Homework 1

1. Five separate awards (best scholarship, best leadership qualities, and so on) are to be presented to selected students from a class of 20 . How many different outcomes are possible if
(a) a student can receive any number of awards?
(b) each student can receive at most 1 award?
2. People have come up with various nice "laws" when studying coincidences, see for example the beautiful book Improbability principle by David Hand. One of the laws is called the Law of Inevitability namely in an experiment: something must happen. At first sight this sounds trite but let us see it in action. In 1990, the Virginia state lottery was being conducted as follows. You have to choose 6 distinct numbers from the numbers 1 to 44; the order does not matter so one lottery ticket could be:

$$
23,06,43,11,37,09
$$

Suppose each ticket is worth $\$ 1$. Suppose you wanted to buy all possible tickets. How much would you have to spend?

History time: In Feb 1992 since no one had won in the previous weeks, the jackpot had ballooned up to $\$ 27$ million. A group called "International Lotto fund" compromising around 2500 small investors (mainly from Australia but also US, Europe, NZ) raised the money and bought all possible combinations and won!
3. 6 women and 6 men are shipwrecked on a tropical island. How many ways can they
(a) Form 6 male-female couples. Note here a couple of the form $\{J i m, A n n\}$ is the same as $\{A n n, J i m\}$.
(b) Form 6 male-female couples and get married if we keep track of the order in which the weddings occur.
4. Consider the set $S=\{T, H T, H H T, H H H T, \ldots\}$ be the set of possible outcomes when you keep tossing a coin till the first time you see a tail (so e.g. HHT represents the first toss was Head, the second was head and the third was tail so you stopped the experiment). For $k \geq 1$, let E_{k} denote the event that you need at least k tosses to get a tail. Write down all possible outcomes in the event:

$$
E_{2} \cap E_{5}^{c}
$$

5. You ask a friend to choose an integer N between -5 and 5 (here -5 and 5 are included). Let $A=\{N \leq 3\}, B=\{3 \leq N \leq 7\}$ and $C=\{N$ is even and $>0\}$. List the outcomes that belong to the following events:
(a) $A \cap B \cap C$
(b) $A \cup\left(B \cap C^{c}\right)$
(c) $(A \cup B) \cap C^{c}$
(d) $(A \cap B) \cap\left((A \cup C)^{c}\right)$
6. One event operation that we did not discuss in class is the "set-minus" operation. For two event E and F, the event $E \backslash F$ is the event consisting of all outcomes that are in E but not F. Answer yes or no to the following: For 3 events A, B, C is the following identity true:

$$
A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)
$$

7. DELETED

8. Five fair dice are tossed once.
(a) What is the probability of a "full house"?
(b) What is the probability of "exactly two pairs"?
9. A fair die is tossed n times. What is the probability of the event at east one "face" never appears? (Intuitively this probability should go to 0 as n goes to infinity. Check yours.)
