{n-2 i}=\frac{(x+y)^{n}+(y-x)^{n}}{2}$.)
(c) Is there a random variable Y such that

$$
P(Y=n)= \begin{cases}\frac{C p_{n}}{2^{n}} & \text { for } n=1,2,3, \ldots \\ 0 & \text { otherwise? }\end{cases}
$$

If yes, find C.
4. Let $X \sim \mathrm{~B}(n, p)$. Show that

$$
E\left[\frac{1}{X+1}\right]=\frac{1-(1-p)^{n+1}}{(n+1) p}
$$

5. Show:

$$
\lim _{r \rightarrow \infty, p \rightarrow 1, r(1-p)=\lambda}\binom{r+x-1}{x} p^{r}(1-p)^{x}=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

for $x=0,1,2,3, \ldots$ (This is a Poisson approximation to negative binomial.)
6. Ler $X \sim \operatorname{Poisson}(\lambda)$. Show $E X^{n}=\lambda E\left[(X+1)^{n-1}\right]$. Use this to compute $E X^{3}$.
7. Prove

$$
\sum_{i=0}^{n} \frac{\lambda^{i} e^{-\lambda}}{i!}=\frac{1}{n!} \int_{\lambda}^{\infty} e^{-x} x^{n} d x
$$

8. Suppose X is a Poisson random variable with mean λ. If $P(X=1 \mid X \leq$ $1)=.9$ what is the value of λ ?
